aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/plan/planner.c
blob: 91ce6f99c1b0a9ad55596c044acdab2a0a6db361 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
/*-------------------------------------------------------------------------
 *
 * planner.c
 *	  The query optimizer external interface.
 *
 * Portions Copyright (c) 1996-2000, PostgreSQL, Inc
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.81 2000/06/09 01:44:14 momjian Exp $
 *
 *-------------------------------------------------------------------------
 */
#include <sys/types.h>

#include "postgres.h"

#include "access/heapam.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/internal.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parse_expr.h"
#include "utils/lsyscache.h"


static List *make_subplanTargetList(Query *parse, List *tlist,
					   AttrNumber **groupColIdx);
static Plan *make_groupplan(List *group_tlist, bool tuplePerGroup,
			   List *groupClause, AttrNumber *grpColIdx,
			   bool is_presorted, Plan *subplan);
static Plan *make_sortplan(List *tlist, List *sortcls, Plan *plannode);

/*****************************************************************************
 *
 *	   Query optimizer entry point
 *
 *****************************************************************************/
Plan *
planner(Query *parse)
{
	Plan	   *result_plan;

	/* Initialize state for subselects */
	PlannerQueryLevel = 1;
	PlannerInitPlan = NULL;
	PlannerParamVar = NULL;
	PlannerPlanId = 0;

	/* this should go away sometime soon */
	transformKeySetQuery(parse);

	/* primary planning entry point (may recurse for subplans) */
	result_plan = subquery_planner(parse, -1.0 /* default case */ );

	Assert(PlannerQueryLevel == 1);

	/* if top-level query had subqueries, do housekeeping for them */
	if (PlannerPlanId > 0)
	{
		(void) SS_finalize_plan(result_plan);
		result_plan->initPlan = PlannerInitPlan;
	}

	/* executor wants to know total number of Params used overall */
	result_plan->nParamExec = length(PlannerParamVar);

	/* final cleanup of the plan */
	set_plan_references(result_plan);

	return result_plan;
}


/*--------------------
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
 *
 * parse is the querytree produced by the parser & rewriter.
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
 * tuple_fraction is interpreted as explained for union_planner, below.
 *
 * Basically, this routine does the stuff that should only be done once
 * per Query object.  It then calls union_planner, which may be called
 * recursively on the same Query node in order to handle UNIONs and/or
 * inheritance.  subquery_planner is called recursively from subselect.c.
 *
 * prepunion.c uses an unholy combination of calling union_planner when
 * recursing on the primary Query node, or subquery_planner when recursing
 * on a UNION'd Query node that hasn't previously been seen by
 * subquery_planner.  That whole chunk of code needs rewritten from scratch.
 *
 * Returns a query plan.
 *--------------------
 */
Plan *
subquery_planner(Query *parse, double tuple_fraction)
{
    List       *l;
	List	   *rangetable = parse->rtable;
    RangeTblEntry *rangeTblEntry;

	/*
	 * A HAVING clause without aggregates is equivalent to a WHERE clause
	 * (except it can only refer to grouped fields).  If there are no aggs
	 * anywhere in the query, then we don't want to create an Agg plan
	 * node, so merge the HAVING condition into WHERE.	(We used to
	 * consider this an error condition, but it seems to be legal SQL.)
	 */
	if (parse->havingQual != NULL && !parse->hasAggs)
	{
		if (parse->qual == NULL)
			parse->qual = parse->havingQual;
		else
			parse->qual = (Node *) make_andclause(lappend(lcons(parse->qual,
																NIL),
													 parse->havingQual));
		parse->havingQual = NULL;
	}

	/*
	 * Simplify constant expressions in targetlist and quals.
	 *
	 * Note that at this point the qual has not yet been converted to
	 * implicit-AND form, so we can apply eval_const_expressions directly.
	 * Also note that we need to do this before SS_process_sublinks,
	 * because that routine inserts bogus "Const" nodes.
	 */
	parse->targetList = (List *)
		eval_const_expressions((Node *) parse->targetList);
	parse->qual = eval_const_expressions(parse->qual);
	parse->havingQual = eval_const_expressions(parse->havingQual);

    /*
     * If the query is going to look for subclasses, but no subclasses
     * actually exist, then we can optimise away the union that would
     * otherwise happen and thus save some time.
    */
    foreach(l, rangetable)
        {
           rangeTblEntry  = (RangeTblEntry *)lfirst(l);
           if (rangeTblEntry->inh && !has_subclass(rangeTblEntry->relid))
             rangeTblEntry->inh = FALSE;
        }

	/*
	 * Canonicalize the qual, and convert it to implicit-AND format.
	 *
	 * XXX Is there any value in re-applying eval_const_expressions after
	 * canonicalize_qual?
	 */
	parse->qual = (Node *) canonicalize_qual((Expr *) parse->qual, true);
#ifdef OPTIMIZER_DEBUG
	printf("After canonicalize_qual()\n");
	pprint(parse->qual);
#endif

	/*
	 * Ditto for the havingQual
	 */
	parse->havingQual = (Node *) canonicalize_qual((Expr *) parse->havingQual,
												   true);

	/* Expand SubLinks to SubPlans */
	if (parse->hasSubLinks)
	{
		parse->targetList = (List *)
			SS_process_sublinks((Node *) parse->targetList);
		parse->qual = SS_process_sublinks(parse->qual);
		parse->havingQual = SS_process_sublinks(parse->havingQual);

		if (parse->groupClause != NIL)
		{

			/*
			 * Check for ungrouped variables passed to subplans. Note we
			 * do NOT do this for subplans in WHERE; it's legal there
			 * because WHERE is evaluated pre-GROUP.
			 *
			 * An interesting fine point: if we reassigned a HAVING qual into
			 * WHERE above, then we will accept references to ungrouped
			 * vars from subplans in the HAVING qual.  This is not
			 * entirely consistent, but it doesn't seem particularly
			 * harmful...
			 */
			check_subplans_for_ungrouped_vars((Node *) parse->targetList,
											  parse);
			check_subplans_for_ungrouped_vars(parse->havingQual, parse);
		}
	}

	/* Replace uplevel vars with Param nodes */
	if (PlannerQueryLevel > 1)
	{
		parse->targetList = (List *)
			SS_replace_correlation_vars((Node *) parse->targetList);
		parse->qual = SS_replace_correlation_vars(parse->qual);
		parse->havingQual = SS_replace_correlation_vars(parse->havingQual);
	}

	/* Do the main planning (potentially recursive) */

	return union_planner(parse, tuple_fraction);

	/*
	 * XXX should any more of union_planner's activity be moved here?
	 *
	 * That would take careful study of the interactions with prepunion.c,
	 * but I suspect it would pay off in simplicity and avoidance of
	 * wasted cycles.
	 */
}


/*--------------------
 * union_planner
 *	  Invokes the planner on union-type queries (both regular UNIONs and
 *	  appends produced by inheritance), recursing if necessary to get them
 *	  all, then processes normal plans.
 *
 * parse is the querytree produced by the parser & rewriter.
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
 *	  < 0: determine fraction by inspection of query (normal case)
 *	  0: expect all tuples to be retrieved
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 * The normal case is to pass -1, but some callers pass values >= 0 to
 * override this routine's determination of the appropriate fraction.
 *
 * Returns a query plan.
 *--------------------
 */
Plan *
union_planner(Query *parse,
			  double tuple_fraction)
{
	List	   *tlist = parse->targetList;
	List	   *rangetable = parse->rtable;
	Plan	   *result_plan = (Plan *) NULL;
	AttrNumber *groupColIdx = NULL;
	List	   *current_pathkeys = NIL;
	List	   *group_pathkeys;
	List	   *sort_pathkeys;
	Index		rt_index;

	if (parse->unionClause)
	{
		result_plan = (Plan *) plan_union_queries(parse);
		/* XXX do we need to do this? bjm 12/19/97 */
		tlist = preprocess_targetlist(tlist,
									  parse->commandType,
									  parse->resultRelation,
									  parse->rtable);

		/*
		 * We leave current_pathkeys NIL indicating we do not know sort
		 * order. Actually, for a normal UNION we have done an explicit
		 * sort; ought to change interface to plan_union_queries to pass
		 * that info back!
		 */

		/*
		 * Calculate pathkeys that represent grouping/ordering
		 * requirements
		 */
		group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
													   tlist);
		sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
													  tlist);
	}
	else if ((rt_index = first_inherit_rt_entry(rangetable)) != -1)
	{
		List	   *sub_tlist;

		/*
		 * Generate appropriate target list for subplan; may be different
		 * from tlist if grouping or aggregation is needed.
		 */
		sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);

		/*
		 * Recursively plan the subqueries needed for inheritance
		 */
		result_plan = (Plan *) plan_inherit_queries(parse, sub_tlist,
													rt_index);

		/*
		 * Fix up outer target list.  NOTE: unlike the case for
		 * non-inherited query, we pass the unfixed tlist to subplans,
		 * which do their own fixing.  But we still want to fix the outer
		 * target list afterwards. I *think* this is correct --- doing the
		 * fix before recursing is definitely wrong, because
		 * preprocess_targetlist() will do the wrong thing if invoked
		 * twice on the same list. Maybe that is a bug? tgl 6/6/99
		 */
		tlist = preprocess_targetlist(tlist,
									  parse->commandType,
									  parse->resultRelation,
									  parse->rtable);

		if (parse->rowMark != NULL)
			elog(ERROR, "SELECT FOR UPDATE is not supported for inherit queries");

		/*
		 * We leave current_pathkeys NIL indicating we do not know sort
		 * order of the Append-ed results.
		 */

		/*
		 * Calculate pathkeys that represent grouping/ordering
		 * requirements
		 */
		group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
													   tlist);
		sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
													  tlist);
	}
	else
	{
		List	   *sub_tlist;

		/* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
		tlist = preprocess_targetlist(tlist,
									  parse->commandType,
									  parse->resultRelation,
									  parse->rtable);

		/*
		 * Add row-mark targets for UPDATE (should this be done in
		 * preprocess_targetlist?)
		 */
		if (parse->rowMark != NULL)
		{
			List	   *l;

			foreach(l, parse->rowMark)
			{
				RowMark    *rowmark = (RowMark *) lfirst(l);
				TargetEntry *ctid;
				Resdom	   *resdom;
				Var		   *var;
				char	   *resname;

				if (!(rowmark->info & ROW_MARK_FOR_UPDATE))
					continue;

				resname = (char *) palloc(32);
				sprintf(resname, "ctid%u", rowmark->rti);
				resdom = makeResdom(length(tlist) + 1,
									TIDOID,
									-1,
									resname,
									0,
									0,
									true);

				var = makeVar(rowmark->rti, -1, TIDOID, -1, 0);

				ctid = makeTargetEntry(resdom, (Node *) var);
				tlist = lappend(tlist, ctid);
			}
		}

		/*
		 * Generate appropriate target list for subplan; may be different
		 * from tlist if grouping or aggregation is needed.
		 */
		sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);

		/*
		 * Calculate pathkeys that represent grouping/ordering
		 * requirements
		 */
		group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
													   tlist);
		sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
													  tlist);

		/*
		 * Figure out whether we need a sorted result from query_planner.
		 *
		 * If we have a GROUP BY clause, then we want a result sorted
		 * properly for grouping.  Otherwise, if there is an ORDER BY
		 * clause, we want to sort by the ORDER BY clause.	(Note: if we
		 * have both, and ORDER BY is a superset of GROUP BY, it would be
		 * tempting to request sort by ORDER BY --- but that might just
		 * leave us failing to exploit an available sort order at all.
		 * Needs more thought...)
		 */
		if (parse->groupClause)
			parse->query_pathkeys = group_pathkeys;
		else if (parse->sortClause)
			parse->query_pathkeys = sort_pathkeys;
		else
			parse->query_pathkeys = NIL;

		/*
		 * Figure out whether we expect to retrieve all the tuples that
		 * the plan can generate, or to stop early due to a LIMIT or other
		 * factors.  If the caller passed a value >= 0, believe that
		 * value, else do our own examination of the query context.
		 */
		if (tuple_fraction < 0.0)
		{
			/* Initial assumption is we need all the tuples */
			tuple_fraction = 0.0;

			/*
			 * Check for a LIMIT clause.
			 */
			if (parse->limitCount != NULL)
			{
				if (IsA(parse->limitCount, Const))
				{
					Const	   *limitc = (Const *) parse->limitCount;
					int			count = (int) (limitc->constvalue);

					/*
					 * The constant can legally be either 0 ("ALL") or a
					 * positive integer.  If it is not ALL, we also need
					 * to consider the OFFSET part of LIMIT.
					 */
					if (count > 0)
					{
						tuple_fraction = (double) count;
						if (parse->limitOffset != NULL)
						{
							if (IsA(parse->limitOffset, Const))
							{
								int			offset;

								limitc = (Const *) parse->limitOffset;
								offset = (int) (limitc->constvalue);
								if (offset > 0)
									tuple_fraction += (double) offset;
							}
							else
							{
								/* It's a PARAM ... punt ... */
								tuple_fraction = 0.10;
							}
						}
					}
				}
				else
				{

					/*
					 * COUNT is a PARAM ... don't know exactly what the
					 * limit will be, but for lack of a better idea assume
					 * 10% of the plan's result is wanted.
					 */
					tuple_fraction = 0.10;
				}
			}

			/*
			 * Check for a retrieve-into-portal, ie DECLARE CURSOR.
			 *
			 * We have no real idea how many tuples the user will ultimately
			 * FETCH from a cursor, but it seems a good bet that he
			 * doesn't want 'em all.  Optimize for 10% retrieval (you
			 * gotta better number?)
			 */
			if (parse->isPortal)
				tuple_fraction = 0.10;
		}

		/*
		 * Adjust tuple_fraction if we see that we are going to apply
		 * grouping/aggregation/etc.  This is not overridable by the
		 * caller, since it reflects plan actions that this routine will
		 * certainly take, not assumptions about context.
		 */
		if (parse->groupClause)
		{

			/*
			 * In GROUP BY mode, we have the little problem that we don't
			 * really know how many input tuples will be needed to make a
			 * group, so we can't translate an output LIMIT count into an
			 * input count.  For lack of a better idea, assume 25% of the
			 * input data will be processed if there is any output limit.
			 * However, if the caller gave us a fraction rather than an
			 * absolute count, we can keep using that fraction (which
			 * amounts to assuming that all the groups are about the same
			 * size).
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction = 0.25;

			/*
			 * If both GROUP BY and ORDER BY are specified, we will need
			 * two levels of sort --- and, therefore, certainly need to
			 * read all the input tuples --- unless ORDER BY is a subset
			 * of GROUP BY.  (Although we are comparing non-canonicalized
			 * pathkeys here, it should be OK since they will both contain
			 * only single-element sublists at this point.	See
			 * pathkeys.c.)
			 */
			if (parse->groupClause && parse->sortClause &&
				!pathkeys_contained_in(sort_pathkeys, group_pathkeys))
				tuple_fraction = 0.0;
		}
		else if (parse->hasAggs)
		{

			/*
			 * Ungrouped aggregate will certainly want all the input
			 * tuples.
			 */
			tuple_fraction = 0.0;
		}
		else if (parse->distinctClause)
		{

			/*
			 * SELECT DISTINCT, like GROUP, will absorb an unpredictable
			 * number of input tuples per output tuple.  Handle the same
			 * way.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction = 0.25;
		}

		/* Generate the (sub) plan */
		result_plan = query_planner(parse,
									sub_tlist,
									(List *) parse->qual,
									tuple_fraction);

		/*
		 * query_planner returns actual sort order (which is not
		 * necessarily what we requested) in query_pathkeys.
		 */
		current_pathkeys = parse->query_pathkeys;
	}

	/* query_planner returns NULL if it thinks plan is bogus */
	if (!result_plan)
		elog(ERROR, "union_planner: failed to create plan");

	/*
	 * We couldn't canonicalize group_pathkeys and sort_pathkeys before
	 * running query_planner(), so do it now.
	 */
	group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
	sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);

	/*
	 * If we have a GROUP BY clause, insert a group node (plus the
	 * appropriate sort node, if necessary).
	 */
	if (parse->groupClause)
	{
		bool		tuplePerGroup;
		List	   *group_tlist;
		bool		is_sorted;

		/*
		 * Decide whether how many tuples per group the Group node needs
		 * to return. (Needs only one tuple per group if no aggregate is
		 * present. Otherwise, need every tuple from the group to do the
		 * aggregation.)  Note tuplePerGroup is named backwards :-(
		 */
		tuplePerGroup = parse->hasAggs;

		/*
		 * If there are aggregates then the Group node should just return
		 * the same set of vars as the subplan did (but we can exclude any
		 * GROUP BY expressions).  If there are no aggregates then the
		 * Group node had better compute the final tlist.
		 */
		if (parse->hasAggs)
			group_tlist = flatten_tlist(result_plan->targetlist);
		else
			group_tlist = tlist;

		/*
		 * Figure out whether the path result is already ordered the way
		 * we need it --- if so, no need for an explicit sort step.
		 */
		if (pathkeys_contained_in(group_pathkeys, current_pathkeys))
		{
			is_sorted = true;	/* no sort needed now */
			/* current_pathkeys remains unchanged */
		}
		else
		{

			/*
			 * We will need to do an explicit sort by the GROUP BY clause.
			 * make_groupplan will do the work, but set current_pathkeys
			 * to indicate the resulting order.
			 */
			is_sorted = false;
			current_pathkeys = group_pathkeys;
		}

		result_plan = make_groupplan(group_tlist,
									 tuplePerGroup,
									 parse->groupClause,
									 groupColIdx,
									 is_sorted,
									 result_plan);
	}

	/*
	 * If aggregate is present, insert the Agg node
	 *
	 * HAVING clause, if any, becomes qual of the Agg node
	 */
	if (parse->hasAggs)
	{
		result_plan = (Plan *) make_agg(tlist,
										(List *) parse->havingQual,
										result_plan);
		/* Note: Agg does not affect any existing sort order of the tuples */
	}

	/*
	 * If we were not able to make the plan come out in the right order,
	 * add an explicit sort step.
	 */
	if (parse->sortClause)
	{
		if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
			result_plan = make_sortplan(tlist, parse->sortClause, result_plan);
	}

	/*
	 * Finally, if there is a DISTINCT clause, add the UNIQUE node.
	 */
	if (parse->distinctClause)
	{
		result_plan = (Plan *) make_unique(tlist, result_plan,
										   parse->distinctClause);
	}

	return result_plan;
}

/*---------------
 * make_subplanTargetList
 *	  Generate appropriate target list when grouping is required.
 *
 * When union_planner inserts Aggregate and/or Group plan nodes above
 * the result of query_planner, we typically want to pass a different
 * target list to query_planner than the outer plan nodes should have.
 * This routine generates the correct target list for the subplan.
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
 * variables to the subplan target list.  Also, if we are doing either
 * grouping or aggregation, we flatten all expressions except GROUP BY items
 * into their component variables; the other expressions will be computed by
 * the inserted nodes rather than by the subplan.  For example,
 * given a query like
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
 *		a,b,c,d,a+b
 * where the a+b target will be used by the Sort/Group steps, and the
 * other targets will be used for computing the final results.	(In the
 * above example we could theoretically suppress the a and b targets and
 * use only a+b, but it's not really worth the trouble.)
 *
 * 'parse' is the query being processed.
 * 'tlist' is the query's target list.
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
 * expressions (if there are any) in the subplan's target list.
 *
 * The result is the targetlist to be passed to the subplan.
 *---------------
 */
static List *
make_subplanTargetList(Query *parse,
					   List *tlist,
					   AttrNumber **groupColIdx)
{
	List	   *sub_tlist;
	List	   *extravars;
	int			numCols;

	*groupColIdx = NULL;

	/*
	 * If we're not grouping or aggregating, nothing to do here;
	 * query_planner should receive the unmodified target list.
	 */
	if (!parse->hasAggs && !parse->groupClause && !parse->havingQual)
		return tlist;

	/*
	 * Otherwise, start with a "flattened" tlist (having just the vars
	 * mentioned in the targetlist and HAVING qual --- but not upper-
	 * level Vars; they will be replaced by Params later on).
	 */
	sub_tlist = flatten_tlist(tlist);
	extravars = pull_var_clause(parse->havingQual, false);
	sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
	freeList(extravars);

	/*
	 * If grouping, create sub_tlist entries for all GROUP BY expressions
	 * (GROUP BY items that are simple Vars should be in the list
	 * already), and make an array showing where the group columns are in
	 * the sub_tlist.
	 */
	numCols = length(parse->groupClause);
	if (numCols > 0)
	{
		int			keyno = 0;
		AttrNumber *grpColIdx;
		List	   *gl;

		grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
		*groupColIdx = grpColIdx;

		foreach(gl, parse->groupClause)
		{
			GroupClause *grpcl = (GroupClause *) lfirst(gl);
			Node	   *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
			TargetEntry *te = NULL;
			List	   *sl;

			/* Find or make a matching sub_tlist entry */
			foreach(sl, sub_tlist)
			{
				te = (TargetEntry *) lfirst(sl);
				if (equal(groupexpr, te->expr))
					break;
			}
			if (!sl)
			{
				te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
												exprType(groupexpr),
												exprTypmod(groupexpr),
												NULL,
												(Index) 0,
												(Oid) 0,
												false),
									 groupexpr);
				sub_tlist = lappend(sub_tlist, te);
			}

			/* and save its resno */
			grpColIdx[keyno++] = te->resdom->resno;
		}
	}

	return sub_tlist;
}

/*
 * make_groupplan
 *		Add a Group node for GROUP BY processing.
 *		If we couldn't make the subplan produce presorted output for grouping,
 *		first add an explicit Sort node.
 */
static Plan *
make_groupplan(List *group_tlist,
			   bool tuplePerGroup,
			   List *groupClause,
			   AttrNumber *grpColIdx,
			   bool is_presorted,
			   Plan *subplan)
{
	int			numCols = length(groupClause);

	if (!is_presorted)
	{

		/*
		 * The Sort node always just takes a copy of the subplan's tlist
		 * plus ordering information.  (This might seem inefficient if the
		 * subplan contains complex GROUP BY expressions, but in fact Sort
		 * does not evaluate its targetlist --- it only outputs the same
		 * tuples in a new order.  So the expressions we might be copying
		 * are just dummies with no extra execution cost.)
		 */
		List	   *sort_tlist = new_unsorted_tlist(subplan->targetlist);
		int			keyno = 0;
		List	   *gl;

		foreach(gl, groupClause)
		{
			GroupClause *grpcl = (GroupClause *) lfirst(gl);
			TargetEntry *te = nth(grpColIdx[keyno] - 1, sort_tlist);
			Resdom	   *resdom = te->resdom;

			/*
			 * Check for the possibility of duplicate group-by clauses ---
			 * the parser should have removed 'em, but the Sort executor
			 * will get terribly confused if any get through!
			 */
			if (resdom->reskey == 0)
			{
				/* OK, insert the ordering info needed by the executor. */
				resdom->reskey = ++keyno;
				resdom->reskeyop = get_opcode(grpcl->sortop);
			}
		}

		subplan = (Plan *) make_sort(sort_tlist,
									 _NONAME_RELATION_ID_,
									 subplan,
									 keyno);
	}

	return (Plan *) make_group(group_tlist, tuplePerGroup, numCols,
							   grpColIdx, subplan);
}

/*
 * make_sortplan
 *	  Add a Sort node to implement an explicit ORDER BY clause.
 */
static Plan *
make_sortplan(List *tlist, List *sortcls, Plan *plannode)
{
	List	   *temp_tlist;
	List	   *i;
	int			keyno = 0;

	/*
	 * First make a copy of the tlist so that we don't corrupt the
	 * original.
	 */

	temp_tlist = new_unsorted_tlist(tlist);

	foreach(i, sortcls)
	{
		SortClause *sortcl = (SortClause *) lfirst(i);
		TargetEntry *tle = get_sortgroupclause_tle(sortcl, temp_tlist);
		Resdom	   *resdom = tle->resdom;

		/*
		 * Check for the possibility of duplicate order-by clauses --- the
		 * parser should have removed 'em, but the executor will get
		 * terribly confused if any get through!
		 */
		if (resdom->reskey == 0)
		{
			/* OK, insert the ordering info needed by the executor. */
			resdom->reskey = ++keyno;
			resdom->reskeyop = get_opcode(sortcl->sortop);
		}
	}

	return (Plan *) make_sort(temp_tlist,
							  _NONAME_RELATION_ID_,
							  plannode,
							  keyno);
}

/*
 * pg_checkretval() -- check return value of a list of sql parse
 *						trees.
 *
 * The return value of a sql function is the value returned by
 * the final query in the function.  We do some ad-hoc define-time
 * type checking here to be sure that the user is returning the
 * type he claims.
 *
 * XXX Why is this function in this module?
 */
void
pg_checkretval(Oid rettype, List *queryTreeList)
{
	Query	   *parse;
	List	   *tlist;
	List	   *rt;
	int			cmd;
	Type		typ;
	Resdom	   *resnode;
	Relation	reln;
	Oid			relid;
	int			relnatts;
	int			i;

	/* find the final query */
	parse = (Query *) nth(length(queryTreeList) - 1, queryTreeList);

	/*
	 * test 1:	if the last query is a utility invocation, then there had
	 * better not be a return value declared.
	 */
	if (parse->commandType == CMD_UTILITY)
	{
		if (rettype == InvalidOid)
			return;
		else
			elog(ERROR, "return type mismatch in function decl: final query is a catalog utility");
	}

	/* okay, it's an ordinary query */
	tlist = parse->targetList;
	rt = parse->rtable;
	cmd = parse->commandType;

	/*
	 * test 2:	if the function is declared to return no value, then the
	 * final query had better not be a retrieve.
	 */
	if (rettype == InvalidOid)
	{
		if (cmd == CMD_SELECT)
			elog(ERROR,
				 "function declared with no return type, but final query is a retrieve");
		else
			return;
	}

	/* by here, the function is declared to return some type */
	if ((typ = typeidType(rettype)) == NULL)
		elog(ERROR, "can't find return type %u for function\n", rettype);

	/*
	 * test 3:	if the function is declared to return a value, then the
	 * final query had better be a retrieve.
	 */
	if (cmd != CMD_SELECT)
		elog(ERROR, "function declared to return type %s, but final query is not a retrieve", typeTypeName(typ));

	/*
	 * test 4:	for base type returns, the target list should have exactly
	 * one entry, and its type should agree with what the user declared.
	 */

	if (typeTypeRelid(typ) == InvalidOid)
	{
		if (ExecTargetListLength(tlist) > 1)
			elog(ERROR, "function declared to return %s returns multiple values in final retrieve", typeTypeName(typ));

		resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
		if (resnode->restype != rettype)
			elog(ERROR, "return type mismatch in function: declared to return %s, returns %s", typeTypeName(typ), typeidTypeName(resnode->restype));

		/* by here, base return types match */
		return;
	}

	/*
	 * If the target list is of length 1, and the type of the varnode in
	 * the target list is the same as the declared return type, this is
	 * okay.  This can happen, for example, where the body of the function
	 * is 'retrieve (x = func2())', where func2 has the same return type
	 * as the function that's calling it.
	 */
	if (ExecTargetListLength(tlist) == 1)
	{
		resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
		if (resnode->restype == rettype)
			return;
	}

	/*
	 * By here, the procedure returns a (set of) tuples.  This part of the
	 * typechecking is a hack.	We look up the relation that is the
	 * declared return type, and be sure that attributes 1 .. n in the
	 * target list match the declared types.
	 */
	reln = heap_open(typeTypeRelid(typ), AccessShareLock);
	relid = reln->rd_id;
	relnatts = reln->rd_rel->relnatts;

	if (ExecTargetListLength(tlist) != relnatts)
		elog(ERROR, "function declared to return type %s does not retrieve (%s.*)", typeTypeName(typ), typeTypeName(typ));

	/* expect attributes 1 .. n in order */
	for (i = 1; i <= relnatts; i++)
	{
		TargetEntry *tle = lfirst(tlist);
		Node	   *thenode = tle->expr;
		Oid			tletype = exprType(thenode);

		if (tletype != reln->rd_att->attrs[i - 1]->atttypid)
			elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
		tlist = lnext(tlist);
	}

	heap_close(reln, AccessShareLock);
}