1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
|
/*-------------------------------------------------------------------------
*
* prepunion.c
* Routines to plan set-operation queries. The filename is a leftover
* from a time when only UNIONs were implemented.
*
* There are two code paths in the planner for set-operation queries.
* If a subquery consists entirely of simple UNION ALL operations, it
* is converted into an "append relation". Otherwise, it is handled
* by the general code in this module (plan_set_operations and its
* subroutines). There is some support code here for the append-relation
* case, but most of the heavy lifting for that is done elsewhere,
* notably in prepjointree.c and allpaths.c.
*
* There is also some code here to support planning of queries that use
* inheritance (SELECT FROM foo*). Inheritance trees are converted into
* append relations, and thenceforth share code with the UNION ALL case.
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/prep/prepunion.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "access/heapam.h"
#include "access/htup_details.h"
#include "access/sysattr.h"
#include "catalog/partition.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_type.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/tlist.h"
#include "parser/parse_coerce.h"
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/selfuncs.h"
typedef struct
{
PlannerInfo *root;
int nappinfos;
AppendRelInfo **appinfos;
} adjust_appendrel_attrs_context;
static RelOptInfo *recurse_set_operations(Node *setOp, PlannerInfo *root,
List *colTypes, List *colCollations,
bool junkOK,
int flag, List *refnames_tlist,
List **pTargetList,
double *pNumGroups);
static RelOptInfo *generate_recursion_path(SetOperationStmt *setOp,
PlannerInfo *root,
List *refnames_tlist,
List **pTargetList);
static RelOptInfo *generate_union_paths(SetOperationStmt *op, PlannerInfo *root,
List *refnames_tlist,
List **pTargetList);
static RelOptInfo *generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root,
List *refnames_tlist,
List **pTargetList);
static List *plan_union_children(PlannerInfo *root,
SetOperationStmt *top_union,
List *refnames_tlist,
List **tlist_list);
static Path *make_union_unique(SetOperationStmt *op, Path *path, List *tlist,
PlannerInfo *root);
static void postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel);
static bool choose_hashed_setop(PlannerInfo *root, List *groupClauses,
Path *input_path,
double dNumGroups, double dNumOutputRows,
const char *construct);
static List *generate_setop_tlist(List *colTypes, List *colCollations,
int flag,
Index varno,
bool hack_constants,
List *input_tlist,
List *refnames_tlist);
static List *generate_append_tlist(List *colTypes, List *colCollations,
bool flag,
List *input_tlists,
List *refnames_tlist);
static List *generate_setop_grouplist(SetOperationStmt *op, List *targetlist);
static void expand_inherited_rtentry(PlannerInfo *root, RangeTblEntry *rte,
Index rti);
static void expand_partitioned_rtentry(PlannerInfo *root,
RangeTblEntry *parentrte,
Index parentRTindex, Relation parentrel,
PlanRowMark *top_parentrc, LOCKMODE lockmode,
List **appinfos);
static void expand_single_inheritance_child(PlannerInfo *root,
RangeTblEntry *parentrte,
Index parentRTindex, Relation parentrel,
PlanRowMark *top_parentrc, Relation childrel,
List **appinfos, RangeTblEntry **childrte_p,
Index *childRTindex_p);
static void make_inh_translation_list(Relation oldrelation,
Relation newrelation,
Index newvarno,
List **translated_vars);
static Bitmapset *translate_col_privs(const Bitmapset *parent_privs,
List *translated_vars);
static Node *adjust_appendrel_attrs_mutator(Node *node,
adjust_appendrel_attrs_context *context);
static Relids adjust_child_relids(Relids relids, int nappinfos,
AppendRelInfo **appinfos);
static List *adjust_inherited_tlist(List *tlist,
AppendRelInfo *context);
/*
* plan_set_operations
*
* Plans the queries for a tree of set operations (UNION/INTERSECT/EXCEPT)
*
* This routine only deals with the setOperations tree of the given query.
* Any top-level ORDER BY requested in root->parse->sortClause will be handled
* when we return to grouping_planner; likewise for LIMIT.
*
* What we return is an "upperrel" RelOptInfo containing at least one Path
* that implements the set-operation tree. In addition, root->processed_tlist
* receives a targetlist representing the output of the topmost setop node.
*/
RelOptInfo *
plan_set_operations(PlannerInfo *root)
{
Query *parse = root->parse;
SetOperationStmt *topop = castNode(SetOperationStmt, parse->setOperations);
Node *node;
RangeTblEntry *leftmostRTE;
Query *leftmostQuery;
RelOptInfo *setop_rel;
List *top_tlist;
Assert(topop);
/* check for unsupported stuff */
Assert(parse->jointree->fromlist == NIL);
Assert(parse->jointree->quals == NULL);
Assert(parse->groupClause == NIL);
Assert(parse->havingQual == NULL);
Assert(parse->windowClause == NIL);
Assert(parse->distinctClause == NIL);
/*
* We'll need to build RelOptInfos for each of the leaf subqueries, which
* are RTE_SUBQUERY rangetable entries in this Query. Prepare the index
* arrays for that.
*/
setup_simple_rel_arrays(root);
/*
* Populate append_rel_array with each AppendRelInfo to allow direct
* lookups by child relid.
*/
setup_append_rel_array(root);
/*
* Find the leftmost component Query. We need to use its column names for
* all generated tlists (else SELECT INTO won't work right).
*/
node = topop->larg;
while (node && IsA(node, SetOperationStmt))
node = ((SetOperationStmt *) node)->larg;
Assert(node && IsA(node, RangeTblRef));
leftmostRTE = root->simple_rte_array[((RangeTblRef *) node)->rtindex];
leftmostQuery = leftmostRTE->subquery;
Assert(leftmostQuery != NULL);
/*
* If the topmost node is a recursive union, it needs special processing.
*/
if (root->hasRecursion)
{
setop_rel = generate_recursion_path(topop, root,
leftmostQuery->targetList,
&top_tlist);
}
else
{
/*
* Recurse on setOperations tree to generate paths for set ops. The
* final output paths should have just the column types shown as the
* output from the top-level node, plus possibly resjunk working
* columns (we can rely on upper-level nodes to deal with that).
*/
setop_rel = recurse_set_operations((Node *) topop, root,
topop->colTypes, topop->colCollations,
true, -1,
leftmostQuery->targetList,
&top_tlist,
NULL);
}
/* Must return the built tlist into root->processed_tlist. */
root->processed_tlist = top_tlist;
return setop_rel;
}
/*
* recurse_set_operations
* Recursively handle one step in a tree of set operations
*
* colTypes: OID list of set-op's result column datatypes
* colCollations: OID list of set-op's result column collations
* junkOK: if true, child resjunk columns may be left in the result
* flag: if >= 0, add a resjunk output column indicating value of flag
* refnames_tlist: targetlist to take column names from
*
* Returns a RelOptInfo for the subtree, as well as these output parameters:
* *pTargetList: receives the fully-fledged tlist for the subtree's top plan
* *pNumGroups: if not NULL, we estimate the number of distinct groups
* in the result, and store it there
*
* The pTargetList output parameter is mostly redundant with the pathtarget
* of the returned RelOptInfo, but for the moment we need it because much of
* the logic in this file depends on flag columns being marked resjunk.
* Pending a redesign of how that works, this is the easy way out.
*
* We don't have to care about typmods here: the only allowed difference
* between set-op input and output typmods is input is a specific typmod
* and output is -1, and that does not require a coercion.
*/
static RelOptInfo *
recurse_set_operations(Node *setOp, PlannerInfo *root,
List *colTypes, List *colCollations,
bool junkOK,
int flag, List *refnames_tlist,
List **pTargetList,
double *pNumGroups)
{
RelOptInfo *rel = NULL; /* keep compiler quiet */
/* Guard against stack overflow due to overly complex setop nests */
check_stack_depth();
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *rte = root->simple_rte_array[rtr->rtindex];
Query *subquery = rte->subquery;
PlannerInfo *subroot;
RelOptInfo *final_rel;
Path *subpath;
Path *path;
List *tlist;
Assert(subquery != NULL);
/* Build a RelOptInfo for this leaf subquery. */
rel = build_simple_rel(root, rtr->rtindex, NULL);
/* plan_params should not be in use in current query level */
Assert(root->plan_params == NIL);
/* Generate a subroot and Paths for the subquery */
subroot = rel->subroot = subquery_planner(root->glob, subquery,
root,
false,
root->tuple_fraction);
/*
* It should not be possible for the primitive query to contain any
* cross-references to other primitive queries in the setop tree.
*/
if (root->plan_params)
elog(ERROR, "unexpected outer reference in set operation subquery");
/* Figure out the appropriate target list for this subquery. */
tlist = generate_setop_tlist(colTypes, colCollations,
flag,
rtr->rtindex,
true,
subroot->processed_tlist,
refnames_tlist);
rel->reltarget = create_pathtarget(root, tlist);
/* Return the fully-fledged tlist to caller, too */
*pTargetList = tlist;
/*
* Mark rel with estimated output rows, width, etc. Note that we have
* to do this before generating outer-query paths, else
* cost_subqueryscan is not happy.
*/
set_subquery_size_estimates(root, rel);
/*
* Since we may want to add a partial path to this relation, we must
* set its consider_parallel flag correctly.
*/
final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
rel->consider_parallel = final_rel->consider_parallel;
/*
* For the moment, we consider only a single Path for the subquery.
* This should change soon (make it look more like
* set_subquery_pathlist).
*/
subpath = get_cheapest_fractional_path(final_rel,
root->tuple_fraction);
/*
* Stick a SubqueryScanPath atop that.
*
* We don't bother to determine the subquery's output ordering since
* it won't be reflected in the set-op result anyhow; so just label
* the SubqueryScanPath with nil pathkeys. (XXX that should change
* soon too, likely.)
*/
path = (Path *) create_subqueryscan_path(root, rel, subpath,
NIL, NULL);
add_path(rel, path);
/*
* If we have a partial path for the child relation, we can use that
* to build a partial path for this relation. But there's no point in
* considering any path but the cheapest.
*/
if (rel->consider_parallel && bms_is_empty(rel->lateral_relids) &&
final_rel->partial_pathlist != NIL)
{
Path *partial_subpath;
Path *partial_path;
partial_subpath = linitial(final_rel->partial_pathlist);
partial_path = (Path *)
create_subqueryscan_path(root, rel, partial_subpath,
NIL, NULL);
add_partial_path(rel, partial_path);
}
/*
* Estimate number of groups if caller wants it. If the subquery used
* grouping or aggregation, its output is probably mostly unique
* anyway; otherwise do statistical estimation.
*
* XXX you don't really want to know about this: we do the estimation
* using the subquery's original targetlist expressions, not the
* subroot->processed_tlist which might seem more appropriate. The
* reason is that if the subquery is itself a setop, it may return a
* processed_tlist containing "varno 0" Vars generated by
* generate_append_tlist, and those would confuse estimate_num_groups
* mightily. We ought to get rid of the "varno 0" hack, but that
* requires a redesign of the parsetree representation of setops, so
* that there can be an RTE corresponding to each setop's output.
*/
if (pNumGroups)
{
if (subquery->groupClause || subquery->groupingSets ||
subquery->distinctClause ||
subroot->hasHavingQual || subquery->hasAggs)
*pNumGroups = subpath->rows;
else
*pNumGroups = estimate_num_groups(subroot,
get_tlist_exprs(subquery->targetList, false),
subpath->rows,
NULL);
}
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
/* UNIONs are much different from INTERSECT/EXCEPT */
if (op->op == SETOP_UNION)
rel = generate_union_paths(op, root,
refnames_tlist,
pTargetList);
else
rel = generate_nonunion_paths(op, root,
refnames_tlist,
pTargetList);
if (pNumGroups)
*pNumGroups = rel->rows;
/*
* If necessary, add a Result node to project the caller-requested
* output columns.
*
* XXX you don't really want to know about this: setrefs.c will apply
* fix_upper_expr() to the Result node's tlist. This would fail if the
* Vars generated by generate_setop_tlist() were not exactly equal()
* to the corresponding tlist entries of the subplan. However, since
* the subplan was generated by generate_union_plan() or
* generate_nonunion_plan(), and hence its tlist was generated by
* generate_append_tlist(), this will work. We just tell
* generate_setop_tlist() to use varno 0.
*/
if (flag >= 0 ||
!tlist_same_datatypes(*pTargetList, colTypes, junkOK) ||
!tlist_same_collations(*pTargetList, colCollations, junkOK))
{
PathTarget *target;
ListCell *lc;
*pTargetList = generate_setop_tlist(colTypes, colCollations,
flag,
0,
false,
*pTargetList,
refnames_tlist);
target = create_pathtarget(root, *pTargetList);
/* Apply projection to each path */
foreach(lc, rel->pathlist)
{
Path *subpath = (Path *) lfirst(lc);
Path *path;
Assert(subpath->param_info == NULL);
path = apply_projection_to_path(root, subpath->parent,
subpath, target);
/* If we had to add a Result, path is different from subpath */
if (path != subpath)
lfirst(lc) = path;
}
/* Apply projection to each partial path */
foreach(lc, rel->partial_pathlist)
{
Path *subpath = (Path *) lfirst(lc);
Path *path;
Assert(subpath->param_info == NULL);
/* avoid apply_projection_to_path, in case of multiple refs */
path = (Path *) create_projection_path(root, subpath->parent,
subpath, target);
lfirst(lc) = path;
}
}
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
*pTargetList = NIL;
}
postprocess_setop_rel(root, rel);
return rel;
}
/*
* Generate paths for a recursive UNION node
*/
static RelOptInfo *
generate_recursion_path(SetOperationStmt *setOp, PlannerInfo *root,
List *refnames_tlist,
List **pTargetList)
{
RelOptInfo *result_rel;
Path *path;
RelOptInfo *lrel,
*rrel;
Path *lpath;
Path *rpath;
List *lpath_tlist;
List *rpath_tlist;
List *tlist;
List *groupList;
double dNumGroups;
/* Parser should have rejected other cases */
if (setOp->op != SETOP_UNION)
elog(ERROR, "only UNION queries can be recursive");
/* Worktable ID should be assigned */
Assert(root->wt_param_id >= 0);
/*
* Unlike a regular UNION node, process the left and right inputs
* separately without any intention of combining them into one Append.
*/
lrel = recurse_set_operations(setOp->larg, root,
setOp->colTypes, setOp->colCollations,
false, -1,
refnames_tlist,
&lpath_tlist,
NULL);
lpath = lrel->cheapest_total_path;
/* The right path will want to look at the left one ... */
root->non_recursive_path = lpath;
rrel = recurse_set_operations(setOp->rarg, root,
setOp->colTypes, setOp->colCollations,
false, -1,
refnames_tlist,
&rpath_tlist,
NULL);
rpath = rrel->cheapest_total_path;
root->non_recursive_path = NULL;
/*
* Generate tlist for RecursiveUnion path node --- same as in Append cases
*/
tlist = generate_append_tlist(setOp->colTypes, setOp->colCollations, false,
list_make2(lpath_tlist, rpath_tlist),
refnames_tlist);
*pTargetList = tlist;
/* Build result relation. */
result_rel = fetch_upper_rel(root, UPPERREL_SETOP,
bms_union(lrel->relids, rrel->relids));
result_rel->reltarget = create_pathtarget(root, tlist);
/*
* If UNION, identify the grouping operators
*/
if (setOp->all)
{
groupList = NIL;
dNumGroups = 0;
}
else
{
/* Identify the grouping semantics */
groupList = generate_setop_grouplist(setOp, tlist);
/* We only support hashing here */
if (!grouping_is_hashable(groupList))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("could not implement recursive UNION"),
errdetail("All column datatypes must be hashable.")));
/*
* For the moment, take the number of distinct groups as equal to the
* total input size, ie, the worst case.
*/
dNumGroups = lpath->rows + rpath->rows * 10;
}
/*
* And make the path node.
*/
path = (Path *) create_recursiveunion_path(root,
result_rel,
lpath,
rpath,
result_rel->reltarget,
groupList,
root->wt_param_id,
dNumGroups);
add_path(result_rel, path);
postprocess_setop_rel(root, result_rel);
return result_rel;
}
/*
* Generate paths for a UNION or UNION ALL node
*/
static RelOptInfo *
generate_union_paths(SetOperationStmt *op, PlannerInfo *root,
List *refnames_tlist,
List **pTargetList)
{
Relids relids = NULL;
RelOptInfo *result_rel;
double save_fraction = root->tuple_fraction;
ListCell *lc;
List *pathlist = NIL;
List *partial_pathlist = NIL;
bool partial_paths_valid = true;
bool consider_parallel = true;
List *rellist;
List *tlist_list;
List *tlist;
Path *path;
/*
* If plain UNION, tell children to fetch all tuples.
*
* Note: in UNION ALL, we pass the top-level tuple_fraction unmodified to
* each arm of the UNION ALL. One could make a case for reducing the
* tuple fraction for later arms (discounting by the expected size of the
* earlier arms' results) but it seems not worth the trouble. The normal
* case where tuple_fraction isn't already zero is a LIMIT at top level,
* and passing it down as-is is usually enough to get the desired result
* of preferring fast-start plans.
*/
if (!op->all)
root->tuple_fraction = 0.0;
/*
* If any of my children are identical UNION nodes (same op, all-flag, and
* colTypes) then they can be merged into this node so that we generate
* only one Append and unique-ification for the lot. Recurse to find such
* nodes and compute their children's paths.
*/
rellist = plan_union_children(root, op, refnames_tlist, &tlist_list);
/*
* Generate tlist for Append plan node.
*
* The tlist for an Append plan isn't important as far as the Append is
* concerned, but we must make it look real anyway for the benefit of the
* next plan level up.
*/
tlist = generate_append_tlist(op->colTypes, op->colCollations, false,
tlist_list, refnames_tlist);
*pTargetList = tlist;
/* Build path lists and relid set. */
foreach(lc, rellist)
{
RelOptInfo *rel = lfirst(lc);
pathlist = lappend(pathlist, rel->cheapest_total_path);
if (consider_parallel)
{
if (!rel->consider_parallel)
{
consider_parallel = false;
partial_paths_valid = false;
}
else if (rel->partial_pathlist == NIL)
partial_paths_valid = false;
else
partial_pathlist = lappend(partial_pathlist,
linitial(rel->partial_pathlist));
}
relids = bms_union(relids, rel->relids);
}
/* Build result relation. */
result_rel = fetch_upper_rel(root, UPPERREL_SETOP, relids);
result_rel->reltarget = create_pathtarget(root, tlist);
result_rel->consider_parallel = consider_parallel;
/*
* Append the child results together.
*/
path = (Path *) create_append_path(root, result_rel, pathlist, NIL,
NULL, 0, false, NIL, -1);
/*
* For UNION ALL, we just need the Append path. For UNION, need to add
* node(s) to remove duplicates.
*/
if (!op->all)
path = make_union_unique(op, path, tlist, root);
add_path(result_rel, path);
/*
* Estimate number of groups. For now we just assume the output is unique
* --- this is certainly true for the UNION case, and we want worst-case
* estimates anyway.
*/
result_rel->rows = path->rows;
/*
* Now consider doing the same thing using the partial paths plus Append
* plus Gather.
*/
if (partial_paths_valid)
{
Path *ppath;
ListCell *lc;
int parallel_workers = 0;
/* Find the highest number of workers requested for any subpath. */
foreach(lc, partial_pathlist)
{
Path *path = lfirst(lc);
parallel_workers = Max(parallel_workers, path->parallel_workers);
}
Assert(parallel_workers > 0);
/*
* If the use of parallel append is permitted, always request at least
* log2(# of children) paths. We assume it can be useful to have
* extra workers in this case because they will be spread out across
* the children. The precise formula is just a guess; see
* add_paths_to_append_rel.
*/
if (enable_parallel_append)
{
parallel_workers = Max(parallel_workers,
fls(list_length(partial_pathlist)));
parallel_workers = Min(parallel_workers,
max_parallel_workers_per_gather);
}
Assert(parallel_workers > 0);
ppath = (Path *)
create_append_path(root, result_rel, NIL, partial_pathlist,
NULL, parallel_workers, enable_parallel_append,
NIL, -1);
ppath = (Path *)
create_gather_path(root, result_rel, ppath,
result_rel->reltarget, NULL, NULL);
if (!op->all)
ppath = make_union_unique(op, ppath, tlist, root);
add_path(result_rel, ppath);
}
/* Undo effects of possibly forcing tuple_fraction to 0 */
root->tuple_fraction = save_fraction;
return result_rel;
}
/*
* Generate paths for an INTERSECT, INTERSECT ALL, EXCEPT, or EXCEPT ALL node
*/
static RelOptInfo *
generate_nonunion_paths(SetOperationStmt *op, PlannerInfo *root,
List *refnames_tlist,
List **pTargetList)
{
RelOptInfo *result_rel;
RelOptInfo *lrel,
*rrel;
double save_fraction = root->tuple_fraction;
Path *lpath,
*rpath,
*path;
List *lpath_tlist,
*rpath_tlist,
*tlist_list,
*tlist,
*groupList,
*pathlist;
double dLeftGroups,
dRightGroups,
dNumGroups,
dNumOutputRows;
bool use_hash;
SetOpCmd cmd;
int firstFlag;
/*
* Tell children to fetch all tuples.
*/
root->tuple_fraction = 0.0;
/* Recurse on children, ensuring their outputs are marked */
lrel = recurse_set_operations(op->larg, root,
op->colTypes, op->colCollations,
false, 0,
refnames_tlist,
&lpath_tlist,
&dLeftGroups);
lpath = lrel->cheapest_total_path;
rrel = recurse_set_operations(op->rarg, root,
op->colTypes, op->colCollations,
false, 1,
refnames_tlist,
&rpath_tlist,
&dRightGroups);
rpath = rrel->cheapest_total_path;
/* Undo effects of forcing tuple_fraction to 0 */
root->tuple_fraction = save_fraction;
/*
* For EXCEPT, we must put the left input first. For INTERSECT, either
* order should give the same results, and we prefer to put the smaller
* input first in order to minimize the size of the hash table in the
* hashing case. "Smaller" means the one with the fewer groups.
*/
if (op->op == SETOP_EXCEPT || dLeftGroups <= dRightGroups)
{
pathlist = list_make2(lpath, rpath);
tlist_list = list_make2(lpath_tlist, rpath_tlist);
firstFlag = 0;
}
else
{
pathlist = list_make2(rpath, lpath);
tlist_list = list_make2(rpath_tlist, lpath_tlist);
firstFlag = 1;
}
/*
* Generate tlist for Append plan node.
*
* The tlist for an Append plan isn't important as far as the Append is
* concerned, but we must make it look real anyway for the benefit of the
* next plan level up. In fact, it has to be real enough that the flag
* column is shown as a variable not a constant, else setrefs.c will get
* confused.
*/
tlist = generate_append_tlist(op->colTypes, op->colCollations, true,
tlist_list, refnames_tlist);
*pTargetList = tlist;
/* Build result relation. */
result_rel = fetch_upper_rel(root, UPPERREL_SETOP,
bms_union(lrel->relids, rrel->relids));
result_rel->reltarget = create_pathtarget(root, tlist);
/*
* Append the child results together.
*/
path = (Path *) create_append_path(root, result_rel, pathlist, NIL,
NULL, 0, false, NIL, -1);
/* Identify the grouping semantics */
groupList = generate_setop_grouplist(op, tlist);
/*
* Estimate number of distinct groups that we'll need hashtable entries
* for; this is the size of the left-hand input for EXCEPT, or the smaller
* input for INTERSECT. Also estimate the number of eventual output rows.
* In non-ALL cases, we estimate each group produces one output row; in
* ALL cases use the relevant relation size. These are worst-case
* estimates, of course, but we need to be conservative.
*/
if (op->op == SETOP_EXCEPT)
{
dNumGroups = dLeftGroups;
dNumOutputRows = op->all ? lpath->rows : dNumGroups;
}
else
{
dNumGroups = Min(dLeftGroups, dRightGroups);
dNumOutputRows = op->all ? Min(lpath->rows, rpath->rows) : dNumGroups;
}
/*
* Decide whether to hash or sort, and add a sort node if needed.
*/
use_hash = choose_hashed_setop(root, groupList, path,
dNumGroups, dNumOutputRows,
(op->op == SETOP_INTERSECT) ? "INTERSECT" : "EXCEPT");
if (groupList && !use_hash)
path = (Path *) create_sort_path(root,
result_rel,
path,
make_pathkeys_for_sortclauses(root,
groupList,
tlist),
-1.0);
/*
* Finally, add a SetOp path node to generate the correct output.
*/
switch (op->op)
{
case SETOP_INTERSECT:
cmd = op->all ? SETOPCMD_INTERSECT_ALL : SETOPCMD_INTERSECT;
break;
case SETOP_EXCEPT:
cmd = op->all ? SETOPCMD_EXCEPT_ALL : SETOPCMD_EXCEPT;
break;
default:
elog(ERROR, "unrecognized set op: %d", (int) op->op);
cmd = SETOPCMD_INTERSECT; /* keep compiler quiet */
break;
}
path = (Path *) create_setop_path(root,
result_rel,
path,
cmd,
use_hash ? SETOP_HASHED : SETOP_SORTED,
groupList,
list_length(op->colTypes) + 1,
use_hash ? firstFlag : -1,
dNumGroups,
dNumOutputRows);
result_rel->rows = path->rows;
add_path(result_rel, path);
return result_rel;
}
/*
* Pull up children of a UNION node that are identically-propertied UNIONs.
*
* NOTE: we can also pull a UNION ALL up into a UNION, since the distinct
* output rows will be lost anyway.
*
* NOTE: currently, we ignore collations while determining if a child has
* the same properties. This is semantically sound only so long as all
* collations have the same notion of equality. It is valid from an
* implementation standpoint because we don't care about the ordering of
* a UNION child's result: UNION ALL results are always unordered, and
* generate_union_paths will force a fresh sort if the top level is a UNION.
*/
static List *
plan_union_children(PlannerInfo *root,
SetOperationStmt *top_union,
List *refnames_tlist,
List **tlist_list)
{
List *pending_rels = list_make1(top_union);
List *result = NIL;
List *child_tlist;
*tlist_list = NIL;
while (pending_rels != NIL)
{
Node *setOp = linitial(pending_rels);
pending_rels = list_delete_first(pending_rels);
if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
if (op->op == top_union->op &&
(op->all == top_union->all || op->all) &&
equal(op->colTypes, top_union->colTypes))
{
/* Same UNION, so fold children into parent */
pending_rels = lcons(op->rarg, pending_rels);
pending_rels = lcons(op->larg, pending_rels);
continue;
}
}
/*
* Not same, so plan this child separately.
*
* Note we disallow any resjunk columns in child results. This is
* necessary since the Append node that implements the union won't do
* any projection, and upper levels will get confused if some of our
* output tuples have junk and some don't. This case only arises when
* we have an EXCEPT or INTERSECT as child, else there won't be
* resjunk anyway.
*/
result = lappend(result, recurse_set_operations(setOp, root,
top_union->colTypes,
top_union->colCollations,
false, -1,
refnames_tlist,
&child_tlist,
NULL));
*tlist_list = lappend(*tlist_list, child_tlist);
}
return result;
}
/*
* Add nodes to the given path tree to unique-ify the result of a UNION.
*/
static Path *
make_union_unique(SetOperationStmt *op, Path *path, List *tlist,
PlannerInfo *root)
{
RelOptInfo *result_rel = fetch_upper_rel(root, UPPERREL_SETOP, NULL);
List *groupList;
double dNumGroups;
/* Identify the grouping semantics */
groupList = generate_setop_grouplist(op, tlist);
/*
* XXX for the moment, take the number of distinct groups as equal to the
* total input size, ie, the worst case. This is too conservative, but we
* don't want to risk having the hashtable overrun memory; also, it's not
* clear how to get a decent estimate of the true size. One should note
* as well the propensity of novices to write UNION rather than UNION ALL
* even when they don't expect any duplicates...
*/
dNumGroups = path->rows;
/* Decide whether to hash or sort */
if (choose_hashed_setop(root, groupList, path,
dNumGroups, dNumGroups,
"UNION"))
{
/* Hashed aggregate plan --- no sort needed */
path = (Path *) create_agg_path(root,
result_rel,
path,
create_pathtarget(root, tlist),
AGG_HASHED,
AGGSPLIT_SIMPLE,
groupList,
NIL,
NULL,
dNumGroups);
}
else
{
/* Sort and Unique */
if (groupList)
path = (Path *)
create_sort_path(root,
result_rel,
path,
make_pathkeys_for_sortclauses(root,
groupList,
tlist),
-1.0);
path = (Path *) create_upper_unique_path(root,
result_rel,
path,
list_length(path->pathkeys),
dNumGroups);
}
return path;
}
/*
* postprocess_setop_rel - perform steps required after adding paths
*/
static void
postprocess_setop_rel(PlannerInfo *root, RelOptInfo *rel)
{
/*
* We don't currently worry about allowing FDWs to contribute paths to
* this relation, but give extensions a chance.
*/
if (create_upper_paths_hook)
(*create_upper_paths_hook) (root, UPPERREL_SETOP,
NULL, rel, NULL);
/* Select cheapest path */
set_cheapest(rel);
}
/*
* choose_hashed_setop - should we use hashing for a set operation?
*/
static bool
choose_hashed_setop(PlannerInfo *root, List *groupClauses,
Path *input_path,
double dNumGroups, double dNumOutputRows,
const char *construct)
{
int numGroupCols = list_length(groupClauses);
bool can_sort;
bool can_hash;
Size hashentrysize;
Path hashed_p;
Path sorted_p;
double tuple_fraction;
/* Check whether the operators support sorting or hashing */
can_sort = grouping_is_sortable(groupClauses);
can_hash = grouping_is_hashable(groupClauses);
if (can_hash && can_sort)
{
/* we have a meaningful choice to make, continue ... */
}
else if (can_hash)
return true;
else if (can_sort)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
/* translator: %s is UNION, INTERSECT, or EXCEPT */
errmsg("could not implement %s", construct),
errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
/* Prefer sorting when enable_hashagg is off */
if (!enable_hashagg)
return false;
/*
* Don't do it if it doesn't look like the hashtable will fit into
* work_mem.
*/
hashentrysize = MAXALIGN(input_path->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader);
if (hashentrysize * dNumGroups > work_mem * 1024L)
return false;
/*
* See if the estimated cost is no more than doing it the other way.
*
* We need to consider input_plan + hashagg versus input_plan + sort +
* group. Note that the actual result plan might involve a SetOp or
* Unique node, not Agg or Group, but the cost estimates for Agg and Group
* should be close enough for our purposes here.
*
* These path variables are dummies that just hold cost fields; we don't
* make actual Paths for these steps.
*/
cost_agg(&hashed_p, root, AGG_HASHED, NULL,
numGroupCols, dNumGroups,
NIL,
input_path->startup_cost, input_path->total_cost,
input_path->rows);
/*
* Now for the sorted case. Note that the input is *always* unsorted,
* since it was made by appending unrelated sub-relations together.
*/
sorted_p.startup_cost = input_path->startup_cost;
sorted_p.total_cost = input_path->total_cost;
/* XXX cost_sort doesn't actually look at pathkeys, so just pass NIL */
cost_sort(&sorted_p, root, NIL, sorted_p.total_cost,
input_path->rows, input_path->pathtarget->width,
0.0, work_mem, -1.0);
cost_group(&sorted_p, root, numGroupCols, dNumGroups,
NIL,
sorted_p.startup_cost, sorted_p.total_cost,
input_path->rows);
/*
* Now make the decision using the top-level tuple fraction. First we
* have to convert an absolute count (LIMIT) into fractional form.
*/
tuple_fraction = root->tuple_fraction;
if (tuple_fraction >= 1.0)
tuple_fraction /= dNumOutputRows;
if (compare_fractional_path_costs(&hashed_p, &sorted_p,
tuple_fraction) < 0)
{
/* Hashed is cheaper, so use it */
return true;
}
return false;
}
/*
* Generate targetlist for a set-operation plan node
*
* colTypes: OID list of set-op's result column datatypes
* colCollations: OID list of set-op's result column collations
* flag: -1 if no flag column needed, 0 or 1 to create a const flag column
* varno: varno to use in generated Vars
* hack_constants: true to copy up constants (see comments in code)
* input_tlist: targetlist of this node's input node
* refnames_tlist: targetlist to take column names from
*/
static List *
generate_setop_tlist(List *colTypes, List *colCollations,
int flag,
Index varno,
bool hack_constants,
List *input_tlist,
List *refnames_tlist)
{
List *tlist = NIL;
int resno = 1;
ListCell *ctlc,
*cclc,
*itlc,
*rtlc;
TargetEntry *tle;
Node *expr;
/* there's no forfour() so we must chase one list manually */
rtlc = list_head(refnames_tlist);
forthree(ctlc, colTypes, cclc, colCollations, itlc, input_tlist)
{
Oid colType = lfirst_oid(ctlc);
Oid colColl = lfirst_oid(cclc);
TargetEntry *inputtle = (TargetEntry *) lfirst(itlc);
TargetEntry *reftle = (TargetEntry *) lfirst(rtlc);
rtlc = lnext(rtlc);
Assert(inputtle->resno == resno);
Assert(reftle->resno == resno);
Assert(!inputtle->resjunk);
Assert(!reftle->resjunk);
/*
* Generate columns referencing input columns and having appropriate
* data types and column names. Insert datatype coercions where
* necessary.
*
* HACK: constants in the input's targetlist are copied up as-is
* rather than being referenced as subquery outputs. This is mainly
* to ensure that when we try to coerce them to the output column's
* datatype, the right things happen for UNKNOWN constants. But do
* this only at the first level of subquery-scan plans; we don't want
* phony constants appearing in the output tlists of upper-level
* nodes!
*/
if (hack_constants && inputtle->expr && IsA(inputtle->expr, Const))
expr = (Node *) inputtle->expr;
else
expr = (Node *) makeVar(varno,
inputtle->resno,
exprType((Node *) inputtle->expr),
exprTypmod((Node *) inputtle->expr),
exprCollation((Node *) inputtle->expr),
0);
if (exprType(expr) != colType)
{
/*
* Note: it's not really cool to be applying coerce_to_common_type
* here; one notable point is that assign_expr_collations never
* gets run on any generated nodes. For the moment that's not a
* problem because we force the correct exposed collation below.
* It would likely be best to make the parser generate the correct
* output tlist for every set-op to begin with, though.
*/
expr = coerce_to_common_type(NULL, /* no UNKNOWNs here */
expr,
colType,
"UNION/INTERSECT/EXCEPT");
}
/*
* Ensure the tlist entry's exposed collation matches the set-op. This
* is necessary because plan_set_operations() reports the result
* ordering as a list of SortGroupClauses, which don't carry collation
* themselves but just refer to tlist entries. If we don't show the
* right collation then planner.c might do the wrong thing in
* higher-level queries.
*
* Note we use RelabelType, not CollateExpr, since this expression
* will reach the executor without any further processing.
*/
if (exprCollation(expr) != colColl)
{
expr = (Node *) makeRelabelType((Expr *) expr,
exprType(expr),
exprTypmod(expr),
colColl,
COERCE_IMPLICIT_CAST);
}
tle = makeTargetEntry((Expr *) expr,
(AttrNumber) resno++,
pstrdup(reftle->resname),
false);
/*
* By convention, all non-resjunk columns in a setop tree have
* ressortgroupref equal to their resno. In some cases the ref isn't
* needed, but this is a cleaner way than modifying the tlist later.
*/
tle->ressortgroupref = tle->resno;
tlist = lappend(tlist, tle);
}
if (flag >= 0)
{
/* Add a resjunk flag column */
/* flag value is the given constant */
expr = (Node *) makeConst(INT4OID,
-1,
InvalidOid,
sizeof(int32),
Int32GetDatum(flag),
false,
true);
tle = makeTargetEntry((Expr *) expr,
(AttrNumber) resno++,
pstrdup("flag"),
true);
tlist = lappend(tlist, tle);
}
return tlist;
}
/*
* Generate targetlist for a set-operation Append node
*
* colTypes: OID list of set-op's result column datatypes
* colCollations: OID list of set-op's result column collations
* flag: true to create a flag column copied up from subplans
* input_tlists: list of tlists for sub-plans of the Append
* refnames_tlist: targetlist to take column names from
*
* The entries in the Append's targetlist should always be simple Vars;
* we just have to make sure they have the right datatypes/typmods/collations.
* The Vars are always generated with varno 0.
*
* XXX a problem with the varno-zero approach is that set_pathtarget_cost_width
* cannot figure out a realistic width for the tlist we make here. But we
* ought to refactor this code to produce a PathTarget directly, anyway.
*/
static List *
generate_append_tlist(List *colTypes, List *colCollations,
bool flag,
List *input_tlists,
List *refnames_tlist)
{
List *tlist = NIL;
int resno = 1;
ListCell *curColType;
ListCell *curColCollation;
ListCell *ref_tl_item;
int colindex;
TargetEntry *tle;
Node *expr;
ListCell *tlistl;
int32 *colTypmods;
/*
* First extract typmods to use.
*
* If the inputs all agree on type and typmod of a particular column, use
* that typmod; else use -1.
*/
colTypmods = (int32 *) palloc(list_length(colTypes) * sizeof(int32));
foreach(tlistl, input_tlists)
{
List *subtlist = (List *) lfirst(tlistl);
ListCell *subtlistl;
curColType = list_head(colTypes);
colindex = 0;
foreach(subtlistl, subtlist)
{
TargetEntry *subtle = (TargetEntry *) lfirst(subtlistl);
if (subtle->resjunk)
continue;
Assert(curColType != NULL);
if (exprType((Node *) subtle->expr) == lfirst_oid(curColType))
{
/* If first subplan, copy the typmod; else compare */
int32 subtypmod = exprTypmod((Node *) subtle->expr);
if (tlistl == list_head(input_tlists))
colTypmods[colindex] = subtypmod;
else if (subtypmod != colTypmods[colindex])
colTypmods[colindex] = -1;
}
else
{
/* types disagree, so force typmod to -1 */
colTypmods[colindex] = -1;
}
curColType = lnext(curColType);
colindex++;
}
Assert(curColType == NULL);
}
/*
* Now we can build the tlist for the Append.
*/
colindex = 0;
forthree(curColType, colTypes, curColCollation, colCollations,
ref_tl_item, refnames_tlist)
{
Oid colType = lfirst_oid(curColType);
int32 colTypmod = colTypmods[colindex++];
Oid colColl = lfirst_oid(curColCollation);
TargetEntry *reftle = (TargetEntry *) lfirst(ref_tl_item);
Assert(reftle->resno == resno);
Assert(!reftle->resjunk);
expr = (Node *) makeVar(0,
resno,
colType,
colTypmod,
colColl,
0);
tle = makeTargetEntry((Expr *) expr,
(AttrNumber) resno++,
pstrdup(reftle->resname),
false);
/*
* By convention, all non-resjunk columns in a setop tree have
* ressortgroupref equal to their resno. In some cases the ref isn't
* needed, but this is a cleaner way than modifying the tlist later.
*/
tle->ressortgroupref = tle->resno;
tlist = lappend(tlist, tle);
}
if (flag)
{
/* Add a resjunk flag column */
/* flag value is shown as copied up from subplan */
expr = (Node *) makeVar(0,
resno,
INT4OID,
-1,
InvalidOid,
0);
tle = makeTargetEntry((Expr *) expr,
(AttrNumber) resno++,
pstrdup("flag"),
true);
tlist = lappend(tlist, tle);
}
pfree(colTypmods);
return tlist;
}
/*
* generate_setop_grouplist
* Build a SortGroupClause list defining the sort/grouping properties
* of the setop's output columns.
*
* Parse analysis already determined the properties and built a suitable
* list, except that the entries do not have sortgrouprefs set because
* the parser output representation doesn't include a tlist for each
* setop. So what we need to do here is copy that list and install
* proper sortgrouprefs into it (copying those from the targetlist).
*/
static List *
generate_setop_grouplist(SetOperationStmt *op, List *targetlist)
{
List *grouplist = copyObject(op->groupClauses);
ListCell *lg;
ListCell *lt;
lg = list_head(grouplist);
foreach(lt, targetlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(lt);
SortGroupClause *sgc;
if (tle->resjunk)
{
/* resjunk columns should not have sortgrouprefs */
Assert(tle->ressortgroupref == 0);
continue; /* ignore resjunk columns */
}
/* non-resjunk columns should have sortgroupref = resno */
Assert(tle->ressortgroupref == tle->resno);
/* non-resjunk columns should have grouping clauses */
Assert(lg != NULL);
sgc = (SortGroupClause *) lfirst(lg);
lg = lnext(lg);
Assert(sgc->tleSortGroupRef == 0);
sgc->tleSortGroupRef = tle->ressortgroupref;
}
Assert(lg == NULL);
return grouplist;
}
/*
* expand_inherited_tables
* Expand each rangetable entry that represents an inheritance set
* into an "append relation". At the conclusion of this process,
* the "inh" flag is set in all and only those RTEs that are append
* relation parents.
*/
void
expand_inherited_tables(PlannerInfo *root)
{
Index nrtes;
Index rti;
ListCell *rl;
/*
* expand_inherited_rtentry may add RTEs to parse->rtable. The function is
* expected to recursively handle any RTEs that it creates with inh=true.
* So just scan as far as the original end of the rtable list.
*/
nrtes = list_length(root->parse->rtable);
rl = list_head(root->parse->rtable);
for (rti = 1; rti <= nrtes; rti++)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(rl);
expand_inherited_rtentry(root, rte, rti);
rl = lnext(rl);
}
}
/*
* expand_inherited_rtentry
* Check whether a rangetable entry represents an inheritance set.
* If so, add entries for all the child tables to the query's
* rangetable, and build AppendRelInfo nodes for all the child tables
* and add them to root->append_rel_list. If not, clear the entry's
* "inh" flag to prevent later code from looking for AppendRelInfos.
*
* Note that the original RTE is considered to represent the whole
* inheritance set. The first of the generated RTEs is an RTE for the same
* table, but with inh = false, to represent the parent table in its role
* as a simple member of the inheritance set.
*
* A childless table is never considered to be an inheritance set. For
* regular inheritance, a parent RTE must always have at least two associated
* AppendRelInfos: one corresponding to the parent table as a simple member of
* inheritance set and one or more corresponding to the actual children.
* Since a partitioned table is not scanned, it might have only one associated
* AppendRelInfo.
*/
static void
expand_inherited_rtentry(PlannerInfo *root, RangeTblEntry *rte, Index rti)
{
Query *parse = root->parse;
Oid parentOID;
PlanRowMark *oldrc;
Relation oldrelation;
LOCKMODE lockmode;
List *inhOIDs;
ListCell *l;
/* Does RT entry allow inheritance? */
if (!rte->inh)
return;
/* Ignore any already-expanded UNION ALL nodes */
if (rte->rtekind != RTE_RELATION)
{
Assert(rte->rtekind == RTE_SUBQUERY);
return;
}
/* Fast path for common case of childless table */
parentOID = rte->relid;
if (!has_subclass(parentOID))
{
/* Clear flag before returning */
rte->inh = false;
return;
}
/*
* The rewriter should already have obtained an appropriate lock on each
* relation named in the query. However, for each child relation we add
* to the query, we must obtain an appropriate lock, because this will be
* the first use of those relations in the parse/rewrite/plan pipeline.
*
* If the parent relation is the query's result relation, then we need
* RowExclusiveLock. Otherwise, if it's accessed FOR UPDATE/SHARE, we
* need RowShareLock; otherwise AccessShareLock. We can't just grab
* AccessShareLock because then the executor would be trying to upgrade
* the lock, leading to possible deadlocks. (This code should match the
* parser and rewriter.)
*/
oldrc = get_plan_rowmark(root->rowMarks, rti);
if (rti == parse->resultRelation)
lockmode = RowExclusiveLock;
else if (oldrc && RowMarkRequiresRowShareLock(oldrc->markType))
lockmode = RowShareLock;
else
lockmode = AccessShareLock;
/* Scan for all members of inheritance set, acquire needed locks */
inhOIDs = find_all_inheritors(parentOID, lockmode, NULL);
/*
* Check that there's at least one descendant, else treat as no-child
* case. This could happen despite above has_subclass() check, if table
* once had a child but no longer does.
*/
if (list_length(inhOIDs) < 2)
{
/* Clear flag before returning */
rte->inh = false;
return;
}
/*
* If parent relation is selected FOR UPDATE/SHARE, we need to mark its
* PlanRowMark as isParent = true, and generate a new PlanRowMark for each
* child.
*/
if (oldrc)
oldrc->isParent = true;
/*
* Must open the parent relation to examine its tupdesc. We need not lock
* it; we assume the rewriter already did.
*/
oldrelation = heap_open(parentOID, NoLock);
/* Scan the inheritance set and expand it */
if (RelationGetPartitionDesc(oldrelation) != NULL)
{
Assert(rte->relkind == RELKIND_PARTITIONED_TABLE);
/*
* If this table has partitions, recursively expand them in the order
* in which they appear in the PartitionDesc. While at it, also
* extract the partition key columns of all the partitioned tables.
*/
expand_partitioned_rtentry(root, rte, rti, oldrelation, oldrc,
lockmode, &root->append_rel_list);
}
else
{
List *appinfos = NIL;
RangeTblEntry *childrte;
Index childRTindex;
/*
* This table has no partitions. Expand any plain inheritance
* children in the order the OIDs were returned by
* find_all_inheritors.
*/
foreach(l, inhOIDs)
{
Oid childOID = lfirst_oid(l);
Relation newrelation;
/* Open rel if needed; we already have required locks */
if (childOID != parentOID)
newrelation = heap_open(childOID, NoLock);
else
newrelation = oldrelation;
/*
* It is possible that the parent table has children that are temp
* tables of other backends. We cannot safely access such tables
* (because of buffering issues), and the best thing to do seems
* to be to silently ignore them.
*/
if (childOID != parentOID && RELATION_IS_OTHER_TEMP(newrelation))
{
heap_close(newrelation, lockmode);
continue;
}
expand_single_inheritance_child(root, rte, rti, oldrelation, oldrc,
newrelation,
&appinfos, &childrte,
&childRTindex);
/* Close child relations, but keep locks */
if (childOID != parentOID)
heap_close(newrelation, NoLock);
}
/*
* If all the children were temp tables, pretend it's a
* non-inheritance situation; we don't need Append node in that case.
* The duplicate RTE we added for the parent table is harmless, so we
* don't bother to get rid of it; ditto for the useless PlanRowMark
* node.
*/
if (list_length(appinfos) < 2)
rte->inh = false;
else
root->append_rel_list = list_concat(root->append_rel_list,
appinfos);
}
heap_close(oldrelation, NoLock);
}
/*
* expand_partitioned_rtentry
* Recursively expand an RTE for a partitioned table.
*
* Note that RelationGetPartitionDispatchInfo will expand partitions in the
* same order as this code.
*/
static void
expand_partitioned_rtentry(PlannerInfo *root, RangeTblEntry *parentrte,
Index parentRTindex, Relation parentrel,
PlanRowMark *top_parentrc, LOCKMODE lockmode,
List **appinfos)
{
int i;
RangeTblEntry *childrte;
Index childRTindex;
PartitionDesc partdesc = RelationGetPartitionDesc(parentrel);
check_stack_depth();
/* A partitioned table should always have a partition descriptor. */
Assert(partdesc);
Assert(parentrte->inh);
/*
* Note down whether any partition key cols are being updated. Though it's
* the root partitioned table's updatedCols we are interested in, we
* instead use parentrte to get the updatedCols. This is convenient
* because parentrte already has the root partrel's updatedCols translated
* to match the attribute ordering of parentrel.
*/
if (!root->partColsUpdated)
root->partColsUpdated =
has_partition_attrs(parentrel, parentrte->updatedCols, NULL);
/* First expand the partitioned table itself. */
expand_single_inheritance_child(root, parentrte, parentRTindex, parentrel,
top_parentrc, parentrel,
appinfos, &childrte, &childRTindex);
/*
* If the partitioned table has no partitions, treat this as the
* non-inheritance case.
*/
if (partdesc->nparts == 0)
{
parentrte->inh = false;
return;
}
for (i = 0; i < partdesc->nparts; i++)
{
Oid childOID = partdesc->oids[i];
Relation childrel;
/* Open rel; we already have required locks */
childrel = heap_open(childOID, NoLock);
/*
* Temporary partitions belonging to other sessions should have been
* disallowed at definition, but for paranoia's sake, let's double
* check.
*/
if (RELATION_IS_OTHER_TEMP(childrel))
elog(ERROR, "temporary relation from another session found as partition");
expand_single_inheritance_child(root, parentrte, parentRTindex,
parentrel, top_parentrc, childrel,
appinfos, &childrte, &childRTindex);
/* If this child is itself partitioned, recurse */
if (childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
expand_partitioned_rtentry(root, childrte, childRTindex,
childrel, top_parentrc, lockmode,
appinfos);
/* Close child relation, but keep locks */
heap_close(childrel, NoLock);
}
}
/*
* expand_single_inheritance_child
* Build a RangeTblEntry and an AppendRelInfo, if appropriate, plus
* maybe a PlanRowMark.
*
* We now expand the partition hierarchy level by level, creating a
* corresponding hierarchy of AppendRelInfos and RelOptInfos, where each
* partitioned descendant acts as a parent of its immediate partitions.
* (This is a difference from what older versions of PostgreSQL did and what
* is still done in the case of table inheritance for unpartitioned tables,
* where the hierarchy is flattened during RTE expansion.)
*
* PlanRowMarks still carry the top-parent's RTI, and the top-parent's
* allMarkTypes field still accumulates values from all descendents.
*
* "parentrte" and "parentRTindex" are immediate parent's RTE and
* RTI. "top_parentrc" is top parent's PlanRowMark.
*
* The child RangeTblEntry and its RTI are returned in "childrte_p" and
* "childRTindex_p" resp.
*/
static void
expand_single_inheritance_child(PlannerInfo *root, RangeTblEntry *parentrte,
Index parentRTindex, Relation parentrel,
PlanRowMark *top_parentrc, Relation childrel,
List **appinfos, RangeTblEntry **childrte_p,
Index *childRTindex_p)
{
Query *parse = root->parse;
Oid parentOID = RelationGetRelid(parentrel);
Oid childOID = RelationGetRelid(childrel);
RangeTblEntry *childrte;
Index childRTindex;
AppendRelInfo *appinfo;
/*
* Build an RTE for the child, and attach to query's rangetable list. We
* copy most fields of the parent's RTE, but replace relation OID and
* relkind, and set inh = false. Also, set requiredPerms to zero since
* all required permissions checks are done on the original RTE. Likewise,
* set the child's securityQuals to empty, because we only want to apply
* the parent's RLS conditions regardless of what RLS properties
* individual children may have. (This is an intentional choice to make
* inherited RLS work like regular permissions checks.) The parent
* securityQuals will be propagated to children along with other base
* restriction clauses, so we don't need to do it here.
*/
childrte = copyObject(parentrte);
*childrte_p = childrte;
childrte->relid = childOID;
childrte->relkind = childrel->rd_rel->relkind;
/* A partitioned child will need to be expanded further. */
if (childOID != parentOID &&
childrte->relkind == RELKIND_PARTITIONED_TABLE)
childrte->inh = true;
else
childrte->inh = false;
childrte->requiredPerms = 0;
childrte->securityQuals = NIL;
parse->rtable = lappend(parse->rtable, childrte);
childRTindex = list_length(parse->rtable);
*childRTindex_p = childRTindex;
/*
* We need an AppendRelInfo if paths will be built for the child RTE. If
* childrte->inh is true, then we'll always need to generate append paths
* for it. If childrte->inh is false, we must scan it if it's not a
* partitioned table; but if it is a partitioned table, then it never has
* any data of its own and need not be scanned.
*/
if (childrte->relkind != RELKIND_PARTITIONED_TABLE || childrte->inh)
{
appinfo = makeNode(AppendRelInfo);
appinfo->parent_relid = parentRTindex;
appinfo->child_relid = childRTindex;
appinfo->parent_reltype = parentrel->rd_rel->reltype;
appinfo->child_reltype = childrel->rd_rel->reltype;
make_inh_translation_list(parentrel, childrel, childRTindex,
&appinfo->translated_vars);
appinfo->parent_reloid = parentOID;
*appinfos = lappend(*appinfos, appinfo);
/*
* Translate the column permissions bitmaps to the child's attnums (we
* have to build the translated_vars list before we can do this). But
* if this is the parent table, leave copyObject's result alone.
*
* Note: we need to do this even though the executor won't run any
* permissions checks on the child RTE. The insertedCols/updatedCols
* bitmaps may be examined for trigger-firing purposes.
*/
if (childOID != parentOID)
{
childrte->selectedCols = translate_col_privs(parentrte->selectedCols,
appinfo->translated_vars);
childrte->insertedCols = translate_col_privs(parentrte->insertedCols,
appinfo->translated_vars);
childrte->updatedCols = translate_col_privs(parentrte->updatedCols,
appinfo->translated_vars);
}
}
/*
* Build a PlanRowMark if parent is marked FOR UPDATE/SHARE.
*/
if (top_parentrc)
{
PlanRowMark *childrc = makeNode(PlanRowMark);
childrc->rti = childRTindex;
childrc->prti = top_parentrc->rti;
childrc->rowmarkId = top_parentrc->rowmarkId;
/* Reselect rowmark type, because relkind might not match parent */
childrc->markType = select_rowmark_type(childrte,
top_parentrc->strength);
childrc->allMarkTypes = (1 << childrc->markType);
childrc->strength = top_parentrc->strength;
childrc->waitPolicy = top_parentrc->waitPolicy;
/*
* We mark RowMarks for partitioned child tables as parent RowMarks so
* that the executor ignores them (except their existence means that
* the child tables be locked using appropriate mode).
*/
childrc->isParent = (childrte->relkind == RELKIND_PARTITIONED_TABLE);
/* Include child's rowmark type in top parent's allMarkTypes */
top_parentrc->allMarkTypes |= childrc->allMarkTypes;
root->rowMarks = lappend(root->rowMarks, childrc);
}
}
/*
* make_inh_translation_list
* Build the list of translations from parent Vars to child Vars for
* an inheritance child.
*
* For paranoia's sake, we match type/collation as well as attribute name.
*/
static void
make_inh_translation_list(Relation oldrelation, Relation newrelation,
Index newvarno,
List **translated_vars)
{
List *vars = NIL;
TupleDesc old_tupdesc = RelationGetDescr(oldrelation);
TupleDesc new_tupdesc = RelationGetDescr(newrelation);
int oldnatts = old_tupdesc->natts;
int newnatts = new_tupdesc->natts;
int old_attno;
for (old_attno = 0; old_attno < oldnatts; old_attno++)
{
Form_pg_attribute att;
char *attname;
Oid atttypid;
int32 atttypmod;
Oid attcollation;
int new_attno;
att = TupleDescAttr(old_tupdesc, old_attno);
if (att->attisdropped)
{
/* Just put NULL into this list entry */
vars = lappend(vars, NULL);
continue;
}
attname = NameStr(att->attname);
atttypid = att->atttypid;
atttypmod = att->atttypmod;
attcollation = att->attcollation;
/*
* When we are generating the "translation list" for the parent table
* of an inheritance set, no need to search for matches.
*/
if (oldrelation == newrelation)
{
vars = lappend(vars, makeVar(newvarno,
(AttrNumber) (old_attno + 1),
atttypid,
atttypmod,
attcollation,
0));
continue;
}
/*
* Otherwise we have to search for the matching column by name.
* There's no guarantee it'll have the same column position, because
* of cases like ALTER TABLE ADD COLUMN and multiple inheritance.
* However, in simple cases it will be the same column number, so try
* that before we go groveling through all the columns.
*
* Note: the test for (att = ...) != NULL cannot fail, it's just a
* notational device to include the assignment into the if-clause.
*/
if (old_attno < newnatts &&
(att = TupleDescAttr(new_tupdesc, old_attno)) != NULL &&
!att->attisdropped &&
strcmp(attname, NameStr(att->attname)) == 0)
new_attno = old_attno;
else
{
for (new_attno = 0; new_attno < newnatts; new_attno++)
{
att = TupleDescAttr(new_tupdesc, new_attno);
if (!att->attisdropped &&
strcmp(attname, NameStr(att->attname)) == 0)
break;
}
if (new_attno >= newnatts)
elog(ERROR, "could not find inherited attribute \"%s\" of relation \"%s\"",
attname, RelationGetRelationName(newrelation));
}
/* Found it, check type and collation match */
if (atttypid != att->atttypid || atttypmod != att->atttypmod)
elog(ERROR, "attribute \"%s\" of relation \"%s\" does not match parent's type",
attname, RelationGetRelationName(newrelation));
if (attcollation != att->attcollation)
elog(ERROR, "attribute \"%s\" of relation \"%s\" does not match parent's collation",
attname, RelationGetRelationName(newrelation));
vars = lappend(vars, makeVar(newvarno,
(AttrNumber) (new_attno + 1),
atttypid,
atttypmod,
attcollation,
0));
}
*translated_vars = vars;
}
/*
* translate_col_privs
* Translate a bitmapset representing per-column privileges from the
* parent rel's attribute numbering to the child's.
*
* The only surprise here is that we don't translate a parent whole-row
* reference into a child whole-row reference. That would mean requiring
* permissions on all child columns, which is overly strict, since the
* query is really only going to reference the inherited columns. Instead
* we set the per-column bits for all inherited columns.
*/
static Bitmapset *
translate_col_privs(const Bitmapset *parent_privs,
List *translated_vars)
{
Bitmapset *child_privs = NULL;
bool whole_row;
int attno;
ListCell *lc;
/* System attributes have the same numbers in all tables */
for (attno = FirstLowInvalidHeapAttributeNumber + 1; attno < 0; attno++)
{
if (bms_is_member(attno - FirstLowInvalidHeapAttributeNumber,
parent_privs))
child_privs = bms_add_member(child_privs,
attno - FirstLowInvalidHeapAttributeNumber);
}
/* Check if parent has whole-row reference */
whole_row = bms_is_member(InvalidAttrNumber - FirstLowInvalidHeapAttributeNumber,
parent_privs);
/* And now translate the regular user attributes, using the vars list */
attno = InvalidAttrNumber;
foreach(lc, translated_vars)
{
Var *var = lfirst_node(Var, lc);
attno++;
if (var == NULL) /* ignore dropped columns */
continue;
if (whole_row ||
bms_is_member(attno - FirstLowInvalidHeapAttributeNumber,
parent_privs))
child_privs = bms_add_member(child_privs,
var->varattno - FirstLowInvalidHeapAttributeNumber);
}
return child_privs;
}
/*
* adjust_appendrel_attrs
* Copy the specified query or expression and translate Vars referring to a
* parent rel to refer to the corresponding child rel instead. We also
* update rtindexes appearing outside Vars, such as resultRelation and
* jointree relids.
*
* Note: this is only applied after conversion of sublinks to subplans,
* so we don't need to cope with recursion into sub-queries.
*
* Note: this is not hugely different from what pullup_replace_vars() does;
* maybe we should try to fold the two routines together.
*/
Node *
adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos,
AppendRelInfo **appinfos)
{
Node *result;
adjust_appendrel_attrs_context context;
context.root = root;
context.nappinfos = nappinfos;
context.appinfos = appinfos;
/* If there's nothing to adjust, don't call this function. */
Assert(nappinfos >= 1 && appinfos != NULL);
/*
* Must be prepared to start with a Query or a bare expression tree.
*/
if (node && IsA(node, Query))
{
Query *newnode;
int cnt;
newnode = query_tree_mutator((Query *) node,
adjust_appendrel_attrs_mutator,
(void *) &context,
QTW_IGNORE_RC_SUBQUERIES);
for (cnt = 0; cnt < nappinfos; cnt++)
{
AppendRelInfo *appinfo = appinfos[cnt];
if (newnode->resultRelation == appinfo->parent_relid)
{
newnode->resultRelation = appinfo->child_relid;
/* Fix tlist resnos too, if it's inherited UPDATE */
if (newnode->commandType == CMD_UPDATE)
newnode->targetList =
adjust_inherited_tlist(newnode->targetList,
appinfo);
break;
}
}
result = (Node *) newnode;
}
else
result = adjust_appendrel_attrs_mutator(node, &context);
return result;
}
static Node *
adjust_appendrel_attrs_mutator(Node *node,
adjust_appendrel_attrs_context *context)
{
AppendRelInfo **appinfos = context->appinfos;
int nappinfos = context->nappinfos;
int cnt;
if (node == NULL)
return NULL;
if (IsA(node, Var))
{
Var *var = (Var *) copyObject(node);
AppendRelInfo *appinfo = NULL;
for (cnt = 0; cnt < nappinfos; cnt++)
{
if (var->varno == appinfos[cnt]->parent_relid)
{
appinfo = appinfos[cnt];
break;
}
}
if (var->varlevelsup == 0 && appinfo)
{
var->varno = appinfo->child_relid;
var->varnoold = appinfo->child_relid;
if (var->varattno > 0)
{
Node *newnode;
if (var->varattno > list_length(appinfo->translated_vars))
elog(ERROR, "attribute %d of relation \"%s\" does not exist",
var->varattno, get_rel_name(appinfo->parent_reloid));
newnode = copyObject(list_nth(appinfo->translated_vars,
var->varattno - 1));
if (newnode == NULL)
elog(ERROR, "attribute %d of relation \"%s\" does not exist",
var->varattno, get_rel_name(appinfo->parent_reloid));
return newnode;
}
else if (var->varattno == 0)
{
/*
* Whole-row Var: if we are dealing with named rowtypes, we
* can use a whole-row Var for the child table plus a coercion
* step to convert the tuple layout to the parent's rowtype.
* Otherwise we have to generate a RowExpr.
*/
if (OidIsValid(appinfo->child_reltype))
{
Assert(var->vartype == appinfo->parent_reltype);
if (appinfo->parent_reltype != appinfo->child_reltype)
{
ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr);
r->arg = (Expr *) var;
r->resulttype = appinfo->parent_reltype;
r->convertformat = COERCE_IMPLICIT_CAST;
r->location = -1;
/* Make sure the Var node has the right type ID, too */
var->vartype = appinfo->child_reltype;
return (Node *) r;
}
}
else
{
/*
* Build a RowExpr containing the translated variables.
*
* In practice var->vartype will always be RECORDOID here,
* so we need to come up with some suitable column names.
* We use the parent RTE's column names.
*
* Note: we can't get here for inheritance cases, so there
* is no need to worry that translated_vars might contain
* some dummy NULLs.
*/
RowExpr *rowexpr;
List *fields;
RangeTblEntry *rte;
rte = rt_fetch(appinfo->parent_relid,
context->root->parse->rtable);
fields = copyObject(appinfo->translated_vars);
rowexpr = makeNode(RowExpr);
rowexpr->args = fields;
rowexpr->row_typeid = var->vartype;
rowexpr->row_format = COERCE_IMPLICIT_CAST;
rowexpr->colnames = copyObject(rte->eref->colnames);
rowexpr->location = -1;
return (Node *) rowexpr;
}
}
/* system attributes don't need any other translation */
}
return (Node *) var;
}
if (IsA(node, CurrentOfExpr))
{
CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
for (cnt = 0; cnt < nappinfos; cnt++)
{
AppendRelInfo *appinfo = appinfos[cnt];
if (cexpr->cvarno == appinfo->parent_relid)
{
cexpr->cvarno = appinfo->child_relid;
break;
}
}
return (Node *) cexpr;
}
if (IsA(node, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) copyObject(node);
for (cnt = 0; cnt < nappinfos; cnt++)
{
AppendRelInfo *appinfo = appinfos[cnt];
if (rtr->rtindex == appinfo->parent_relid)
{
rtr->rtindex = appinfo->child_relid;
break;
}
}
return (Node *) rtr;
}
if (IsA(node, JoinExpr))
{
/* Copy the JoinExpr node with correct mutation of subnodes */
JoinExpr *j;
AppendRelInfo *appinfo;
j = (JoinExpr *) expression_tree_mutator(node,
adjust_appendrel_attrs_mutator,
(void *) context);
/* now fix JoinExpr's rtindex (probably never happens) */
for (cnt = 0; cnt < nappinfos; cnt++)
{
appinfo = appinfos[cnt];
if (j->rtindex == appinfo->parent_relid)
{
j->rtindex = appinfo->child_relid;
break;
}
}
return (Node *) j;
}
if (IsA(node, PlaceHolderVar))
{
/* Copy the PlaceHolderVar node with correct mutation of subnodes */
PlaceHolderVar *phv;
phv = (PlaceHolderVar *) expression_tree_mutator(node,
adjust_appendrel_attrs_mutator,
(void *) context);
/* now fix PlaceHolderVar's relid sets */
if (phv->phlevelsup == 0)
phv->phrels = adjust_child_relids(phv->phrels, context->nappinfos,
context->appinfos);
return (Node *) phv;
}
/* Shouldn't need to handle planner auxiliary nodes here */
Assert(!IsA(node, SpecialJoinInfo));
Assert(!IsA(node, AppendRelInfo));
Assert(!IsA(node, PlaceHolderInfo));
Assert(!IsA(node, MinMaxAggInfo));
/*
* We have to process RestrictInfo nodes specially. (Note: although
* set_append_rel_pathlist will hide RestrictInfos in the parent's
* baserestrictinfo list from us, it doesn't hide those in joininfo.)
*/
if (IsA(node, RestrictInfo))
{
RestrictInfo *oldinfo = (RestrictInfo *) node;
RestrictInfo *newinfo = makeNode(RestrictInfo);
/* Copy all flat-copiable fields */
memcpy(newinfo, oldinfo, sizeof(RestrictInfo));
/* Recursively fix the clause itself */
newinfo->clause = (Expr *)
adjust_appendrel_attrs_mutator((Node *) oldinfo->clause, context);
/* and the modified version, if an OR clause */
newinfo->orclause = (Expr *)
adjust_appendrel_attrs_mutator((Node *) oldinfo->orclause, context);
/* adjust relid sets too */
newinfo->clause_relids = adjust_child_relids(oldinfo->clause_relids,
context->nappinfos,
context->appinfos);
newinfo->required_relids = adjust_child_relids(oldinfo->required_relids,
context->nappinfos,
context->appinfos);
newinfo->outer_relids = adjust_child_relids(oldinfo->outer_relids,
context->nappinfos,
context->appinfos);
newinfo->nullable_relids = adjust_child_relids(oldinfo->nullable_relids,
context->nappinfos,
context->appinfos);
newinfo->left_relids = adjust_child_relids(oldinfo->left_relids,
context->nappinfos,
context->appinfos);
newinfo->right_relids = adjust_child_relids(oldinfo->right_relids,
context->nappinfos,
context->appinfos);
/*
* Reset cached derivative fields, since these might need to have
* different values when considering the child relation. Note we
* don't reset left_ec/right_ec: each child variable is implicitly
* equivalent to its parent, so still a member of the same EC if any.
*/
newinfo->eval_cost.startup = -1;
newinfo->norm_selec = -1;
newinfo->outer_selec = -1;
newinfo->left_em = NULL;
newinfo->right_em = NULL;
newinfo->scansel_cache = NIL;
newinfo->left_bucketsize = -1;
newinfo->right_bucketsize = -1;
newinfo->left_mcvfreq = -1;
newinfo->right_mcvfreq = -1;
return (Node *) newinfo;
}
/*
* NOTE: we do not need to recurse into sublinks, because they should
* already have been converted to subplans before we see them.
*/
Assert(!IsA(node, SubLink));
Assert(!IsA(node, Query));
return expression_tree_mutator(node, adjust_appendrel_attrs_mutator,
(void *) context);
}
/*
* Substitute child relids for parent relids in a Relid set. The array of
* appinfos specifies the substitutions to be performed.
*/
static Relids
adjust_child_relids(Relids relids, int nappinfos, AppendRelInfo **appinfos)
{
Bitmapset *result = NULL;
int cnt;
for (cnt = 0; cnt < nappinfos; cnt++)
{
AppendRelInfo *appinfo = appinfos[cnt];
/* Remove parent, add child */
if (bms_is_member(appinfo->parent_relid, relids))
{
/* Make a copy if we are changing the set. */
if (!result)
result = bms_copy(relids);
result = bms_del_member(result, appinfo->parent_relid);
result = bms_add_member(result, appinfo->child_relid);
}
}
/* If we made any changes, return the modified copy. */
if (result)
return result;
/* Otherwise, return the original set without modification. */
return relids;
}
/*
* Replace any relid present in top_parent_relids with its child in
* child_relids. Members of child_relids can be multiple levels below top
* parent in the partition hierarchy.
*/
Relids
adjust_child_relids_multilevel(PlannerInfo *root, Relids relids,
Relids child_relids, Relids top_parent_relids)
{
AppendRelInfo **appinfos;
int nappinfos;
Relids parent_relids = NULL;
Relids result;
Relids tmp_result = NULL;
int cnt;
/*
* If the given relids set doesn't contain any of the top parent relids,
* it will remain unchanged.
*/
if (!bms_overlap(relids, top_parent_relids))
return relids;
appinfos = find_appinfos_by_relids(root, child_relids, &nappinfos);
/* Construct relids set for the immediate parent of the given child. */
for (cnt = 0; cnt < nappinfos; cnt++)
{
AppendRelInfo *appinfo = appinfos[cnt];
parent_relids = bms_add_member(parent_relids, appinfo->parent_relid);
}
/* Recurse if immediate parent is not the top parent. */
if (!bms_equal(parent_relids, top_parent_relids))
{
tmp_result = adjust_child_relids_multilevel(root, relids,
parent_relids,
top_parent_relids);
relids = tmp_result;
}
result = adjust_child_relids(relids, nappinfos, appinfos);
/* Free memory consumed by any intermediate result. */
if (tmp_result)
bms_free(tmp_result);
bms_free(parent_relids);
pfree(appinfos);
return result;
}
/*
* Adjust the targetlist entries of an inherited UPDATE operation
*
* The expressions have already been fixed, but we have to make sure that
* the target resnos match the child table (they may not, in the case of
* a column that was added after-the-fact by ALTER TABLE). In some cases
* this can force us to re-order the tlist to preserve resno ordering.
* (We do all this work in special cases so that preptlist.c is fast for
* the typical case.)
*
* The given tlist has already been through expression_tree_mutator;
* therefore the TargetEntry nodes are fresh copies that it's okay to
* scribble on.
*
* Note that this is not needed for INSERT because INSERT isn't inheritable.
*/
static List *
adjust_inherited_tlist(List *tlist, AppendRelInfo *context)
{
bool changed_it = false;
ListCell *tl;
List *new_tlist;
bool more;
int attrno;
/* This should only happen for an inheritance case, not UNION ALL */
Assert(OidIsValid(context->parent_reloid));
/* Scan tlist and update resnos to match attnums of child rel */
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
Var *childvar;
if (tle->resjunk)
continue; /* ignore junk items */
/* Look up the translation of this column: it must be a Var */
if (tle->resno <= 0 ||
tle->resno > list_length(context->translated_vars))
elog(ERROR, "attribute %d of relation \"%s\" does not exist",
tle->resno, get_rel_name(context->parent_reloid));
childvar = (Var *) list_nth(context->translated_vars, tle->resno - 1);
if (childvar == NULL || !IsA(childvar, Var))
elog(ERROR, "attribute %d of relation \"%s\" does not exist",
tle->resno, get_rel_name(context->parent_reloid));
if (tle->resno != childvar->varattno)
{
tle->resno = childvar->varattno;
changed_it = true;
}
}
/*
* If we changed anything, re-sort the tlist by resno, and make sure
* resjunk entries have resnos above the last real resno. The sort
* algorithm is a bit stupid, but for such a seldom-taken path, small is
* probably better than fast.
*/
if (!changed_it)
return tlist;
new_tlist = NIL;
more = true;
for (attrno = 1; more; attrno++)
{
more = false;
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
if (tle->resjunk)
continue; /* ignore junk items */
if (tle->resno == attrno)
new_tlist = lappend(new_tlist, tle);
else if (tle->resno > attrno)
more = true;
}
}
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
if (!tle->resjunk)
continue; /* here, ignore non-junk items */
tle->resno = attrno;
new_tlist = lappend(new_tlist, tle);
attrno++;
}
return new_tlist;
}
/*
* adjust_appendrel_attrs_multilevel
* Apply Var translations from a toplevel appendrel parent down to a child.
*
* In some cases we need to translate expressions referencing a parent relation
* to reference an appendrel child that's multiple levels removed from it.
*/
Node *
adjust_appendrel_attrs_multilevel(PlannerInfo *root, Node *node,
Relids child_relids,
Relids top_parent_relids)
{
AppendRelInfo **appinfos;
Bitmapset *parent_relids = NULL;
int nappinfos;
int cnt;
Assert(bms_num_members(child_relids) == bms_num_members(top_parent_relids));
appinfos = find_appinfos_by_relids(root, child_relids, &nappinfos);
/* Construct relids set for the immediate parent of given child. */
for (cnt = 0; cnt < nappinfos; cnt++)
{
AppendRelInfo *appinfo = appinfos[cnt];
parent_relids = bms_add_member(parent_relids, appinfo->parent_relid);
}
/* Recurse if immediate parent is not the top parent. */
if (!bms_equal(parent_relids, top_parent_relids))
node = adjust_appendrel_attrs_multilevel(root, node, parent_relids,
top_parent_relids);
/* Now translate for this child */
node = adjust_appendrel_attrs(root, node, nappinfos, appinfos);
pfree(appinfos);
return node;
}
/*
* Construct the SpecialJoinInfo for a child-join by translating
* SpecialJoinInfo for the join between parents. left_relids and right_relids
* are the relids of left and right side of the join respectively.
*/
SpecialJoinInfo *
build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo,
Relids left_relids, Relids right_relids)
{
SpecialJoinInfo *sjinfo = makeNode(SpecialJoinInfo);
AppendRelInfo **left_appinfos;
int left_nappinfos;
AppendRelInfo **right_appinfos;
int right_nappinfos;
memcpy(sjinfo, parent_sjinfo, sizeof(SpecialJoinInfo));
left_appinfos = find_appinfos_by_relids(root, left_relids,
&left_nappinfos);
right_appinfos = find_appinfos_by_relids(root, right_relids,
&right_nappinfos);
sjinfo->min_lefthand = adjust_child_relids(sjinfo->min_lefthand,
left_nappinfos, left_appinfos);
sjinfo->min_righthand = adjust_child_relids(sjinfo->min_righthand,
right_nappinfos,
right_appinfos);
sjinfo->syn_lefthand = adjust_child_relids(sjinfo->syn_lefthand,
left_nappinfos, left_appinfos);
sjinfo->syn_righthand = adjust_child_relids(sjinfo->syn_righthand,
right_nappinfos,
right_appinfos);
sjinfo->semi_rhs_exprs = (List *) adjust_appendrel_attrs(root,
(Node *) sjinfo->semi_rhs_exprs,
right_nappinfos,
right_appinfos);
pfree(left_appinfos);
pfree(right_appinfos);
return sjinfo;
}
/*
* find_appinfos_by_relids
* Find AppendRelInfo structures for all relations specified by relids.
*
* The AppendRelInfos are returned in an array, which can be pfree'd by the
* caller. *nappinfos is set to the number of entries in the array.
*/
AppendRelInfo **
find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
{
AppendRelInfo **appinfos;
int cnt = 0;
int i;
*nappinfos = bms_num_members(relids);
appinfos = (AppendRelInfo **) palloc(sizeof(AppendRelInfo *) * *nappinfos);
i = -1;
while ((i = bms_next_member(relids, i)) >= 0)
{
AppendRelInfo *appinfo = root->append_rel_array[i];
if (!appinfo)
elog(ERROR, "child rel %d not found in append_rel_array", i);
appinfos[cnt++] = appinfo;
}
return appinfos;
}
|