1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
|
/*-------------------------------------------------------------------------
*
* planner.c
* The query optimizer external interface.
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/optimizer/plan/planner.c,v 1.170 2004/05/26 04:41:24 neilc Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "catalog/pg_operator.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/analyze.h"
#include "parser/parsetree.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
/* Expression kind codes for preprocess_expression */
#define EXPRKIND_QUAL 0
#define EXPRKIND_TARGET 1
#define EXPRKIND_RTFUNC 2
#define EXPRKIND_LIMIT 3
#define EXPRKIND_ININFO 4
static Node *preprocess_expression(Query *parse, Node *expr, int kind);
static void preprocess_qual_conditions(Query *parse, Node *jtnode);
static Plan *inheritance_planner(Query *parse, List *inheritlist);
static Plan *grouping_planner(Query *parse, double tuple_fraction);
static bool hash_safe_grouping(Query *parse);
static List *make_subplanTargetList(Query *parse, List *tlist,
AttrNumber **groupColIdx, bool *need_tlist_eval);
static void locate_grouping_columns(Query *parse,
List *tlist,
List *sub_tlist,
AttrNumber *groupColIdx);
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
/*****************************************************************************
*
* Query optimizer entry point
*
*****************************************************************************/
Plan *
planner(Query *parse, bool isCursor, int cursorOptions)
{
double tuple_fraction;
Plan *result_plan;
Index save_PlannerQueryLevel;
List *save_PlannerParamList;
/*
* The planner can be called recursively (an example is when
* eval_const_expressions tries to pre-evaluate an SQL function). So,
* these global state variables must be saved and restored.
*
* These vars cannot be moved into the Query structure since their whole
* purpose is communication across multiple sub-Queries.
*
* Note we do NOT save and restore PlannerPlanId: it exists to assign
* unique IDs to SubPlan nodes, and we want those IDs to be unique for
* the life of a backend. Also, PlannerInitPlan is saved/restored in
* subquery_planner, not here.
*/
save_PlannerQueryLevel = PlannerQueryLevel;
save_PlannerParamList = PlannerParamList;
/* Initialize state for handling outer-level references and params */
PlannerQueryLevel = 0; /* will be 1 in top-level subquery_planner */
PlannerParamList = NIL;
/* Determine what fraction of the plan is likely to be scanned */
if (isCursor)
{
/*
* We have no real idea how many tuples the user will ultimately
* FETCH from a cursor, but it seems a good bet that he doesn't
* want 'em all. Optimize for 10% retrieval (you gotta better
* number? Should this be a SETtable parameter?)
*/
tuple_fraction = 0.10;
}
else
{
/* Default assumption is we need all the tuples */
tuple_fraction = 0.0;
}
/* primary planning entry point (may recurse for subqueries) */
result_plan = subquery_planner(parse, tuple_fraction);
Assert(PlannerQueryLevel == 0);
/*
* If creating a plan for a scrollable cursor, make sure it can run
* backwards on demand. Add a Material node at the top at need.
*/
if (isCursor && (cursorOptions & CURSOR_OPT_SCROLL))
{
if (!ExecSupportsBackwardScan(result_plan))
result_plan = materialize_finished_plan(result_plan);
}
/* executor wants to know total number of Params used overall */
result_plan->nParamExec = length(PlannerParamList);
/* final cleanup of the plan */
set_plan_references(result_plan, parse->rtable);
/* restore state for outer planner, if any */
PlannerQueryLevel = save_PlannerQueryLevel;
PlannerParamList = save_PlannerParamList;
return result_plan;
}
/*--------------------
* subquery_planner
* Invokes the planner on a subquery. We recurse to here for each
* sub-SELECT found in the query tree.
*
* parse is the querytree produced by the parser & rewriter.
* tuple_fraction is the fraction of tuples we expect will be retrieved.
* tuple_fraction is interpreted as explained for grouping_planner, below.
*
* Basically, this routine does the stuff that should only be done once
* per Query object. It then calls grouping_planner. At one time,
* grouping_planner could be invoked recursively on the same Query object;
* that's not currently true, but we keep the separation between the two
* routines anyway, in case we need it again someday.
*
* subquery_planner will be called recursively to handle sub-Query nodes
* found within the query's expressions and rangetable.
*
* Returns a query plan.
*--------------------
*/
Plan *
subquery_planner(Query *parse, double tuple_fraction)
{
List *saved_initplan = PlannerInitPlan;
int saved_planid = PlannerPlanId;
bool hasOuterJoins;
Plan *plan;
List *newHaving;
List *lst;
ListCell *l;
/* Set up for a new level of subquery */
PlannerQueryLevel++;
PlannerInitPlan = NIL;
/*
* Look for IN clauses at the top level of WHERE, and transform them
* into joins. Note that this step only handles IN clauses originally
* at top level of WHERE; if we pull up any subqueries in the next
* step, their INs are processed just before pulling them up.
*/
parse->in_info_list = NIL;
if (parse->hasSubLinks)
parse->jointree->quals = pull_up_IN_clauses(parse,
parse->jointree->quals);
/*
* Check to see if any subqueries in the rangetable can be merged into
* this query.
*/
parse->jointree = (FromExpr *)
pull_up_subqueries(parse, (Node *) parse->jointree, false);
/*
* Detect whether any rangetable entries are RTE_JOIN kind; if not, we
* can avoid the expense of doing flatten_join_alias_vars(). Also
* check for outer joins --- if none, we can skip
* reduce_outer_joins(). This must be done after we have done
* pull_up_subqueries, of course.
*/
parse->hasJoinRTEs = false;
hasOuterJoins = false;
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
{
parse->hasJoinRTEs = true;
if (IS_OUTER_JOIN(rte->jointype))
{
hasOuterJoins = true;
/* Can quit scanning once we find an outer join */
break;
}
}
}
/*
* Do expression preprocessing on targetlist and quals.
*/
parse->targetList = (List *)
preprocess_expression(parse, (Node *) parse->targetList,
EXPRKIND_TARGET);
preprocess_qual_conditions(parse, (Node *) parse->jointree);
parse->havingQual = preprocess_expression(parse, parse->havingQual,
EXPRKIND_QUAL);
parse->limitOffset = preprocess_expression(parse, parse->limitOffset,
EXPRKIND_LIMIT);
parse->limitCount = preprocess_expression(parse, parse->limitCount,
EXPRKIND_LIMIT);
parse->in_info_list = (List *)
preprocess_expression(parse, (Node *) parse->in_info_list,
EXPRKIND_ININFO);
/* Also need to preprocess expressions for function RTEs */
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_FUNCTION)
rte->funcexpr = preprocess_expression(parse, rte->funcexpr,
EXPRKIND_RTFUNC);
}
/*
* A HAVING clause without aggregates is equivalent to a WHERE clause
* (except it can only refer to grouped fields). Transfer any
* agg-free clauses of the HAVING qual into WHERE. This may seem like
* wasting cycles to cater to stupidly-written queries, but there are
* other reasons for doing it. Firstly, if the query contains no aggs
* at all, then we aren't going to generate an Agg plan node, and so
* there'll be no place to execute HAVING conditions; without this
* transfer, we'd lose the HAVING condition entirely, which is wrong.
* Secondly, when we push down a qual condition into a sub-query, it's
* easiest to push the qual into HAVING always, in case it contains
* aggs, and then let this code sort it out.
*
* Note that both havingQual and parse->jointree->quals are in
* implicitly-ANDed-list form at this point, even though they are
* declared as Node *.
*/
newHaving = NIL;
foreach(l, (List *) parse->havingQual)
{
Node *havingclause = (Node *) lfirst(l);
if (contain_agg_clause(havingclause))
newHaving = lappend(newHaving, havingclause);
else
parse->jointree->quals = (Node *)
lappend((List *) parse->jointree->quals, havingclause);
}
parse->havingQual = (Node *) newHaving;
/*
* If we have any outer joins, try to reduce them to plain inner
* joins. This step is most easily done after we've done expression
* preprocessing.
*/
if (hasOuterJoins)
reduce_outer_joins(parse);
/*
* See if we can simplify the jointree; opportunities for this may
* come from having pulled up subqueries, or from flattening explicit
* JOIN syntax. We must do this after flattening JOIN alias
* variables, since eliminating explicit JOIN nodes from the jointree
* will cause get_relids_for_join() to fail. But it should happen
* after reduce_outer_joins, anyway.
*/
parse->jointree = (FromExpr *)
simplify_jointree(parse, (Node *) parse->jointree);
/*
* Do the main planning. If we have an inherited target relation,
* that needs special processing, else go straight to
* grouping_planner.
*/
if (parse->resultRelation &&
(lst = expand_inherited_rtentry(parse, parse->resultRelation,
false)) != NIL)
plan = inheritance_planner(parse, lst);
else
plan = grouping_planner(parse, tuple_fraction);
/*
* If any subplans were generated, or if we're inside a subplan, build
* initPlan list and extParam/allParam sets for plan nodes.
*/
if (PlannerPlanId != saved_planid || PlannerQueryLevel > 1)
{
Cost initplan_cost = 0;
/* Prepare extParam/allParam sets for all nodes in tree */
SS_finalize_plan(plan, parse->rtable);
/*
* SS_finalize_plan doesn't handle initPlans, so we have to
* manually attach them to the topmost plan node, and add their
* extParams to the topmost node's, too.
*
* We also add the total_cost of each initPlan to the startup cost of
* the top node. This is a conservative overestimate, since in
* fact each initPlan might be executed later than plan startup,
* or even not at all.
*/
plan->initPlan = PlannerInitPlan;
foreach(l, plan->initPlan)
{
SubPlan *initplan = (SubPlan *) lfirst(l);
plan->extParam = bms_add_members(plan->extParam,
initplan->plan->extParam);
/* allParam must include all members of extParam */
plan->allParam = bms_add_members(plan->allParam,
plan->extParam);
initplan_cost += initplan->plan->total_cost;
}
plan->startup_cost += initplan_cost;
plan->total_cost += initplan_cost;
}
/* Return to outer subquery context */
PlannerQueryLevel--;
PlannerInitPlan = saved_initplan;
/* we do NOT restore PlannerPlanId; that's not an oversight! */
return plan;
}
/*
* preprocess_expression
* Do subquery_planner's preprocessing work for an expression,
* which can be a targetlist, a WHERE clause (including JOIN/ON
* conditions), or a HAVING clause.
*/
static Node *
preprocess_expression(Query *parse, Node *expr, int kind)
{
/*
* If the query has any join RTEs, replace join alias variables with
* base-relation variables. We must do this before sublink processing,
* else sublinks expanded out from join aliases wouldn't get
* processed.
*/
if (parse->hasJoinRTEs)
expr = flatten_join_alias_vars(parse, expr);
/*
* If it's a qual or havingQual, canonicalize it. It seems most useful
* to do this before applying eval_const_expressions, since the latter
* can optimize flattened AND/ORs better than unflattened ones.
*
* Note: all processing of a qual expression after this point must be
* careful to maintain AND/OR flatness --- that is, do not generate a
* tree with AND directly under AND, nor OR directly under OR.
*/
if (kind == EXPRKIND_QUAL)
{
expr = (Node *) canonicalize_qual((Expr *) expr);
#ifdef OPTIMIZER_DEBUG
printf("After canonicalize_qual()\n");
pprint(expr);
#endif
}
/*
* Simplify constant expressions.
*/
expr = eval_const_expressions(expr);
/* Expand SubLinks to SubPlans */
if (parse->hasSubLinks)
expr = SS_process_sublinks(expr, (kind == EXPRKIND_QUAL));
/*
* XXX do not insert anything here unless you have grokked the
* comments in SS_replace_correlation_vars ...
*/
/* Replace uplevel vars with Param nodes */
if (PlannerQueryLevel > 1)
expr = SS_replace_correlation_vars(expr);
/*
* If it's a qual or havingQual, convert it to implicit-AND format.
* (We don't want to do this before eval_const_expressions, since the
* latter would be unable to simplify a top-level AND correctly. Also,
* SS_process_sublinks expects explicit-AND format.)
*/
if (kind == EXPRKIND_QUAL)
expr = (Node *) make_ands_implicit((Expr *) expr);
return expr;
}
/*
* preprocess_qual_conditions
* Recursively scan the query's jointree and do subquery_planner's
* preprocessing work on each qual condition found therein.
*/
static void
preprocess_qual_conditions(Query *parse, Node *jtnode)
{
if (jtnode == NULL)
return;
if (IsA(jtnode, RangeTblRef))
{
/* nothing to do here */
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
foreach(l, f->fromlist)
preprocess_qual_conditions(parse, lfirst(l));
f->quals = preprocess_expression(parse, f->quals, EXPRKIND_QUAL);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
preprocess_qual_conditions(parse, j->larg);
preprocess_qual_conditions(parse, j->rarg);
j->quals = preprocess_expression(parse, j->quals, EXPRKIND_QUAL);
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
}
/*--------------------
* inheritance_planner
* Generate a plan in the case where the result relation is an
* inheritance set.
*
* We have to handle this case differently from cases where a source
* relation is an inheritance set. Source inheritance is expanded at
* the bottom of the plan tree (see allpaths.c), but target inheritance
* has to be expanded at the top. The reason is that for UPDATE, each
* target relation needs a different targetlist matching its own column
* set. (This is not so critical for DELETE, but for simplicity we treat
* inherited DELETE the same way.) Fortunately, the UPDATE/DELETE target
* can never be the nullable side of an outer join, so it's OK to generate
* the plan this way.
*
* parse is the querytree produced by the parser & rewriter.
* inheritlist is an integer list of RT indexes for the result relation set.
*
* Returns a query plan.
*--------------------
*/
static Plan *
inheritance_planner(Query *parse, List *inheritlist)
{
int parentRTindex = parse->resultRelation;
Oid parentOID = getrelid(parentRTindex, parse->rtable);
int mainrtlength = length(parse->rtable);
List *subplans = NIL;
List *tlist = NIL;
ListCell *l;
foreach(l, inheritlist)
{
int childRTindex = lfirsti(l);
Oid childOID = getrelid(childRTindex, parse->rtable);
int subrtlength;
Query *subquery;
Plan *subplan;
/* Generate modified query with this rel as target */
subquery = (Query *) adjust_inherited_attrs((Node *) parse,
parentRTindex, parentOID,
childRTindex, childOID);
/* Generate plan */
subplan = grouping_planner(subquery, 0.0 /* retrieve all tuples */ );
subplans = lappend(subplans, subplan);
/*
* It's possible that additional RTEs got added to the rangetable
* due to expansion of inherited source tables (see allpaths.c).
* If so, we must copy 'em back to the main parse tree's rtable.
*
* XXX my goodness this is ugly. Really need to think about ways to
* rein in planner's habit of scribbling on its input.
*/
subrtlength = length(subquery->rtable);
if (subrtlength > mainrtlength)
{
List *subrt;
subrt = list_copy_tail(subquery->rtable, mainrtlength);
parse->rtable = nconc(parse->rtable, subrt);
mainrtlength = subrtlength;
}
/* Save preprocessed tlist from first rel for use in Append */
if (tlist == NIL)
tlist = subplan->targetlist;
}
/* Save the target-relations list for the executor, too */
parse->resultRelations = inheritlist;
/* Mark result as unordered (probably unnecessary) */
parse->query_pathkeys = NIL;
return (Plan *) make_append(subplans, true, tlist);
}
/*--------------------
* grouping_planner
* Perform planning steps related to grouping, aggregation, etc.
* This primarily means adding top-level processing to the basic
* query plan produced by query_planner.
*
* parse is the querytree produced by the parser & rewriter.
* tuple_fraction is the fraction of tuples we expect will be retrieved
*
* tuple_fraction is interpreted as follows:
* 0: expect all tuples to be retrieved (normal case)
* 0 < tuple_fraction < 1: expect the given fraction of tuples available
* from the plan to be retrieved
* tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
* expected to be retrieved (ie, a LIMIT specification)
*
* Returns a query plan. Also, parse->query_pathkeys is returned as the
* actual output ordering of the plan (in pathkey format).
*--------------------
*/
static Plan *
grouping_planner(Query *parse, double tuple_fraction)
{
List *tlist = parse->targetList;
Plan *result_plan;
List *current_pathkeys;
List *sort_pathkeys;
if (parse->setOperations)
{
List *set_sortclauses;
/*
* Construct the plan for set operations. The result will not
* need any work except perhaps a top-level sort and/or LIMIT.
*/
result_plan = plan_set_operations(parse,
&set_sortclauses);
/*
* Calculate pathkeys representing the sort order (if any) of the
* set operation's result. We have to do this before overwriting
* the sort key information...
*/
current_pathkeys = make_pathkeys_for_sortclauses(set_sortclauses,
result_plan->targetlist);
current_pathkeys = canonicalize_pathkeys(parse, current_pathkeys);
/*
* We should not need to call preprocess_targetlist, since we must
* be in a SELECT query node. Instead, use the targetlist
* returned by plan_set_operations (since this tells whether it
* returned any resjunk columns!), and transfer any sort key
* information from the original tlist.
*/
Assert(parse->commandType == CMD_SELECT);
tlist = postprocess_setop_tlist(result_plan->targetlist, tlist);
/*
* Can't handle FOR UPDATE here (parser should have checked
* already, but let's make sure).
*/
if (parse->rowMarks)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT")));
/*
* Calculate pathkeys that represent result ordering requirements
*/
sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
tlist);
sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
}
else
{
/* No set operations, do regular planning */
List *sub_tlist;
List *group_pathkeys;
AttrNumber *groupColIdx = NULL;
bool need_tlist_eval = true;
QualCost tlist_cost;
double sub_tuple_fraction;
Path *cheapest_path;
Path *sorted_path;
double dNumGroups = 0;
long numGroups = 0;
int numAggs = 0;
int numGroupCols = length(parse->groupClause);
bool use_hashed_grouping = false;
/* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
tlist = preprocess_targetlist(tlist,
parse->commandType,
parse->resultRelation,
parse->rtable);
/*
* Add TID targets for rels selected FOR UPDATE (should this be
* done in preprocess_targetlist?). The executor uses the TID to
* know which rows to lock, much as for UPDATE or DELETE.
*/
if (parse->rowMarks)
{
ListCell *l;
/*
* We've got trouble if the FOR UPDATE appears inside
* grouping, since grouping renders a reference to individual
* tuple CTIDs invalid. This is also checked at parse time,
* but that's insufficient because of rule substitution, query
* pullup, etc.
*/
CheckSelectForUpdate(parse);
/*
* Currently the executor only supports FOR UPDATE at top
* level
*/
if (PlannerQueryLevel > 1)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("SELECT FOR UPDATE is not allowed in subqueries")));
foreach(l, parse->rowMarks)
{
Index rti = lfirsti(l);
char *resname;
Resdom *resdom;
Var *var;
TargetEntry *ctid;
resname = (char *) palloc(32);
snprintf(resname, 32, "ctid%u", rti);
resdom = makeResdom(length(tlist) + 1,
TIDOID,
-1,
resname,
true);
var = makeVar(rti,
SelfItemPointerAttributeNumber,
TIDOID,
-1,
0);
ctid = makeTargetEntry(resdom, (Expr *) var);
tlist = lappend(tlist, ctid);
}
}
/*
* Generate appropriate target list for subplan; may be different
* from tlist if grouping or aggregation is needed.
*/
sub_tlist = make_subplanTargetList(parse, tlist,
&groupColIdx, &need_tlist_eval);
/*
* Calculate pathkeys that represent grouping/ordering
* requirements
*/
group_pathkeys = make_pathkeys_for_sortclauses(parse->groupClause,
tlist);
sort_pathkeys = make_pathkeys_for_sortclauses(parse->sortClause,
tlist);
/*
* Will need actual number of aggregates for estimating costs.
*
* Note: we do not attempt to detect duplicate aggregates here; a
* somewhat-overestimated count is okay for our present purposes.
*
* Note: think not that we can turn off hasAggs if we find no aggs.
* It is possible for constant-expression simplification to remove
* all explicit references to aggs, but we still have to follow the
* aggregate semantics (eg, producing only one output row).
*/
if (parse->hasAggs)
numAggs = count_agg_clause((Node *) tlist) +
count_agg_clause(parse->havingQual);
/*
* Figure out whether we need a sorted result from query_planner.
*
* If we have a GROUP BY clause, then we want a result sorted
* properly for grouping. Otherwise, if there is an ORDER BY
* clause, we want to sort by the ORDER BY clause. (Note: if we
* have both, and ORDER BY is a superset of GROUP BY, it would be
* tempting to request sort by ORDER BY --- but that might just
* leave us failing to exploit an available sort order at all.
* Needs more thought...)
*/
if (parse->groupClause)
parse->query_pathkeys = group_pathkeys;
else if (parse->sortClause)
parse->query_pathkeys = sort_pathkeys;
else
parse->query_pathkeys = NIL;
/*
* Adjust tuple_fraction if we see that we are going to apply
* limiting/grouping/aggregation/etc. This is not overridable by
* the caller, since it reflects plan actions that this routine
* will certainly take, not assumptions about context.
*/
if (parse->limitCount != NULL)
{
/*
* A LIMIT clause limits the absolute number of tuples
* returned. However, if it's not a constant LIMIT then we
* have to punt; for lack of a better idea, assume 10% of the
* plan's result is wanted.
*/
double limit_fraction = 0.0;
if (IsA(parse->limitCount, Const))
{
Const *limitc = (Const *) parse->limitCount;
int32 count = DatumGetInt32(limitc->constvalue);
/*
* A NULL-constant LIMIT represents "LIMIT ALL", which we
* treat the same as no limit (ie, expect to retrieve all
* the tuples).
*/
if (!limitc->constisnull && count > 0)
{
limit_fraction = (double) count;
/* We must also consider the OFFSET, if present */
if (parse->limitOffset != NULL)
{
if (IsA(parse->limitOffset, Const))
{
int32 offset;
limitc = (Const *) parse->limitOffset;
offset = DatumGetInt32(limitc->constvalue);
if (!limitc->constisnull && offset > 0)
limit_fraction += (double) offset;
}
else
{
/* OFFSET is an expression ... punt ... */
limit_fraction = 0.10;
}
}
}
}
else
{
/* LIMIT is an expression ... punt ... */
limit_fraction = 0.10;
}
if (limit_fraction > 0.0)
{
/*
* If we have absolute limits from both caller and LIMIT,
* use the smaller value; if one is fractional and the
* other absolute, treat the fraction as a fraction of the
* absolute value; else we can multiply the two fractions
* together.
*/
if (tuple_fraction >= 1.0)
{
if (limit_fraction >= 1.0)
{
/* both absolute */
tuple_fraction = Min(tuple_fraction, limit_fraction);
}
else
{
/* caller absolute, limit fractional */
tuple_fraction *= limit_fraction;
if (tuple_fraction < 1.0)
tuple_fraction = 1.0;
}
}
else if (tuple_fraction > 0.0)
{
if (limit_fraction >= 1.0)
{
/* caller fractional, limit absolute */
tuple_fraction *= limit_fraction;
if (tuple_fraction < 1.0)
tuple_fraction = 1.0;
}
else
{
/* both fractional */
tuple_fraction *= limit_fraction;
}
}
else
{
/* no info from caller, just use limit */
tuple_fraction = limit_fraction;
}
}
}
/*
* With grouping or aggregation, the tuple fraction to pass to
* query_planner() may be different from what it is at top level.
*/
sub_tuple_fraction = tuple_fraction;
if (parse->groupClause)
{
/*
* In GROUP BY mode, we have the little problem that we don't
* really know how many input tuples will be needed to make a
* group, so we can't translate an output LIMIT count into an
* input count. For lack of a better idea, assume 25% of the
* input data will be processed if there is any output limit.
* However, if the caller gave us a fraction rather than an
* absolute count, we can keep using that fraction (which
* amounts to assuming that all the groups are about the same
* size).
*/
if (sub_tuple_fraction >= 1.0)
sub_tuple_fraction = 0.25;
/*
* If both GROUP BY and ORDER BY are specified, we will need
* two levels of sort --- and, therefore, certainly need to
* read all the input tuples --- unless ORDER BY is a subset
* of GROUP BY. (We have not yet canonicalized the pathkeys,
* so must use the slower noncanonical comparison method.)
*/
if (parse->groupClause && parse->sortClause &&
!noncanonical_pathkeys_contained_in(sort_pathkeys,
group_pathkeys))
sub_tuple_fraction = 0.0;
}
else if (parse->hasAggs)
{
/*
* Ungrouped aggregate will certainly want all the input
* tuples.
*/
sub_tuple_fraction = 0.0;
}
else if (parse->distinctClause)
{
/*
* SELECT DISTINCT, like GROUP, will absorb an unpredictable
* number of input tuples per output tuple. Handle the same
* way.
*/
if (sub_tuple_fraction >= 1.0)
sub_tuple_fraction = 0.25;
}
/*
* Generate the best unsorted and presorted paths for this Query
* (but note there may not be any presorted path).
*/
query_planner(parse, sub_tlist, sub_tuple_fraction,
&cheapest_path, &sorted_path);
/*
* We couldn't canonicalize group_pathkeys and sort_pathkeys
* before running query_planner(), so do it now.
*/
group_pathkeys = canonicalize_pathkeys(parse, group_pathkeys);
sort_pathkeys = canonicalize_pathkeys(parse, sort_pathkeys);
/*
* Consider whether we might want to use hashed grouping.
*/
if (parse->groupClause)
{
List *groupExprs;
double cheapest_path_rows;
int cheapest_path_width;
/*
* Beware in this section of the possibility that
* cheapest_path->parent is NULL. This could happen if user
* does something silly like SELECT 'foo' GROUP BY 1;
*/
if (cheapest_path->parent)
{
cheapest_path_rows = cheapest_path->parent->rows;
cheapest_path_width = cheapest_path->parent->width;
}
else
{
cheapest_path_rows = 1; /* assume non-set result */
cheapest_path_width = 100; /* arbitrary */
}
/*
* Always estimate the number of groups. We can't do this
* until after running query_planner(), either.
*/
groupExprs = get_sortgrouplist_exprs(parse->groupClause,
parse->targetList);
dNumGroups = estimate_num_groups(parse,
groupExprs,
cheapest_path_rows);
/* Also want it as a long int --- but 'ware overflow! */
numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
/*
* Check can't-do-it conditions, including whether the
* grouping operators are hashjoinable.
*
* Executor doesn't support hashed aggregation with DISTINCT
* aggregates. (Doing so would imply storing *all* the input
* values in the hash table, which seems like a certain
* loser.)
*/
if (!enable_hashagg || !hash_safe_grouping(parse))
use_hashed_grouping = false;
else if (parse->hasAggs &&
(contain_distinct_agg_clause((Node *) tlist) ||
contain_distinct_agg_clause(parse->havingQual)))
use_hashed_grouping = false;
else
{
/*
* Use hashed grouping if (a) we think we can fit the
* hashtable into work_mem, *and* (b) the estimated cost is
* no more than doing it the other way. While avoiding
* the need for sorted input is usually a win, the fact
* that the output won't be sorted may be a loss; so we
* need to do an actual cost comparison.
*
* In most cases we have no good way to estimate the size of
* the transition value needed by an aggregate;
* arbitrarily assume it is 100 bytes. Also set the
* overhead per hashtable entry at 64 bytes.
*/
int hashentrysize = cheapest_path_width + 64 + numAggs * 100;
if (hashentrysize * dNumGroups <= work_mem * 1024L)
{
/*
* Okay, do the cost comparison. We need to consider
* cheapest_path + hashagg [+ final sort] versus
* either cheapest_path [+ sort] + group or agg [+
* final sort] or presorted_path + group or agg [+
* final sort] where brackets indicate a step that may
* not be needed. We assume query_planner() will have
* returned a presorted path only if it's a winner
* compared to cheapest_path for this purpose.
*
* These path variables are dummies that just hold cost
* fields; we don't make actual Paths for these steps.
*/
Path hashed_p;
Path sorted_p;
cost_agg(&hashed_p, parse,
AGG_HASHED, numAggs,
numGroupCols, dNumGroups,
cheapest_path->startup_cost,
cheapest_path->total_cost,
cheapest_path_rows);
/* Result of hashed agg is always unsorted */
if (sort_pathkeys)
cost_sort(&hashed_p, parse, sort_pathkeys,
hashed_p.total_cost,
dNumGroups,
cheapest_path_width);
if (sorted_path)
{
sorted_p.startup_cost = sorted_path->startup_cost;
sorted_p.total_cost = sorted_path->total_cost;
current_pathkeys = sorted_path->pathkeys;
}
else
{
sorted_p.startup_cost = cheapest_path->startup_cost;
sorted_p.total_cost = cheapest_path->total_cost;
current_pathkeys = cheapest_path->pathkeys;
}
if (!pathkeys_contained_in(group_pathkeys,
current_pathkeys))
{
cost_sort(&sorted_p, parse, group_pathkeys,
sorted_p.total_cost,
cheapest_path_rows,
cheapest_path_width);
current_pathkeys = group_pathkeys;
}
if (parse->hasAggs)
cost_agg(&sorted_p, parse,
AGG_SORTED, numAggs,
numGroupCols, dNumGroups,
sorted_p.startup_cost,
sorted_p.total_cost,
cheapest_path_rows);
else
cost_group(&sorted_p, parse,
numGroupCols, dNumGroups,
sorted_p.startup_cost,
sorted_p.total_cost,
cheapest_path_rows);
/* The Agg or Group node will preserve ordering */
if (sort_pathkeys &&
!pathkeys_contained_in(sort_pathkeys,
current_pathkeys))
{
cost_sort(&sorted_p, parse, sort_pathkeys,
sorted_p.total_cost,
dNumGroups,
cheapest_path_width);
}
/*
* Now make the decision using the top-level tuple
* fraction. First we have to convert an absolute
* count (LIMIT) into fractional form.
*/
if (tuple_fraction >= 1.0)
tuple_fraction /= dNumGroups;
if (compare_fractional_path_costs(&hashed_p, &sorted_p,
tuple_fraction) < 0)
{
/* Hashed is cheaper, so use it */
use_hashed_grouping = true;
}
}
}
}
/*
* Select the best path and create a plan to execute it.
*
* If we are doing hashed grouping, we will always read all the input
* tuples, so use the cheapest-total path. Otherwise, trust
* query_planner's decision about which to use.
*/
if (sorted_path && !use_hashed_grouping)
{
result_plan = create_plan(parse, sorted_path);
current_pathkeys = sorted_path->pathkeys;
}
else
{
result_plan = create_plan(parse, cheapest_path);
current_pathkeys = cheapest_path->pathkeys;
}
/*
* create_plan() returns a plan with just a "flat" tlist of
* required Vars. Usually we need to insert the sub_tlist as the
* tlist of the top plan node. However, we can skip that if we
* determined that whatever query_planner chose to return will be
* good enough.
*/
if (need_tlist_eval)
{
/*
* If the top-level plan node is one that cannot do expression
* evaluation, we must insert a Result node to project the
* desired tlist.
*/
if (!is_projection_capable_plan(result_plan))
{
result_plan = (Plan *) make_result(sub_tlist, NULL,
result_plan);
}
else
{
/*
* Otherwise, just replace the subplan's flat tlist with
* the desired tlist.
*/
result_plan->targetlist = sub_tlist;
}
/*
* Also, account for the cost of evaluation of the sub_tlist.
*
* Up to now, we have only been dealing with "flat" tlists,
* containing just Vars. So their evaluation cost is zero
* according to the model used by cost_qual_eval() (or if you
* prefer, the cost is factored into cpu_tuple_cost). Thus we
* can avoid accounting for tlist cost throughout
* query_planner() and subroutines. But now we've inserted a
* tlist that might contain actual operators, sub-selects, etc
* --- so we'd better account for its cost.
*
* Below this point, any tlist eval cost for added-on nodes
* should be accounted for as we create those nodes.
* Presently, of the node types we can add on, only Agg and
* Group project new tlists (the rest just copy their input
* tuples) --- so make_agg() and make_group() are responsible
* for computing the added cost.
*/
cost_qual_eval(&tlist_cost, sub_tlist);
result_plan->startup_cost += tlist_cost.startup;
result_plan->total_cost += tlist_cost.startup +
tlist_cost.per_tuple * result_plan->plan_rows;
}
else
{
/*
* Since we're using query_planner's tlist and not the one
* make_subplanTargetList calculated, we have to refigure any
* grouping-column indexes make_subplanTargetList computed.
*/
locate_grouping_columns(parse, tlist, result_plan->targetlist,
groupColIdx);
}
/*
* Insert AGG or GROUP node if needed, plus an explicit sort step
* if necessary.
*
* HAVING clause, if any, becomes qual of the Agg node
*/
if (use_hashed_grouping)
{
/* Hashed aggregate plan --- no sort needed */
result_plan = (Plan *) make_agg(parse,
tlist,
(List *) parse->havingQual,
AGG_HASHED,
numGroupCols,
groupColIdx,
numGroups,
numAggs,
result_plan);
/* Hashed aggregation produces randomly-ordered results */
current_pathkeys = NIL;
}
else if (parse->hasAggs)
{
/* Plain aggregate plan --- sort if needed */
AggStrategy aggstrategy;
if (parse->groupClause)
{
if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
{
result_plan = (Plan *)
make_sort_from_groupcols(parse,
parse->groupClause,
groupColIdx,
result_plan);
current_pathkeys = group_pathkeys;
}
aggstrategy = AGG_SORTED;
/*
* The AGG node will not change the sort ordering of its
* groups, so current_pathkeys describes the result too.
*/
}
else
{
aggstrategy = AGG_PLAIN;
/* Result will be only one row anyway; no sort order */
current_pathkeys = NIL;
}
result_plan = (Plan *) make_agg(parse,
tlist,
(List *) parse->havingQual,
aggstrategy,
numGroupCols,
groupColIdx,
numGroups,
numAggs,
result_plan);
}
else
{
/*
* If there are no Aggs, we shouldn't have any HAVING qual
* anymore
*/
Assert(parse->havingQual == NULL);
/*
* If we have a GROUP BY clause, insert a group node (plus the
* appropriate sort node, if necessary).
*/
if (parse->groupClause)
{
/*
* Add an explicit sort if we couldn't make the path come
* out the way the GROUP node needs it.
*/
if (!pathkeys_contained_in(group_pathkeys, current_pathkeys))
{
result_plan = (Plan *)
make_sort_from_groupcols(parse,
parse->groupClause,
groupColIdx,
result_plan);
current_pathkeys = group_pathkeys;
}
result_plan = (Plan *) make_group(parse,
tlist,
numGroupCols,
groupColIdx,
dNumGroups,
result_plan);
/* The Group node won't change sort ordering */
}
}
} /* end of if (setOperations) */
/*
* If we were not able to make the plan come out in the right order,
* add an explicit sort step.
*/
if (parse->sortClause)
{
if (!pathkeys_contained_in(sort_pathkeys, current_pathkeys))
{
result_plan = (Plan *)
make_sort_from_sortclauses(parse,
parse->sortClause,
result_plan);
current_pathkeys = sort_pathkeys;
}
}
/*
* If there is a DISTINCT clause, add the UNIQUE node.
*/
if (parse->distinctClause)
{
result_plan = (Plan *) make_unique(result_plan, parse->distinctClause);
/*
* If there was grouping or aggregation, leave plan_rows as-is
* (ie, assume the result was already mostly unique). If not,
* it's reasonable to assume the UNIQUE filter has effects
* comparable to GROUP BY.
*/
if (!parse->groupClause && !parse->hasAggs)
{
List *distinctExprs;
distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
parse->targetList);
result_plan->plan_rows = estimate_num_groups(parse,
distinctExprs,
result_plan->plan_rows);
}
}
/*
* Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
*/
if (parse->limitOffset || parse->limitCount)
{
result_plan = (Plan *) make_limit(result_plan,
parse->limitOffset,
parse->limitCount);
}
/*
* Return the actual output ordering in query_pathkeys for possible
* use by an outer query level.
*/
parse->query_pathkeys = current_pathkeys;
return result_plan;
}
/*
* hash_safe_grouping - are grouping operators hashable?
*
* We assume hashed aggregation will work if the datatype's equality operator
* is marked hashjoinable.
*/
static bool
hash_safe_grouping(Query *parse)
{
ListCell *gl;
foreach(gl, parse->groupClause)
{
GroupClause *grpcl = (GroupClause *) lfirst(gl);
TargetEntry *tle = get_sortgroupclause_tle(grpcl, parse->targetList);
Operator optup;
bool oprcanhash;
optup = equality_oper(tle->resdom->restype, true);
if (!optup)
return false;
oprcanhash = ((Form_pg_operator) GETSTRUCT(optup))->oprcanhash;
ReleaseSysCache(optup);
if (!oprcanhash)
return false;
}
return true;
}
/*---------------
* make_subplanTargetList
* Generate appropriate target list when grouping is required.
*
* When grouping_planner inserts Aggregate or Group plan nodes above
* the result of query_planner, we typically want to pass a different
* target list to query_planner than the outer plan nodes should have.
* This routine generates the correct target list for the subplan.
*
* The initial target list passed from the parser already contains entries
* for all ORDER BY and GROUP BY expressions, but it will not have entries
* for variables used only in HAVING clauses; so we need to add those
* variables to the subplan target list. Also, if we are doing either
* grouping or aggregation, we flatten all expressions except GROUP BY items
* into their component variables; the other expressions will be computed by
* the inserted nodes rather than by the subplan. For example,
* given a query like
* SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
* we want to pass this targetlist to the subplan:
* a,b,c,d,a+b
* where the a+b target will be used by the Sort/Group steps, and the
* other targets will be used for computing the final results. (In the
* above example we could theoretically suppress the a and b targets and
* pass down only c,d,a+b, but it's not really worth the trouble to
* eliminate simple var references from the subplan. We will avoid doing
* the extra computation to recompute a+b at the outer level; see
* replace_vars_with_subplan_refs() in setrefs.c.)
*
* If we are grouping or aggregating, *and* there are no non-Var grouping
* expressions, then the returned tlist is effectively dummy; we do not
* need to force it to be evaluated, because all the Vars it contains
* should be present in the output of query_planner anyway.
*
* 'parse' is the query being processed.
* 'tlist' is the query's target list.
* 'groupColIdx' receives an array of column numbers for the GROUP BY
* expressions (if there are any) in the subplan's target list.
* 'need_tlist_eval' is set true if we really need to evaluate the
* result tlist.
*
* The result is the targetlist to be passed to the subplan.
*---------------
*/
static List *
make_subplanTargetList(Query *parse,
List *tlist,
AttrNumber **groupColIdx,
bool *need_tlist_eval)
{
List *sub_tlist;
List *extravars;
int numCols;
*groupColIdx = NULL;
/*
* If we're not grouping or aggregating, nothing to do here;
* query_planner should receive the unmodified target list.
*/
if (!parse->hasAggs && !parse->groupClause)
{
*need_tlist_eval = true;
return tlist;
}
/*
* Otherwise, start with a "flattened" tlist (having just the vars
* mentioned in the targetlist and HAVING qual --- but not upper-
* level Vars; they will be replaced by Params later on).
*/
sub_tlist = flatten_tlist(tlist);
extravars = pull_var_clause(parse->havingQual, false);
sub_tlist = add_to_flat_tlist(sub_tlist, extravars);
freeList(extravars);
*need_tlist_eval = false; /* only eval if not flat tlist */
/*
* If grouping, create sub_tlist entries for all GROUP BY expressions
* (GROUP BY items that are simple Vars should be in the list
* already), and make an array showing where the group columns are in
* the sub_tlist.
*/
numCols = length(parse->groupClause);
if (numCols > 0)
{
int keyno = 0;
AttrNumber *grpColIdx;
ListCell *gl;
grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
*groupColIdx = grpColIdx;
foreach(gl, parse->groupClause)
{
GroupClause *grpcl = (GroupClause *) lfirst(gl);
Node *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
TargetEntry *te = NULL;
ListCell *sl;
/* Find or make a matching sub_tlist entry */
foreach(sl, sub_tlist)
{
te = (TargetEntry *) lfirst(sl);
if (equal(groupexpr, te->expr))
break;
}
if (!sl)
{
te = makeTargetEntry(makeResdom(length(sub_tlist) + 1,
exprType(groupexpr),
exprTypmod(groupexpr),
NULL,
false),
(Expr *) groupexpr);
sub_tlist = lappend(sub_tlist, te);
*need_tlist_eval = true; /* it's not flat anymore */
}
/* and save its resno */
grpColIdx[keyno++] = te->resdom->resno;
}
}
return sub_tlist;
}
/*
* locate_grouping_columns
* Locate grouping columns in the tlist chosen by query_planner.
*
* This is only needed if we don't use the sub_tlist chosen by
* make_subplanTargetList. We have to forget the column indexes found
* by that routine and re-locate the grouping vars in the real sub_tlist.
*/
static void
locate_grouping_columns(Query *parse,
List *tlist,
List *sub_tlist,
AttrNumber *groupColIdx)
{
int keyno = 0;
ListCell *gl;
/*
* No work unless grouping.
*/
if (!parse->groupClause)
{
Assert(groupColIdx == NULL);
return;
}
Assert(groupColIdx != NULL);
foreach(gl, parse->groupClause)
{
GroupClause *grpcl = (GroupClause *) lfirst(gl);
Node *groupexpr = get_sortgroupclause_expr(grpcl, tlist);
TargetEntry *te = NULL;
ListCell *sl;
foreach(sl, sub_tlist)
{
te = (TargetEntry *) lfirst(sl);
if (equal(groupexpr, te->expr))
break;
}
if (!sl)
elog(ERROR, "failed to locate grouping columns");
groupColIdx[keyno++] = te->resdom->resno;
}
}
/*
* postprocess_setop_tlist
* Fix up targetlist returned by plan_set_operations().
*
* We need to transpose sort key info from the orig_tlist into new_tlist.
* NOTE: this would not be good enough if we supported resjunk sort keys
* for results of set operations --- then, we'd need to project a whole
* new tlist to evaluate the resjunk columns. For now, just ereport if we
* find any resjunk columns in orig_tlist.
*/
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
ListCell *l;
ListCell *orig_tlist_item = list_head(orig_tlist);
foreach(l, new_tlist)
{
TargetEntry *new_tle = (TargetEntry *) lfirst(l);
TargetEntry *orig_tle;
/* ignore resjunk columns in setop result */
if (new_tle->resdom->resjunk)
continue;
Assert(orig_tlist_item != NULL);
orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
orig_tlist_item = lnext(orig_tlist_item);
if (orig_tle->resdom->resjunk) /* should not happen */
elog(ERROR, "resjunk output columns are not implemented");
Assert(new_tle->resdom->resno == orig_tle->resdom->resno);
Assert(new_tle->resdom->restype == orig_tle->resdom->restype);
new_tle->resdom->ressortgroupref = orig_tle->resdom->ressortgroupref;
}
if (orig_tlist_item != NULL)
elog(ERROR, "resjunk output columns are not implemented");
return new_tlist;
}
|