1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/*------------------------------------------------------------------------
*
* geqo_main.c--
* solution of the query optimization problem
* by means of a Genetic Algorithm (GA)
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: geqo_main.c,v 1.7 1998/02/26 04:32:22 momjian Exp $
*
*-------------------------------------------------------------------------
*/
/* contributed by:
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
* Martin Utesch * Institute of Automatic Control *
= = University of Mining and Technology =
* utesch@aut.tu-freiberg.de * Freiberg, Germany *
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
*/
/* -- parts of this are adapted from D. Whitley's Genitor algorithm -- */
#include "postgres.h"
#include "nodes/pg_list.h"
#include "nodes/relation.h"
#include "nodes/plannodes.h"
#include "nodes/primnodes.h"
#include "utils/palloc.h"
#include "utils/elog.h"
#include "optimizer/internal.h"
#include "optimizer/paths.h"
#include "optimizer/pathnode.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/geqo_gene.h"
#include "optimizer/geqo.h"
#include "optimizer/geqo_pool.h"
#include "optimizer/geqo_selection.h"
#include "optimizer/geqo_recombination.h"
#include "optimizer/geqo_mutation.h"
#include "optimizer/geqo_misc.h"
/* define edge recombination crossover [ERX] per default */
#if !defined(ERX) && \
!defined(PMX) && \
!defined(CX) && \
!defined(PX) && \
!defined(OX1) && \
!defined(OX2)
#define ERX
#endif
/*
* geqo--
* solution of the query optimization problem
* similar to a constrained Traveling Salesman Problem (TSP)
*/
Rel *
geqo(Query *root)
{
int generation;
Chromosome *momma;
Chromosome *daddy;
Chromosome *kid;
#if defined(ERX)
Edge *edge_table; /* list of edges */
int edge_failures = 0;
float difference;
#endif
#if defined(CX) || defined(PX) || defined(OX1) || defined(OX2)
City *city_table; /* list of cities */
#endif
#if defined(CX)
int cycle_diffs = 0;
int mutations = 0;
#endif
int number_of_rels;
Pool *pool;
int pool_size,
number_generations,
status_interval;
Gene *best_tour;
Rel *best_rel;
/* Plan *best_plan; */
/* set tour size */
number_of_rels = length(root->base_relation_list_);
/* set GA parameters */
geqo_params(number_of_rels);/* out of "$PGDATA/pg_geqo" file */
pool_size = PoolSize;
number_generations = Generations;
status_interval = 10;
/* seed random number generator */
srandom(RandomSeed);
/* allocate genetic pool memory */
pool = alloc_pool(pool_size, number_of_rels);
/* random initialization of the pool */
random_init_pool(root, pool, 0, pool->size);
/* sort the pool according to cheapest path as fitness */
sort_pool(pool); /* we have to do it only one time, since
* all kids replace the worst individuals
* in future (-> geqo_pool.c:spread_chromo
* ) */
/* allocate chromosome momma and daddy memory */
momma = alloc_chromo(pool->string_length);
daddy = alloc_chromo(pool->string_length);
#if defined (ERX)
elog(DEBUG, "geqo_main: using edge recombination crossover [ERX]");
/* allocate edge table memory */
edge_table = alloc_edge_table(pool->string_length);
#elif defined(PMX)
elog(DEBUG, "geqo_main: using partially matched crossover [PMX]");
/* allocate chromosome kid memory */
kid = alloc_chromo(pool->string_length);
#elif defined(CX)
elog(DEBUG, "geqo_main: using cycle crossover [CX]");
/* allocate city table memory */
kid = alloc_chromo(pool->string_length);
city_table = alloc_city_table(pool->string_length);
#elif defined(PX)
elog(DEBUG, "geqo_main: using position crossover [PX]");
/* allocate city table memory */
kid = alloc_chromo(pool->string_length);
city_table = alloc_city_table(pool->string_length);
#elif defined(OX1)
elog(DEBUG, "geqo_main: using order crossover [OX1]");
/* allocate city table memory */
kid = alloc_chromo(pool->string_length);
city_table = alloc_city_table(pool->string_length);
#elif defined(OX2)
elog(DEBUG, "geqo_main: using order crossover [OX2]");
/* allocate city table memory */
kid = alloc_chromo(pool->string_length);
city_table = alloc_city_table(pool->string_length);
#endif
/* my pain main part: */
/* iterative optimization */
for (generation = 0; generation < number_generations; generation++)
{
/* SELECTION */
geqo_selection(momma, daddy, pool, SelectionBias); /* using linear bias
* function */
#if defined (ERX)
/* EDGE RECOMBINATION CROSSOVER */
difference = gimme_edge_table(momma->string, daddy->string, pool->string_length, edge_table);
/* let the kid grow in momma's womb (storage) for nine months ;-) */
/* sleep(23328000) -- har har har */
kid = momma;
/* are there any edge failures ? */
edge_failures += gimme_tour(edge_table, kid->string, pool->string_length);
#elif defined(PMX)
/* PARTIALLY MATCHED CROSSOVER */
pmx(momma->string, daddy->string, kid->string, pool->string_length);
#elif defined(CX)
/* CYCLE CROSSOVER */
cycle_diffs =
cx(momma->string, daddy->string, kid->string, pool->string_length, city_table);
/* mutate the child */
if (cycle_diffs == 0)
{
mutations++;
geqo_mutation(kid->string, pool->string_length);
}
#elif defined(PX)
/* POSITION CROSSOVER */
px(momma->string, daddy->string, kid->string, pool->string_length, city_table);
#elif defined(OX1)
/* ORDER CROSSOVER */
ox1(momma->string, daddy->string, kid->string, pool->string_length, city_table);
#elif defined(OX2)
/* ORDER CROSSOVER */
ox2(momma->string, daddy->string, kid->string, pool->string_length, city_table);
#endif
/* EVALUATE FITNESS */
kid->worth = geqo_eval(root, kid->string, pool->string_length);
/* push the kid into the wilderness of life according to its worth */
spread_chromo(kid, pool);
#ifdef GEQO_DEBUG
if (status_interval && !(generation % status_interval))
print_gen(stdout, pool, generation);
#endif
} /* end of iterative optimization */
#if defined(ERX) && defined(GEQO_DEBUG)
if (edge_failures != 0)
fprintf(stdout, "\nFailures: %d Avg: %d\n", edge_failures, (int) generation / edge_failures);
else
fprintf(stdout, "No edge failures detected.\n");
#endif
#if defined(CX) && defined(GEQO_DEBUG)
if (mutations != 0)
fprintf(stdout, "\nMutations: %d Generations: %d\n", mutations, generation);
else
fprintf(stdout, "No mutations processed.\n");
#endif
#ifdef GEQO_DEBUG
fprintf(stdout, "\n");
print_pool(stdout, pool, 0, pool_size - 1);
#endif
/* got the cheapest query tree processed by geqo;
first element of the population indicates the best query tree */
best_tour = (Gene *) pool->data[0].string;
/* root->join_relation_list_ will be modified during this ! */
best_rel = (Rel *) gimme_tree(root, best_tour, 0, pool->string_length, NULL);
/* DBG: show the query plan
print_plan(best_plan, root);
DBG */
/* ... free memory stuff */
free_chromo(momma);
free_chromo(daddy);
#if defined (ERX)
free_edge_table(edge_table);
#elif defined(PMX)
free_chromo(kid);
#elif defined(CX)
free_chromo(kid);
free_city_table(city_table);
#elif defined(PX)
free_chromo(kid);
free_city_table(city_table);
#elif defined(OX1)
free_chromo(kid);
free_city_table(city_table);
#elif defined(OX2)
free_chromo(kid);
free_city_table(city_table);
#endif
free_pool(pool);
return (best_rel);
}
|