aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/prep/prepqual.c
blob: 1cfafe5452b1b847e2ee5baea9d10a93bea49143 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*-------------------------------------------------------------------------
 *
 * prepqual.c
 *	  Routines for preprocessing qualification expressions
 *
 * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/optimizer/prep/prepqual.c,v 1.42 2004/05/26 04:41:26 neilc Exp $
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/prep.h"
#include "utils/lsyscache.h"


static Node *flatten_andors_mutator(Node *node, void *context);
static void flatten_andors_and_walker(FastList *out_list, List *andlist);
static void flatten_andors_or_walker(FastList *out_list, List *orlist);
static List *pull_ands(List *andlist);
static void pull_ands_walker(FastList *out_list, List *andlist);
static List *pull_ors(List *orlist);
static void pull_ors_walker(FastList *out_list, List *orlist);
static Expr *find_nots(Expr *qual);
static Expr *push_nots(Expr *qual);
static Expr *find_duplicate_ors(Expr *qual);
static Expr *process_duplicate_ors(List *orlist);


/*
 * canonicalize_qual
 *	  Convert a qualification expression to the most useful form.
 *
 * The name of this routine is a holdover from a time when it would try to
 * force the expression into canonical AND-of-ORs or OR-of-ANDs form.
 * Eventually, we recognized that that had more theoretical purity than
 * actual usefulness, and so now the transformation doesn't involve any
 * notion of reaching a canonical form.
 *
 * Returns the modified qualification.
 */
Expr *
canonicalize_qual(Expr *qual)
{
	Expr	   *newqual;

	/* Quick exit for empty qual */
	if (qual == NULL)
		return NULL;

	/*
	 * Flatten AND and OR groups throughout the expression tree.
	 */
	newqual = (Expr *) flatten_andors((Node *) qual);

	/*
	 * Push down NOTs.	We do this only in the top-level boolean
	 * expression, without examining arguments of operators/functions.
	 * The main reason for doing this is to expose as much top-level AND/OR
	 * structure as we can, so there's no point in descending further.
	 */
	newqual = find_nots(newqual);

	/*
	 * Pull up redundant subclauses in OR-of-AND trees.  Again, we do this
	 * only within the top-level AND/OR structure.
	 */
	newqual = find_duplicate_ors(newqual);

	return newqual;
}


/*--------------------
 * The parser regards AND and OR as purely binary operators, so a qual like
 *		(A = 1) OR (A = 2) OR (A = 3) ...
 * will produce a nested parsetree
 *		(OR (A = 1) (OR (A = 2) (OR (A = 3) ...)))
 * In reality, the optimizer and executor regard AND and OR as n-argument
 * operators, so this tree can be flattened to
 *		(OR (A = 1) (A = 2) (A = 3) ...)
 * which is the responsibility of the routines below.
 *
 * flatten_andors() does the basic transformation with no initial assumptions.
 * pull_ands() and pull_ors() are used to maintain flatness of the AND/OR
 * tree after local transformations that might introduce nested AND/ORs.
 *--------------------
 */

/*
 * flatten_andors
 *	  Given an expression tree, simplify nested AND/OR clauses into flat
 *	  AND/OR clauses with more arguments.  The entire tree is processed.
 *
 * Returns the rebuilt expr (note original structure is not touched).
 *
 * This is exported so that other modules can perform the part of
 * canonicalize_qual processing that applies to entire trees, rather
 * than just the top-level boolean expressions.
 */
Node *
flatten_andors(Node *node)
{
	return flatten_andors_mutator(node, NULL);
}

static Node *
flatten_andors_mutator(Node *node, void *context)
{
	if (node == NULL)
		return NULL;
	if (IsA(node, BoolExpr))
	{
		BoolExpr   *bexpr = (BoolExpr *) node;

		if (bexpr->boolop == AND_EXPR)
		{
			FastList	out_list;

			FastListInit(&out_list);
			flatten_andors_and_walker(&out_list, bexpr->args);
			return (Node *) make_andclause(FastListValue(&out_list));
		}
		if (bexpr->boolop == OR_EXPR)
		{
			FastList	out_list;

			FastListInit(&out_list);
			flatten_andors_or_walker(&out_list, bexpr->args);
			return (Node *) make_orclause(FastListValue(&out_list));
		}
		/* else it's a NOT clause, fall through */
	}
	return expression_tree_mutator(node, flatten_andors_mutator, context);
}

static void
flatten_andors_and_walker(FastList *out_list, List *andlist)
{
	ListCell   *arg;

	foreach(arg, andlist)
	{
		Node	   *subexpr = (Node *) lfirst(arg);

		if (and_clause(subexpr))
			flatten_andors_and_walker(out_list, ((BoolExpr *) subexpr)->args);
		else
			FastAppend(out_list, flatten_andors(subexpr));
	}
}

static void
flatten_andors_or_walker(FastList *out_list, List *orlist)
{
	ListCell   *arg;

	foreach(arg, orlist)
	{
		Node	   *subexpr = (Node *) lfirst(arg);

		if (or_clause(subexpr))
			flatten_andors_or_walker(out_list, ((BoolExpr *) subexpr)->args);
		else
			FastAppend(out_list, flatten_andors(subexpr));
	}
}

/*
 * pull_ands
 *	  Recursively flatten nested AND clauses into a single and-clause list.
 *
 * Input is the arglist of an AND clause.
 * Returns the rebuilt arglist (note original list structure is not touched).
 */
static List *
pull_ands(List *andlist)
{
	FastList	out_list;

	FastListInit(&out_list);
	pull_ands_walker(&out_list, andlist);
	return FastListValue(&out_list);
}

static void
pull_ands_walker(FastList *out_list, List *andlist)
{
	ListCell   *arg;

	foreach(arg, andlist)
	{
		Node	   *subexpr = (Node *) lfirst(arg);

		if (and_clause(subexpr))
			pull_ands_walker(out_list, ((BoolExpr *) subexpr)->args);
		else
			FastAppend(out_list, subexpr);
	}
}

/*
 * pull_ors
 *	  Recursively flatten nested OR clauses into a single or-clause list.
 *
 * Input is the arglist of an OR clause.
 * Returns the rebuilt arglist (note original list structure is not touched).
 */
static List *
pull_ors(List *orlist)
{
	FastList	out_list;

	FastListInit(&out_list);
	pull_ors_walker(&out_list, orlist);
	return FastListValue(&out_list);
}

static void
pull_ors_walker(FastList *out_list, List *orlist)
{
	ListCell   *arg;

	foreach(arg, orlist)
	{
		Node	   *subexpr = (Node *) lfirst(arg);

		if (or_clause(subexpr))
			pull_ors_walker(out_list, ((BoolExpr *) subexpr)->args);
		else
			FastAppend(out_list, subexpr);
	}
}


/*
 * find_nots
 *	  Traverse the qualification, looking for NOTs to take care of.
 *	  For NOT clauses, apply push_nots() to try to push down the NOT.
 *	  For AND and OR clause types, simply recurse.  Otherwise stop
 *	  recursing (we do not worry about structure below the top AND/OR tree).
 *
 * Returns the modified qualification.	AND/OR flatness is preserved.
 */
static Expr *
find_nots(Expr *qual)
{
	if (qual == NULL)
		return NULL;

	if (and_clause((Node *) qual))
	{
		FastList	t_list;
		ListCell   *temp;

		FastListInit(&t_list);
		foreach(temp, ((BoolExpr *) qual)->args)
			FastAppend(&t_list, find_nots(lfirst(temp)));
		return make_andclause(pull_ands(FastListValue(&t_list)));
	}
	else if (or_clause((Node *) qual))
	{
		FastList	t_list;
		ListCell   *temp;

		FastListInit(&t_list);
		foreach(temp, ((BoolExpr *) qual)->args)
			FastAppend(&t_list, find_nots(lfirst(temp)));
		return make_orclause(pull_ors(FastListValue(&t_list)));
	}
	else if (not_clause((Node *) qual))
		return push_nots(get_notclausearg(qual));
	else
		return qual;
}

/*
 * push_nots
 *	  Push down a NOT as far as possible.
 *
 * Input is an expression to be negated (e.g., the argument of a NOT clause).
 * Returns a new qual equivalent to the negation of the given qual.
 */
static Expr *
push_nots(Expr *qual)
{
	if (qual == NULL)
		return make_notclause(qual);	/* XXX is this right?  Or
										 * possible? */

	/*
	 * Negate an operator clause if possible: (NOT (< A B)) => (> A B)
	 * Otherwise, retain the clause as it is (the NOT can't be pushed
	 * down any farther).
	 */
	if (is_opclause(qual))
	{
		OpExpr	   *opexpr = (OpExpr *) qual;
		Oid			negator = get_negator(opexpr->opno);

		if (negator)
			return make_opclause(negator,
								 opexpr->opresulttype,
								 opexpr->opretset,
								 (Expr *) get_leftop(qual),
								 (Expr *) get_rightop(qual));
		else
			return make_notclause(qual);
	}
	else if (and_clause((Node *) qual))
	{
		/*--------------------
		 * Apply DeMorgan's Laws:
		 *		(NOT (AND A B)) => (OR (NOT A) (NOT B))
		 *		(NOT (OR A B))	=> (AND (NOT A) (NOT B))
		 * i.e., swap AND for OR and negate all the subclauses.
		 *--------------------
		 */
		FastList	t_list;
		ListCell   *temp;

		FastListInit(&t_list);
		foreach(temp, ((BoolExpr *) qual)->args)
			FastAppend(&t_list, push_nots(lfirst(temp)));
		return make_orclause(pull_ors(FastListValue(&t_list)));
	}
	else if (or_clause((Node *) qual))
	{
		FastList	t_list;
		ListCell   *temp;

		FastListInit(&t_list);
		foreach(temp, ((BoolExpr *) qual)->args)
			FastAppend(&t_list, push_nots(lfirst(temp)));
		return make_andclause(pull_ands(FastListValue(&t_list)));
	}
	else if (not_clause((Node *) qual))
	{
		/*
		 * Another NOT cancels this NOT, so eliminate the NOT and
		 * stop negating this branch.
		 */
		return get_notclausearg(qual);
	}
	else
	{
		/*
		 * We don't know how to negate anything else, place a NOT at
		 * this level.
		 */
		return make_notclause(qual);
	}
}


/*--------------------
 * The following code attempts to apply the inverse OR distributive law:
 *		((A AND B) OR (A AND C))  =>  (A AND (B OR C))
 * That is, locate OR clauses in which every subclause contains an
 * identical term, and pull out the duplicated terms.
 *
 * This may seem like a fairly useless activity, but it turns out to be
 * applicable to many machine-generated queries, and there are also queries
 * in some of the TPC benchmarks that need it.  This was in fact almost the
 * sole useful side-effect of the old prepqual code that tried to force
 * the query into canonical AND-of-ORs form: the canonical equivalent of
 *		((A AND B) OR (A AND C))
 * is
 *		((A OR A) AND (A OR C) AND (B OR A) AND (B OR C))
 * which the code was able to simplify to
 *		(A AND (A OR C) AND (B OR A) AND (B OR C))
 * thus successfully extracting the common condition A --- but at the cost
 * of cluttering the qual with many redundant clauses.
 *--------------------
 */

/*
 * find_duplicate_ors
 *	  Given a qualification tree with the NOTs pushed down, search for
 *	  OR clauses to which the inverse OR distributive law might apply.
 *	  Only the top-level AND/OR structure is searched.
 *
 * Returns the modified qualification.  AND/OR flatness is preserved.
 */
static Expr *
find_duplicate_ors(Expr *qual)
{
	if (qual == NULL)
		return NULL;

	if (or_clause((Node *) qual))
	{
		List	   *orlist = NIL;
		ListCell   *temp;

		/* Recurse */
		foreach(temp, ((BoolExpr *) qual)->args)
			orlist = lappend(orlist, find_duplicate_ors(lfirst(temp)));
		/*
		 * Don't need pull_ors() since this routine will never introduce
		 * an OR where there wasn't one before.
		 */
		return process_duplicate_ors(orlist);
	}
	else if (and_clause((Node *) qual))
	{
		List	   *andlist = NIL;
		ListCell   *temp;

		/* Recurse */
		foreach(temp, ((BoolExpr *) qual)->args)
			andlist = lappend(andlist, find_duplicate_ors(lfirst(temp)));
		/* Flatten any ANDs introduced just below here */
		andlist = pull_ands(andlist);
		/* The AND list can't get shorter, so result is always an AND */
		return make_andclause(andlist);
	}
	else
		return qual;
}

/*
 * process_duplicate_ors
 *	  Given a list of exprs which are ORed together, try to apply
 *	  the inverse OR distributive law.
 *
 * Returns the resulting expression (could be an AND clause, an OR
 * clause, or maybe even a single subexpression).
 */
static Expr *
process_duplicate_ors(List *orlist)
{
	List	   *reference = NIL;
	int			num_subclauses = 0;
	List	   *winners;
	List	   *neworlist;
	ListCell   *temp;

	if (orlist == NIL)
		return NULL;			/* probably can't happen */
	if (length(orlist) == 1)	/* single-expression OR (can this happen?) */
		return linitial(orlist);

	/*
	 * Choose the shortest AND clause as the reference list --- obviously,
	 * any subclause not in this clause isn't in all the clauses.
	 * If we find a clause that's not an AND, we can treat it as a
	 * one-element AND clause, which necessarily wins as shortest.
	 */
	foreach(temp, orlist)
	{
		Expr	   *clause = (Expr *) lfirst(temp);

		if (and_clause((Node *) clause))
		{
			List	   *subclauses = ((BoolExpr *) clause)->args;
			int			nclauses = length(subclauses);

			if (reference == NIL || nclauses < num_subclauses)
			{
				reference = subclauses;
				num_subclauses = nclauses;
			}
		}
		else
		{
			reference = makeList1(clause);
			break;
		}
	}

	/*
	 * Just in case, eliminate any duplicates in the reference list.
	 */
	reference = set_union(NIL, reference);

	/*
	 * Check each element of the reference list to see if it's in all the
	 * OR clauses.  Build a new list of winning clauses.
	 */
	winners = NIL;
	foreach(temp, reference)
	{
		Expr	   *refclause = (Expr *) lfirst(temp);
		bool		win = true;
		ListCell   *temp2;

		foreach(temp2, orlist)
		{
			Expr	   *clause = (Expr *) lfirst(temp2);

			if (and_clause((Node *) clause))
			{
				if (!member(refclause, ((BoolExpr *) clause)->args))
				{
					win = false;
					break;
				}
			}
			else
			{
				if (!equal(refclause, clause))
				{
					win = false;
					break;
				}
			}
		}

		if (win)
			winners = lappend(winners, refclause);
	}

	/*
	 * If no winners, we can't transform the OR
	 */
	if (winners == NIL)
		return make_orclause(orlist);

	/*
	 * Generate new OR list consisting of the remaining sub-clauses.
	 *
	 * If any clause degenerates to empty, then we have a situation like
	 * (A AND B) OR (A), which can be reduced to just A --- that is, the
	 * additional conditions in other arms of the OR are irrelevant.
	 *
	 * Note that because we use set_difference, any multiple occurrences of
	 * a winning clause in an AND sub-clause will be removed automatically.
	 */
	neworlist = NIL;
	foreach(temp, orlist)
	{
		Expr	   *clause = (Expr *) lfirst(temp);

		if (and_clause((Node *) clause))
		{
			List	   *subclauses = ((BoolExpr *) clause)->args;

			subclauses = set_difference(subclauses, winners);
			if (subclauses != NIL)
			{
				if (length(subclauses) == 1)
					neworlist = lappend(neworlist, linitial(subclauses));
				else
					neworlist = lappend(neworlist, make_andclause(subclauses));
			}
			else
			{
				neworlist = NIL;		/* degenerate case, see above */
				break;
			}
		}
		else
		{
			if (!member(clause, winners))
				neworlist = lappend(neworlist, clause);
			else
			{
				neworlist = NIL;		/* degenerate case, see above */
				break;
			}
		}
	}

	/*
	 * Append reduced OR to the winners list, if it's not degenerate, handling
	 * the special case of one element correctly (can that really happen?).
	 * Also be careful to maintain AND/OR flatness in case we pulled up a
	 * sub-sub-OR-clause.
	 */
	if (neworlist != NIL)
	{
		if (length(neworlist) == 1)
			winners = lappend(winners, linitial(neworlist));
		else
			winners = lappend(winners, make_orclause(pull_ors(neworlist)));
	}

	/*
	 * And return the constructed AND clause, again being wary of a single
	 * element and AND/OR flatness.
	 */
	if (length(winners) == 1)
		return (Expr *) linitial(winners);
	else
		return make_andclause(pull_ands(winners));
}