aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/util/pathnode.c
blob: 728ac9b422e5c9bc5c1e81b987f9f0fbb2f08228 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*-------------------------------------------------------------------------
 *
 * pathnode.c--
 *    Routines to manipulate pathlists and create path nodes
 *
 * Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *    $Header: /cvsroot/pgsql/src/backend/optimizer/util/pathnode.c,v 1.1.1.1 1996/07/09 06:21:38 scrappy Exp $
 *
 *-------------------------------------------------------------------------
 */
#include <math.h>

#include "postgres.h"

#include "nodes/relation.h"
#include "utils/elog.h"

#include "optimizer/internal.h"
#include "optimizer/pathnode.h"
#include "optimizer/clauseinfo.h"
#include "optimizer/plancat.h"
#include "optimizer/cost.h"
#include "optimizer/keys.h"
#include "optimizer/xfunc.h"
#include "optimizer/ordering.h"

#include "parser/parsetree.h"		/* for getrelid() */

static Path *better_path(Path *new_path, List *unique_paths, bool *noOther);


/*****************************************************************************
 *    	MISC. PATH UTILITIES
 *****************************************************************************/

/*    
 * path-is-cheaper--
 *    Returns t iff 'path1' is cheaper than 'path2'.
 *    
 */
bool
path_is_cheaper(Path *path1, Path *path2)
{
    Cost cost1 = path1->path_cost;
    Cost cost2 = path2->path_cost;

    return((bool)(cost1 < cost2));
}

/*    
 * set_cheapest--
 *    Finds the minimum cost path from among a relation's paths.  
 *    
 * 'parent-rel' is the parent relation
 * 'pathlist' is a list of path nodes corresponding to 'parent-rel'
 *    
 * Returns and sets the relation entry field with the pathnode that 
 * is minimum.
 *    
 */
Path *
set_cheapest(Rel *parent_rel, List *pathlist)
{
    List *p;
    Path *cheapest_so_far;

    Assert(pathlist!=NIL);
    Assert(IsA(parent_rel,Rel));

    cheapest_so_far = (Path*)lfirst(pathlist);

    foreach (p, lnext(pathlist)) {
	Path *path = (Path*)lfirst(p);

	if (path_is_cheaper(path, cheapest_so_far)) {
	    cheapest_so_far = path;
	}
    }

    parent_rel->cheapestpath = cheapest_so_far;

    return(cheapest_so_far);
}

/*    
 * add_pathlist--
 *    For each path in the list 'new-paths', add to the list 'unique-paths' 
 *    only those paths that are unique (i.e., unique ordering and ordering 
 *    keys).  Should a conflict arise, the more expensive path is thrown out,
 *    thereby pruning the plan space.  But we don't prune if xfunc
 *    told us not to.
 *    
 * 'parent-rel' is the relation entry to which these paths correspond.
 *    
 * Returns the list of unique pathnodes.
 *    
 */
List *
add_pathlist(Rel *parent_rel, List *unique_paths, List *new_paths)
{
    List *x;
    Path *new_path;
    Path *old_path;
    bool noOther;

    foreach (x, new_paths) {
	new_path = (Path*)lfirst(x);
	if (member(new_path, unique_paths)) 
	    continue;
	old_path = better_path(new_path,unique_paths,&noOther);

	if (noOther) {
	    /*  Is a brand new path.  */
	    new_path->parent = parent_rel;
	    unique_paths = lcons(new_path, unique_paths);
	} else if (old_path==NULL) {
	    ;	/* do nothing if path is not cheaper */
	} else if (old_path != NULL) { /* (IsA(old_path,Path)) { */
	    new_path->parent = parent_rel;
	    if (!parent_rel->pruneable) {
		unique_paths = lcons(new_path, unique_paths);
	    }else
		unique_paths = lcons(new_path,
				    LispRemove(old_path,unique_paths));
	}
    }
    return(unique_paths);
}

/*    
 * better_path--
 *    Determines whether 'new-path' has the same ordering and keys as some 
 *    path in the list 'unique-paths'.  If there is a redundant path,
 *    eliminate the more expensive path.
 *    
 * Returns:
 *    The old path - if 'new-path' matches some path in 'unique-paths' and is
 *    		cheaper
 *    nil - if 'new-path' matches but isn't cheaper
 *    t - if there is no path in the list with the same ordering and keys
 *    
 */
static Path *
better_path(Path *new_path, List *unique_paths, bool *noOther)
{
    Path *old_path = (Path*)NULL;
    Path *path = (Path*)NULL;
    List *temp = NIL;
    Path *retval = NULL;

    /* XXX - added the following two lines which weren't int
     * the lisp planner, but otherwise, doesn't seem to work
     * for the case where new_path is 'nil
     */
    foreach (temp,unique_paths) {
	path = (Path*) lfirst(temp);

	if ((equal_path_path_ordering(&new_path->p_ordering,
				      &path->p_ordering) &&
	     samekeys(new_path->keys, path->keys))) {
	    old_path = path;
	    break;
	}
    }

    if (old_path==NULL) {
	*noOther = true;
    } else { 
	*noOther = false;
	if (path_is_cheaper(new_path,old_path)) {
	    retval = old_path;
	}
    }
     
    return(retval);
}



/*****************************************************************************
 *    	PATH NODE CREATION ROUTINES
 *****************************************************************************/

/*    
 * create_seqscan_path--
 *    Creates a path corresponding to a sequential scan, returning the
 *    pathnode.
 *    
 */
Path *
create_seqscan_path(Rel *rel)
{
    int relid=0;

    Path *pathnode = makeNode(Path);

    pathnode->pathtype = T_SeqScan; 
    pathnode->parent = rel;
    pathnode->path_cost = 0.0;
    pathnode->p_ordering.ordtype = SORTOP_ORDER;
    pathnode->p_ordering.ord.sortop = NULL;
    pathnode->keys = NIL;
    /* copy clauseinfo list into path for expensive function processing 
     * -- JMH, 7/7/92
     */
    pathnode->locclauseinfo= 
	(List*)copyObject((Node*)rel->clauseinfo);

    if (rel->relids !=NULL)
	relid = lfirsti(rel->relids);

    pathnode->path_cost = cost_seqscan (relid,
					rel->pages, rel->tuples);
    /* add in expensive functions cost!  -- JMH, 7/7/92 */
#if 0
    if (XfuncMode != XFUNC_OFF) {
	pathnode->path_cost +=
	    xfunc_get_path_cost(pathnode));
    }
#endif
    return (pathnode);
}

/*    
 * create_index_path--
 *    Creates a single path node for an index scan.
 *    
 * 'rel' is the parent rel
 * 'index' is the pathnode for the index on 'rel'
 * 'restriction-clauses' is a list of restriction clause nodes.
 * 'is-join-scan' is a flag indicating whether or not the index is being
 * 	considered because of its sort order.
 *    
 * Returns the new path node.
 *    
 */
IndexPath *
create_index_path(Query *root,
                  Rel *rel,
		  Rel *index,
		  List *restriction_clauses,
		  bool is_join_scan)
{
    IndexPath *pathnode = makeNode(IndexPath);
    
    pathnode->path.pathtype = T_IndexScan;
    pathnode->path.parent = rel;
    pathnode->indexid = index->relids;

    pathnode->path.p_ordering.ordtype = SORTOP_ORDER;
    pathnode->path.p_ordering.ord.sortop = index->ordering;
    pathnode->indexqual = NIL;

    /* copy clauseinfo list into path for expensive function processing 
     *  -- JMH, 7/7/92
     */
    pathnode->path.locclauseinfo =
	set_difference((List*) copyObject((Node*)rel->clauseinfo),
		       (List*) restriction_clauses);

    /*
     * The index must have an ordering for the path to have (ordering) keys, 
     * and vice versa.
     */
    if (pathnode->path.p_ordering.ord.sortop) {
	pathnode->path.keys = collect_index_pathkeys(index->indexkeys,
						     rel->targetlist);
	/*
	 * Check that the keys haven't 'disappeared', since they may 
	 * no longer be in the target list (i.e., index keys that are not 
	 * relevant to the scan are not applied to the scan path node,
	 * so if no index keys were found, we can't order the path).
	 */
	if (pathnode->path.keys==NULL) {
	    pathnode->path.p_ordering.ord.sortop = NULL;
	}
    } else {
	pathnode->path.keys = NULL;
    }

    if (is_join_scan || restriction_clauses==NULL) {
	/*
	 * Indices used for joins or sorting result nodes don't
	 * restrict the result at all, they simply order it,
	 * so compute the scan cost 
	 * accordingly -- use a selectivity of 1.0.
	 */
/* is the statement above really true?  what about IndexScan as the 
   inner of a join? */
	pathnode->path.path_cost =
	    cost_index (lfirsti(index->relids),
			index->pages,
			1.0,
			rel->pages,
			rel->tuples,
			index->pages,
			index->tuples,
			false);
	/* add in expensive functions cost!  -- JMH, 7/7/92 */
#if 0
	if (XfuncMode != XFUNC_OFF) {
	    pathnode->path_cost =
		(pathnode->path_cost +
		 xfunc_get_path_cost((Path*)pathnode));
	}
#endif
    } else  {
	/*
	 * Compute scan cost for the case when 'index' is used with a 
	 * restriction clause.
	 */
	List *attnos;
	List *values;
	List *flags;
	float npages;
	float selec;
	Cost clausesel;

	get_relattvals(restriction_clauses,
		       &attnos,
		       &values,
		       &flags);
	index_selectivity(lfirsti(index->relids),
			  index->classlist,
			  get_opnos(restriction_clauses),
			  getrelid(lfirsti(rel->relids),
				   root->rtable),
			  attnos,
			  values,
			  flags,
			  length(restriction_clauses),
			  &npages,
			  &selec);
	/*   each clause gets an equal selectivity */
	clausesel = 
	    pow(selec, 
		1.0 / (double) length(restriction_clauses));
    
	pathnode->indexqual = restriction_clauses;
	pathnode->path.path_cost =
	    cost_index (lfirsti(index->relids),
			(int)npages,
			selec,
			rel->pages,
			rel->tuples,
			index->pages,
			index->tuples,
			false);

#if 0
	/* add in expensive functions cost!  -- JMH, 7/7/92 */
	if (XfuncMode != XFUNC_OFF) {
	    pathnode->path_cost += 
		xfunc_get_path_cost((Path*)pathnode);
	}
#endif
	/* Set selectivities of clauses used with index to the selectivity 
	 * of this index, subdividing the selectivity equally over each of 
	 * the clauses. 
	 */

	/* XXX Can this divide the selectivities in a better way? */
	set_clause_selectivities(restriction_clauses, clausesel);
    }
    return(pathnode);
}

/*    
 * create_nestloop_path--
 *    Creates a pathnode corresponding to a nestloop join between two 
 *    relations.
 *    
 * 'joinrel' is the join relation.
 * 'outer_rel' is the outer join relation
 * 'outer_path' is the outer join path.
 * 'inner_path' is the inner join path.
 * 'keys' are the keys of the path
 *    	
 * Returns the resulting path node.
 *    
 */
JoinPath *
create_nestloop_path(Rel *joinrel,
		     Rel *outer_rel,
		     Path *outer_path,
		     Path *inner_path,
		     List *keys)
{
    JoinPath *pathnode = makeNode(JoinPath);
     
    pathnode->path.pathtype = T_NestLoop;
    pathnode->path.parent  = joinrel;
    pathnode->outerjoinpath = outer_path;
    pathnode->innerjoinpath = inner_path;
    pathnode->pathclauseinfo = joinrel->clauseinfo;
    pathnode->path.keys = keys;
    pathnode->path.joinid = NIL;
    pathnode->path.outerjoincost = (Cost)0.0;
    pathnode->path.locclauseinfo = NIL;

    if (keys) {
	pathnode->path.p_ordering.ordtype =
	    outer_path->p_ordering.ordtype;
	if (outer_path->p_ordering.ordtype == SORTOP_ORDER) {
	    pathnode->path.p_ordering.ord.sortop =
		outer_path->p_ordering.ord.sortop;
	} else {
	    pathnode->path.p_ordering.ord.merge =
		outer_path->p_ordering.ord.merge;
	}
    } else {
	pathnode->path.p_ordering.ordtype = SORTOP_ORDER;
	pathnode->path.p_ordering.ord.sortop = NULL;
    }

    pathnode->path.path_cost  = 
	cost_nestloop(outer_path->path_cost,
		      inner_path->path_cost,
		      outer_rel->size,
		      inner_path->parent->size,
		      page_size(outer_rel->size,
				outer_rel->width),
		      IsA(inner_path,IndexPath));
    /* add in expensive function costs -- JMH 7/7/92 */
#if 0
    if (XfuncMode != XFUNC_OFF) {
	pathnode->path_cost += xfunc_get_path_cost((Path*)pathnode);
    }
#endif
    return(pathnode);
}

/*    
 * create_mergesort_path--
 *    Creates a pathnode corresponding to a mergesort join between
 *    two relations
 *    
 * 'joinrel' is the join relation
 * 'outersize' is the number of tuples in the outer relation
 * 'innersize' is the number of tuples in the inner relation
 * 'outerwidth' is the number of bytes per tuple in the outer relation
 * 'innerwidth' is the number of bytes per tuple in the inner relation
 * 'outer_path' is the outer path
 * 'inner_path' is the inner path
 * 'keys' are the new keys of the join relation
 * 'order' is the sort order required for the merge
 * 'mergeclauses' are the applicable join/restriction clauses
 * 'outersortkeys' are the sort varkeys for the outer relation
 * 'innersortkeys' are the sort varkeys for the inner relation
 *    
 */
MergePath *
create_mergesort_path(Rel *joinrel,
		      int outersize,
		      int innersize,
		      int outerwidth,
		      int innerwidth,
		      Path *outer_path,
		      Path *inner_path,
		      List *keys,
		      MergeOrder *order,
		      List *mergeclauses,
		      List *outersortkeys,
		      List *innersortkeys)
{
    MergePath *pathnode = makeNode(MergePath);

    pathnode->jpath.path.pathtype  = T_MergeJoin;
    pathnode->jpath.path.parent  = joinrel;
    pathnode->jpath.outerjoinpath = outer_path;
    pathnode->jpath.innerjoinpath = inner_path;
    pathnode->jpath.pathclauseinfo = joinrel->clauseinfo;
    pathnode->jpath.path.keys = keys;
    pathnode->jpath.path.p_ordering.ordtype = MERGE_ORDER;
    pathnode->jpath.path.p_ordering.ord.merge  = order;
    pathnode->path_mergeclauses = mergeclauses;
    pathnode->jpath.path.locclauseinfo = NIL;
    pathnode->outersortkeys = outersortkeys;
    pathnode->innersortkeys = innersortkeys;
    pathnode->jpath.path.path_cost  =
	cost_mergesort(outer_path->path_cost,
		       inner_path->path_cost,
		       outersortkeys,
		       innersortkeys,
		       outersize,
		       innersize,
		       outerwidth,
		       innerwidth);
    /* add in expensive function costs -- JMH 7/7/92 */
#if 0
    if (XfuncMode != XFUNC_OFF) {
	pathnode->path_cost +=
	    xfunc_get_path_cost((Path*)pathnode);
    }
#endif
    return(pathnode);
}

/*    
 * create_hashjoin_path--		 	XXX HASH
 *    Creates a pathnode corresponding to a hash join between two relations.
 *    
 * 'joinrel' is the join relation
 * 'outersize' is the number of tuples in the outer relation
 * 'innersize' is the number of tuples in the inner relation
 * 'outerwidth' is the number of bytes per tuple in the outer relation
 * 'innerwidth' is the number of bytes per tuple in the inner relation
 * 'outer_path' is the outer path
 * 'inner_path' is the inner path
 * 'keys' are the new keys of the join relation
 * 'operator' is the hashjoin operator
 * 'hashclauses' are the applicable join/restriction clauses
 * 'outerkeys' are the sort varkeys for the outer relation
 * 'innerkeys' are the sort varkeys for the inner relation
 *    
 */
HashPath *
create_hashjoin_path(Rel *joinrel,
		     int outersize,
		     int innersize,
		     int outerwidth,
		     int innerwidth,
		     Path *outer_path,
		     Path *inner_path,
		     List *keys,
		     Oid operator,
		     List *hashclauses,
		     List *outerkeys,
		     List *innerkeys)
{
    HashPath *pathnode = makeNode(HashPath);

    pathnode->jpath.path.pathtype  = T_HashJoin; 
    pathnode->jpath.path.parent  = joinrel;
    pathnode->jpath.outerjoinpath = outer_path;
    pathnode->jpath.innerjoinpath = inner_path;
    pathnode->jpath.pathclauseinfo = joinrel->clauseinfo;
    pathnode->jpath.path.locclauseinfo = NIL;
    pathnode->jpath.path.keys = keys;
    pathnode->jpath.path.p_ordering.ordtype = SORTOP_ORDER;
    pathnode->jpath.path.p_ordering.ord.sortop = NULL;
    pathnode->jpath.path.outerjoincost = (Cost)0.0;
    pathnode->jpath.path.joinid =  (Relid)NULL;
    /*    pathnode->hashjoinoperator = operator;  */ 
    pathnode->path_hashclauses = hashclauses;
    pathnode->outerhashkeys = outerkeys;
    pathnode->innerhashkeys = innerkeys;
    pathnode->jpath.path.path_cost  =
	cost_hashjoin(outer_path->path_cost,
		      inner_path->path_cost,
		      outerkeys,
		      innerkeys,
		      outersize,innersize,
		      outerwidth,innerwidth);
    /* add in expensive function costs -- JMH 7/7/92 */
#if 0
    if (XfuncMode != XFUNC_OFF) {
	pathnode->path_cost += 
	    xfunc_get_path_cost((Path*)pathnode);
    }
#endif
    return(pathnode);
}