1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
|
/*-------------------------------------------------------------------------
*
* pg_dump_sort.c
* Sort the items of a dump into a safe order for dumping
*
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/bin/pg_dump/pg_dump_sort.c,v 1.3 2003/12/07 05:44:50 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "pg_dump.h"
#include "pg_backup_archiver.h"
static char *modulename = gettext_noop("sorter");
/*
* Sort priority for object types. Objects are sorted by priority,
* and within an equal priority level by OID. (This is a relatively
* crude hack to provide semi-reasonable behavior for old databases
* without full dependency info.)
*/
static const int objectTypePriority[] =
{
1, /* DO_NAMESPACE */
2, /* DO_TYPE */
2, /* DO_FUNC */
2, /* DO_AGG */
3, /* DO_OPERATOR */
4, /* DO_OPCLASS */
5, /* DO_CONVERSION */
6, /* DO_TABLE */
7, /* DO_ATTRDEF */
10, /* DO_INDEX */
11, /* DO_RULE */
12, /* DO_TRIGGER */
9, /* DO_CONSTRAINT */
13, /* DO_FK_CONSTRAINT */
2, /* DO_PROCLANG */
2, /* DO_CAST */
8 /* DO_TABLE_DATA */
};
static int DOTypeCompare(const void *p1, const void *p2);
static bool TopoSort(DumpableObject **objs,
int numObjs,
DumpableObject **ordering,
int *nOrdering);
static void addHeapElement(int val, int *heap, int heapLength);
static int removeHeapElement(int *heap, int heapLength);
static void findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs);
static bool findLoop(DumpableObject *obj,
DumpId startPoint,
DumpableObject **workspace,
int depth,
int *newDepth);
static void repairDependencyLoop(DumpableObject **loop,
int nLoop);
static void describeDumpableObject(DumpableObject *obj,
char *buf, int bufsize);
/*
* Sort the given objects into a type/OID-based ordering
*
* Normally this is just the starting point for the dependency-based
* ordering.
*/
void
sortDumpableObjectsByType(DumpableObject **objs, int numObjs)
{
if (numObjs > 1)
qsort((void *) objs, numObjs, sizeof(DumpableObject *), DOTypeCompare);
}
static int
DOTypeCompare(const void *p1, const void *p2)
{
DumpableObject *obj1 = *(DumpableObject **) p1;
DumpableObject *obj2 = *(DumpableObject **) p2;
int cmpval;
cmpval = objectTypePriority[obj1->objType] -
objectTypePriority[obj2->objType];
if (cmpval != 0)
return cmpval;
return oidcmp(obj1->catId.oid, obj2->catId.oid);
}
/*
* Sort the given objects into a safe dump order using dependency
* information (to the extent we have it available).
*/
void
sortDumpableObjects(DumpableObject **objs, int numObjs)
{
DumpableObject **ordering;
int nOrdering;
if (numObjs <= 0)
return;
ordering = (DumpableObject **) malloc(numObjs * sizeof(DumpableObject *));
if (ordering == NULL)
exit_horribly(NULL, modulename, "out of memory\n");
while (!TopoSort(objs, numObjs, ordering, &nOrdering))
findDependencyLoops(ordering, nOrdering, numObjs);
memcpy(objs, ordering, numObjs * sizeof(DumpableObject *));
free(ordering);
}
/*
* TopoSort -- topological sort of a dump list
*
* Generate a re-ordering of the dump list that satisfies all the dependency
* constraints shown in the dump list. (Each such constraint is a fact of a
* partial ordering.) Minimize rearrangement of the list not needed to
* achieve the partial ordering.
*
* The input is the list of numObjs objects in objs[]. This list is not
* modified.
*
* Returns TRUE if able to build an ordering that satisfies all the
* constraints, FALSE if not (there are contradictory constraints).
*
* On success (TRUE result), ordering[] is filled with a sorted array of
* DumpableObject pointers, of length equal to the input list length.
*
* On failure (FALSE result), ordering[] is filled with an unsorted array of
* DumpableObject pointers of length *nOrdering, listing the objects that
* prevented the sort from being completed. In general, these objects either
* participate directly in a dependency cycle, or are depended on by objects
* that are in a cycle. (The latter objects are not actually problematic,
* but it takes further analysis to identify which are which.)
*
* The caller is responsible for allocating sufficient space at *ordering.
*/
static bool
TopoSort(DumpableObject **objs,
int numObjs,
DumpableObject **ordering, /* output argument */
int *nOrdering) /* output argument */
{
DumpId maxDumpId = getMaxDumpId();
int *pendingHeap;
int *beforeConstraints;
int *idMap;
DumpableObject *obj;
int heapLength;
int i,
j,
k;
/*
* This is basically the same algorithm shown for topological sorting in
* Knuth's Volume 1. However, we would like to minimize unnecessary
* rearrangement of the input ordering; that is, when we have a choice
* of which item to output next, we always want to take the one highest
* in the original list. Therefore, instead of maintaining an unordered
* linked list of items-ready-to-output as Knuth does, we maintain a heap
* of their item numbers, which we can use as a priority queue. This
* turns the algorithm from O(N) to O(N log N) because each insertion or
* removal of a heap item takes O(log N) time. However, that's still
* plenty fast enough for this application.
*/
*nOrdering = numObjs; /* for success return */
/* Eliminate the null case */
if (numObjs <= 0)
return true;
/* Create workspace for the above-described heap */
pendingHeap = (int *) malloc(numObjs * sizeof(int));
if (pendingHeap == NULL)
exit_horribly(NULL, modulename, "out of memory\n");
/*
* Scan the constraints, and for each item in the input, generate a
* count of the number of constraints that say it must be before
* something else. The count for the item with dumpId j is
* stored in beforeConstraints[j]. We also make a map showing the
* input-order index of the item with dumpId j.
*/
beforeConstraints = (int *) malloc((maxDumpId + 1) * sizeof(int));
if (beforeConstraints == NULL)
exit_horribly(NULL, modulename, "out of memory\n");
memset(beforeConstraints, 0, (maxDumpId + 1) * sizeof(int));
idMap = (int *) malloc((maxDumpId + 1) * sizeof(int));
if (idMap == NULL)
exit_horribly(NULL, modulename, "out of memory\n");
for (i = 0; i < numObjs; i++)
{
obj = objs[i];
j = obj->dumpId;
if (j <= 0 || j > maxDumpId)
exit_horribly(NULL, modulename, "invalid dumpId %d\n", j);
idMap[j] = i;
for (j = 0; j < obj->nDeps; j++)
{
k = obj->dependencies[j];
if (k <= 0 || k > maxDumpId)
exit_horribly(NULL, modulename, "invalid dependency %d\n", k);
beforeConstraints[k]++;
}
}
/*
* Now initialize the heap of items-ready-to-output by filling it with
* the indexes of items that already have beforeConstraints[id] == 0.
*
* The essential property of a heap is heap[(j-1)/2] >= heap[j] for each
* j in the range 1..heapLength-1 (note we are using 0-based subscripts
* here, while the discussion in Knuth assumes 1-based subscripts).
* So, if we simply enter the indexes into pendingHeap[] in decreasing
* order, we a-fortiori have the heap invariant satisfied at completion
* of this loop, and don't need to do any sift-up comparisons.
*/
heapLength = 0;
for (i = numObjs; --i >= 0; )
{
if (beforeConstraints[objs[i]->dumpId] == 0)
pendingHeap[heapLength++] = i;
}
/*--------------------
* Now emit objects, working backwards in the output list. At each step,
* we use the priority heap to select the last item that has no remaining
* before-constraints. We remove that item from the heap, output it to
* ordering[], and decrease the beforeConstraints count of each of the
* items it was constrained against. Whenever an item's beforeConstraints
* count is thereby decreased to zero, we insert it into the priority heap
* to show that it is a candidate to output. We are done when the heap
* becomes empty; if we have output every element then we succeeded,
* otherwise we failed.
* i = number of ordering[] entries left to output
* j = objs[] index of item we are outputting
* k = temp for scanning constraint list for item j
*--------------------
*/
i = numObjs;
while (heapLength > 0)
{
/* Select object to output by removing largest heap member */
j = removeHeapElement(pendingHeap, heapLength--);
obj = objs[j];
/* Output candidate to ordering[] */
ordering[--i] = obj;
/* Update beforeConstraints counts of its predecessors */
for (k = 0; k < obj->nDeps; k++)
{
int id = obj->dependencies[k];
if ((--beforeConstraints[id]) == 0)
addHeapElement(idMap[id], pendingHeap, heapLength++);
}
}
/*
* If we failed, report the objects that couldn't be output; these are
* the ones with beforeConstraints[] still nonzero.
*/
if (i != 0)
{
k = 0;
for (j = 1; j <= maxDumpId; j++)
{
if (beforeConstraints[j] != 0)
ordering[k++] = objs[idMap[j]];
}
*nOrdering = k;
}
/* Done */
free(pendingHeap);
free(beforeConstraints);
free(idMap);
return (i == 0);
}
/*
* Add an item to a heap (priority queue)
*
* heapLength is the current heap size; caller is responsible for increasing
* its value after the call. There must be sufficient storage at *heap.
*/
static void
addHeapElement(int val, int *heap, int heapLength)
{
int j;
/*
* Sift-up the new entry, per Knuth 5.2.3 exercise 16. Note that Knuth
* is using 1-based array indexes, not 0-based.
*/
j = heapLength;
while (j > 0)
{
int i = (j - 1) >> 1;
if (val <= heap[i])
break;
heap[j] = heap[i];
j = i;
}
heap[j] = val;
}
/*
* Remove the largest item present in a heap (priority queue)
*
* heapLength is the current heap size; caller is responsible for decreasing
* its value after the call.
*
* We remove and return heap[0], which is always the largest element of
* the heap, and then "sift up" to maintain the heap invariant.
*/
static int
removeHeapElement(int *heap, int heapLength)
{
int result = heap[0];
int val;
int i;
if (--heapLength <= 0)
return result;
val = heap[heapLength]; /* value that must be reinserted */
i = 0; /* i is where the "hole" is */
for (;;)
{
int j = 2 * i + 1;
if (j >= heapLength)
break;
if (j + 1 < heapLength &&
heap[j] < heap[j + 1])
j++;
if (val >= heap[j])
break;
heap[i] = heap[j];
i = j;
}
heap[i] = val;
return result;
}
/*
* findDependencyLoops - identify loops in TopoSort's failure output,
* and pass each such loop to repairDependencyLoop() for action
*
* In general there may be many loops in the set of objects returned by
* TopoSort; for speed we should try to repair as many loops as we can
* before trying TopoSort again. We can safely repair loops that are
* disjoint (have no members in common); if we find overlapping loops
* then we repair only the first one found, because the action taken to
* repair the first might have repaired the other as well. (If not,
* we'll fix it on the next go-round.)
*
* objs[] lists the objects TopoSort couldn't sort
* nObjs is the number of such objects
* totObjs is the total number of objects in the universe
*/
static void
findDependencyLoops(DumpableObject **objs, int nObjs, int totObjs)
{
/*
* We use a workspace array, the initial part of which stores
* objects already processed, and the rest of which is used as
* temporary space to try to build a loop in. This is convenient
* because we do not care about loops involving already-processed
* objects (see notes above); we can easily reject such loops in
* findLoop() because of this representation. After we identify
* and process a loop, we can add it to the initial part of the
* workspace just by moving the boundary pointer.
*
* When we determine that an object is not part of any interesting
* loop, we also add it to the initial part of the workspace. This
* is not necessary for correctness, but saves later invocations of
* findLoop() from uselessly chasing references to such an object.
*
* We make the workspace large enough to hold all objects in the
* original universe. This is probably overkill, but it's provably
* enough space...
*/
DumpableObject **workspace;
int initiallen;
bool fixedloop;
int i;
workspace = (DumpableObject **) malloc(totObjs * sizeof(DumpableObject *));
if (workspace == NULL)
exit_horribly(NULL, modulename, "out of memory\n");
initiallen = 0;
fixedloop = false;
for (i = 0; i < nObjs; i++)
{
DumpableObject *obj = objs[i];
int newlen;
workspace[initiallen] = NULL; /* see test below */
if (findLoop(obj, obj->dumpId, workspace, initiallen, &newlen))
{
/* Found a loop of length newlen - initiallen */
repairDependencyLoop(&workspace[initiallen], newlen - initiallen);
/* Add loop members to workspace */
initiallen = newlen;
fixedloop = true;
}
else
{
/*
* Didn't find a loop, but add this object to workspace anyway,
* unless it's already present. We piggyback on the test that
* findLoop() already did: it won't have tentatively added obj
* to workspace if it's already present.
*/
if (workspace[initiallen] == obj)
initiallen++;
}
}
/* We'd better have fixed at least one loop */
if (!fixedloop)
exit_horribly(NULL, modulename, "could not identify dependency loop\n");
free(workspace);
}
/*
* Recursively search for a circular dependency loop that doesn't include
* any existing workspace members.
*
* obj: object we are examining now
* startPoint: dumpId of starting object for the hoped-for circular loop
* workspace[]: work array for previously processed and current objects
* depth: number of valid entries in workspace[] at call
* newDepth: if successful, set to new number of workspace[] entries
*
* On success, *newDepth is set and workspace[] entries depth..*newDepth-1
* are filled with pointers to the members of the loop.
*
* Note: it is possible that the given starting object is a member of more
* than one cycle; if so, we will find an arbitrary one of the cycles.
*/
static bool
findLoop(DumpableObject *obj,
DumpId startPoint,
DumpableObject **workspace,
int depth,
int *newDepth)
{
int i;
/*
* Reject if obj is already present in workspace. This test serves
* three purposes: it prevents us from finding loops that overlap
* previously-processed loops, it prevents us from going into infinite
* recursion if we are given a startPoint object that links to a cycle
* it's not a member of, and it guarantees that we can't overflow the
* allocated size of workspace[].
*/
for (i = 0; i < depth; i++)
{
if (workspace[i] == obj)
return false;
}
/*
* Okay, tentatively add obj to workspace
*/
workspace[depth++] = obj;
/*
* See if we've found a loop back to the desired startPoint; if so, done
*/
for (i = 0; i < obj->nDeps; i++)
{
if (obj->dependencies[i] == startPoint)
{
*newDepth = depth;
return true;
}
}
/*
* Recurse down each outgoing branch
*/
for (i = 0; i < obj->nDeps; i++)
{
DumpableObject *nextobj = findObjectByDumpId(obj->dependencies[i]);
if (!nextobj)
continue; /* ignore dependencies on undumped objects */
if (findLoop(nextobj,
startPoint,
workspace,
depth,
newDepth))
return true;
}
return false;
}
/*
* A user-defined datatype will have a dependency loop with each of its
* I/O functions (since those have the datatype as input or output).
* We want the dump ordering to be the input function, then any other
* I/O functions, then the datatype. So we break the circularity in
* favor of the functions, and add a dependency from any non-input
* function to the input function.
*/
static void
repairTypeFuncLoop(DumpableObject *typeobj, DumpableObject *funcobj)
{
TypeInfo *typeInfo = (TypeInfo *) typeobj;
FuncInfo *inputFuncInfo;
/* remove function's dependency on type */
removeObjectDependency(funcobj, typeobj->dumpId);
/* if this isn't the input function, make it depend on same */
if (funcobj->catId.oid == typeInfo->typinput)
return; /* it is the input function */
inputFuncInfo = findFuncByOid(typeInfo->typinput);
if (inputFuncInfo == NULL)
return;
addObjectDependency(funcobj, inputFuncInfo->dobj.dumpId);
/*
* Make sure the input function's dependency on type gets removed too;
* if it hasn't been done yet, we'd end up with loops involving the
* type and two or more functions, which repairDependencyLoop() is not
* smart enough to handle.
*/
removeObjectDependency(&inputFuncInfo->dobj, typeobj->dumpId);
}
/*
* Because we force a view to depend on its ON SELECT rule, while there
* will be an implicit dependency in the other direction, we need to break
* the loop. We can always do this by removing the implicit dependency.
*/
static void
repairViewRuleLoop(DumpableObject *viewobj,
DumpableObject *ruleobj)
{
/* remove rule's dependency on view */
removeObjectDependency(ruleobj, viewobj->dumpId);
}
/*
* Because we make tables depend on their CHECK constraints, while there
* will be an automatic dependency in the other direction, we need to break
* the loop. If there are no other objects in the loop then we can remove
* the automatic dependency and leave the CHECK constraint non-separate.
*/
static void
repairTableConstraintLoop(DumpableObject *tableobj,
DumpableObject *constraintobj)
{
/* remove constraint's dependency on table */
removeObjectDependency(constraintobj, tableobj->dumpId);
}
/*
* However, if there are other objects in the loop, we must break the loop
* by making the CHECK constraint a separately-dumped object.
*
* Because findLoop() finds shorter cycles before longer ones, it's likely
* that we will have previously fired repairTableConstraintLoop() and
* removed the constraint's dependency on the table. Put it back to ensure
* the constraint won't be emitted before the table...
*/
static void
repairTableConstraintMultiLoop(DumpableObject *tableobj,
DumpableObject *constraintobj)
{
/* remove table's dependency on constraint */
removeObjectDependency(tableobj, constraintobj->dumpId);
/* mark constraint as needing its own dump */
((ConstraintInfo *) constraintobj)->separate = true;
/* put back constraint's dependency on table */
addObjectDependency(constraintobj, tableobj->dumpId);
}
/*
* Attribute defaults behave exactly the same as CHECK constraints...
*/
static void
repairTableAttrDefLoop(DumpableObject *tableobj,
DumpableObject *attrdefobj)
{
/* remove attrdef's dependency on table */
removeObjectDependency(attrdefobj, tableobj->dumpId);
}
static void
repairTableAttrDefMultiLoop(DumpableObject *tableobj,
DumpableObject *attrdefobj)
{
/* remove table's dependency on attrdef */
removeObjectDependency(tableobj, attrdefobj->dumpId);
/* mark attrdef as needing its own dump */
((AttrDefInfo *) attrdefobj)->separate = true;
/* put back attrdef's dependency on table */
addObjectDependency(attrdefobj, tableobj->dumpId);
}
/*
* CHECK constraints on domains work just like those on tables ...
*/
static void
repairDomainConstraintLoop(DumpableObject *domainobj,
DumpableObject *constraintobj)
{
/* remove constraint's dependency on domain */
removeObjectDependency(constraintobj, domainobj->dumpId);
}
static void
repairDomainConstraintMultiLoop(DumpableObject *domainobj,
DumpableObject *constraintobj)
{
/* remove domain's dependency on constraint */
removeObjectDependency(domainobj, constraintobj->dumpId);
/* mark constraint as needing its own dump */
((ConstraintInfo *) constraintobj)->separate = true;
/* put back constraint's dependency on domain */
addObjectDependency(constraintobj, domainobj->dumpId);
}
/*
* Fix a dependency loop, or die trying ...
*
* This routine is mainly concerned with reducing the multiple ways that
* a loop might appear to common cases, which it passes off to the
* "fixer" routines above.
*/
static void
repairDependencyLoop(DumpableObject **loop,
int nLoop)
{
int i,
j;
/* Datatype and one of its I/O functions */
if (nLoop == 2 &&
loop[0]->objType == DO_TYPE &&
loop[1]->objType == DO_FUNC)
{
repairTypeFuncLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TYPE &&
loop[0]->objType == DO_FUNC)
{
repairTypeFuncLoop(loop[1], loop[0]);
return;
}
/* View and its ON SELECT rule */
if (nLoop == 2 &&
loop[0]->objType == DO_TABLE &&
loop[1]->objType == DO_RULE &&
((RuleInfo *) loop[1])->ev_type == '1' &&
((RuleInfo *) loop[1])->is_instead)
{
repairViewRuleLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TABLE &&
loop[0]->objType == DO_RULE &&
((RuleInfo *) loop[0])->ev_type == '1' &&
((RuleInfo *) loop[0])->is_instead)
{
repairViewRuleLoop(loop[1], loop[0]);
return;
}
/* Table and CHECK constraint */
if (nLoop == 2 &&
loop[0]->objType == DO_TABLE &&
loop[1]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[1])->contype == 'c' &&
((ConstraintInfo *) loop[1])->contable == (TableInfo *) loop[0])
{
repairTableConstraintLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TABLE &&
loop[0]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[0])->contype == 'c' &&
((ConstraintInfo *) loop[0])->contable == (TableInfo *) loop[1])
{
repairTableConstraintLoop(loop[1], loop[0]);
return;
}
/* Indirect loop involving table and CHECK constraint */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TABLE)
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[j])->contype == 'c' &&
((ConstraintInfo *) loop[j])->contable == (TableInfo *) loop[i])
{
repairTableConstraintMultiLoop(loop[i], loop[j]);
return;
}
}
}
}
}
/* Table and attribute default */
if (nLoop == 2 &&
loop[0]->objType == DO_TABLE &&
loop[1]->objType == DO_ATTRDEF &&
((AttrDefInfo *) loop[1])->adtable == (TableInfo *) loop[0])
{
repairTableAttrDefLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TABLE &&
loop[0]->objType == DO_ATTRDEF &&
((AttrDefInfo *) loop[0])->adtable == (TableInfo *) loop[1])
{
repairTableAttrDefLoop(loop[1], loop[0]);
return;
}
/* Indirect loop involving table and attribute default */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TABLE)
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_ATTRDEF &&
((AttrDefInfo *) loop[j])->adtable == (TableInfo *) loop[i])
{
repairTableAttrDefMultiLoop(loop[i], loop[j]);
return;
}
}
}
}
}
/* Domain and CHECK constraint */
if (nLoop == 2 &&
loop[0]->objType == DO_TYPE &&
loop[1]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[1])->contype == 'c' &&
((ConstraintInfo *) loop[1])->condomain == (TypeInfo *) loop[0])
{
repairDomainConstraintLoop(loop[0], loop[1]);
return;
}
if (nLoop == 2 &&
loop[1]->objType == DO_TYPE &&
loop[0]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[0])->contype == 'c' &&
((ConstraintInfo *) loop[0])->condomain == (TypeInfo *) loop[1])
{
repairDomainConstraintLoop(loop[1], loop[0]);
return;
}
/* Indirect loop involving domain and CHECK constraint */
if (nLoop > 2)
{
for (i = 0; i < nLoop; i++)
{
if (loop[i]->objType == DO_TYPE)
{
for (j = 0; j < nLoop; j++)
{
if (loop[j]->objType == DO_CONSTRAINT &&
((ConstraintInfo *) loop[j])->contype == 'c' &&
((ConstraintInfo *) loop[j])->condomain == (TypeInfo *) loop[i])
{
repairDomainConstraintMultiLoop(loop[i], loop[j]);
return;
}
}
}
}
}
/*
* If we can't find a principled way to break the loop, complain and
* break it in an arbitrary fashion.
*/
write_msg(modulename, "WARNING: could not resolve dependency loop among these items:\n");
for (i = 0; i < nLoop; i++)
{
char buf[1024];
describeDumpableObject(loop[i], buf, sizeof(buf));
write_msg(modulename, " %s\n", buf);
}
removeObjectDependency(loop[0], loop[1]->dumpId);
}
/*
* Describe a dumpable object usefully for errors
*
* This should probably go somewhere else...
*/
static void
describeDumpableObject(DumpableObject *obj, char *buf, int bufsize)
{
switch (obj->objType)
{
case DO_NAMESPACE:
snprintf(buf, bufsize,
"SCHEMA %s (ID %d OID %u)",
((NamespaceInfo *) obj)->nspname,
obj->dumpId, obj->catId.oid);
return;
case DO_TYPE:
snprintf(buf, bufsize,
"TYPE %s (ID %d OID %u)",
((TypeInfo *) obj)->typname,
obj->dumpId, obj->catId.oid);
return;
case DO_FUNC:
snprintf(buf, bufsize,
"FUNCTION %s (ID %d OID %u)",
((FuncInfo *) obj)->proname,
obj->dumpId, obj->catId.oid);
return;
case DO_AGG:
snprintf(buf, bufsize,
"AGGREGATE %s (ID %d OID %u)",
((AggInfo *) obj)->aggfn.proname,
obj->dumpId, obj->catId.oid);
return;
case DO_OPERATOR:
snprintf(buf, bufsize,
"OPERATOR %s (ID %d OID %u)",
((OprInfo *) obj)->oprname,
obj->dumpId, obj->catId.oid);
return;
case DO_OPCLASS:
snprintf(buf, bufsize,
"OPERATOR CLASS %s (ID %d OID %u)",
((OpclassInfo *) obj)->opcname,
obj->dumpId, obj->catId.oid);
return;
case DO_CONVERSION:
snprintf(buf, bufsize,
"CONVERSION %s (ID %d OID %u)",
((ConvInfo *) obj)->conname,
obj->dumpId, obj->catId.oid);
return;
case DO_TABLE:
snprintf(buf, bufsize,
"TABLE %s (ID %d OID %u)",
((TableInfo *) obj)->relname,
obj->dumpId, obj->catId.oid);
return;
case DO_ATTRDEF:
snprintf(buf, bufsize,
"ATTRDEF %s.%s (ID %d OID %u)",
((AttrDefInfo *) obj)->adtable->relname,
((AttrDefInfo *) obj)->adtable->attnames[((AttrDefInfo *) obj)->adnum - 1],
obj->dumpId, obj->catId.oid);
return;
case DO_INDEX:
snprintf(buf, bufsize,
"INDEX %s (ID %d OID %u)",
((IndxInfo *) obj)->indexname,
obj->dumpId, obj->catId.oid);
return;
case DO_RULE:
snprintf(buf, bufsize,
"RULE %s (ID %d OID %u)",
((RuleInfo *) obj)->rulename,
obj->dumpId, obj->catId.oid);
return;
case DO_TRIGGER:
snprintf(buf, bufsize,
"TRIGGER %s (ID %d OID %u)",
((TriggerInfo *) obj)->tgname,
obj->dumpId, obj->catId.oid);
return;
case DO_CONSTRAINT:
snprintf(buf, bufsize,
"CONSTRAINT %s (ID %d OID %u)",
((ConstraintInfo *) obj)->conname,
obj->dumpId, obj->catId.oid);
return;
case DO_FK_CONSTRAINT:
snprintf(buf, bufsize,
"FK CONSTRAINT %s (ID %d OID %u)",
((ConstraintInfo *) obj)->conname,
obj->dumpId, obj->catId.oid);
return;
case DO_PROCLANG:
snprintf(buf, bufsize,
"PROCEDURAL LANGUAGE %s (ID %d OID %u)",
((ProcLangInfo *) obj)->lanname,
obj->dumpId, obj->catId.oid);
return;
case DO_CAST:
snprintf(buf, bufsize,
"CAST %u to %u (ID %d OID %u)",
((CastInfo *) obj)->castsource,
((CastInfo *) obj)->casttarget,
obj->dumpId, obj->catId.oid);
return;
case DO_TABLE_DATA:
snprintf(buf, bufsize,
"TABLE DATA %s (ID %d OID %u)",
((TableDataInfo *) obj)->tdtable->relname,
obj->dumpId, obj->catId.oid);
return;
}
/* shouldn't get here */
snprintf(buf, bufsize,
"object type %d (ID %d OID %u)",
(int) obj->objType,
obj->dumpId, obj->catId.oid);
}
|