1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
/*
* xlogrecord.h
*
* Definitions for the WAL record format.
*
* Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/access/xlogrecord.h
*/
#ifndef XLOGRECORD_H
#define XLOGRECORD_H
#include "access/rmgr.h"
#include "access/xlogdefs.h"
#include "storage/block.h"
#include "storage/relfilenode.h"
#include "utils/pg_crc.h"
/*
* The overall layout of an XLOG record is:
* Fixed-size header (XLogRecord struct)
* rmgr-specific data
* BkpBlock
* backup block data
* BkpBlock
* backup block data
* ...
*
* where there can be zero to four backup blocks (as signaled by xl_info flag
* bits). XLogRecord structs always start on MAXALIGN boundaries in the WAL
* files, and we round up SizeOfXLogRecord so that the rmgr data is also
* guaranteed to begin on a MAXALIGN boundary. However, no padding is added
* to align BkpBlock structs or backup block data.
*
* NOTE: xl_len counts only the rmgr data, not the XLogRecord header,
* and also not any backup blocks. xl_tot_len counts everything. Neither
* length field is rounded up to an alignment boundary.
*/
typedef struct XLogRecord
{
uint32 xl_tot_len; /* total len of entire record */
TransactionId xl_xid; /* xact id */
uint32 xl_len; /* total len of rmgr data */
uint8 xl_info; /* flag bits, see below */
RmgrId xl_rmid; /* resource manager for this record */
/* 2 bytes of padding here, initialize to zero */
XLogRecPtr xl_prev; /* ptr to previous record in log */
pg_crc32 xl_crc; /* CRC for this record */
/* If MAXALIGN==8, there are 4 wasted bytes here */
/* ACTUAL LOG DATA FOLLOWS AT END OF STRUCT */
} XLogRecord;
#define SizeOfXLogRecord MAXALIGN(sizeof(XLogRecord))
#define XLogRecGetData(record) ((char*) (record) + SizeOfXLogRecord)
/*
* XLOG uses only low 4 bits of xl_info. High 4 bits may be used by rmgr.
*/
#define XLR_INFO_MASK 0x0F
/*
* If we backed up any disk blocks with the XLOG record, we use flag bits in
* xl_info to signal it. We support backup of up to 4 disk blocks per XLOG
* record.
*/
#define XLR_BKP_BLOCK_MASK 0x0F /* all info bits used for bkp blocks */
#define XLR_MAX_BKP_BLOCKS 4
#define XLR_BKP_BLOCK(iblk) (0x08 >> (iblk)) /* iblk in 0..3 */
/*
* Header info for a backup block appended to an XLOG record.
*
* As a trivial form of data compression, the XLOG code is aware that
* PG data pages usually contain an unused "hole" in the middle, which
* contains only zero bytes. If hole_length > 0 then we have removed
* such a "hole" from the stored data (and it's not counted in the
* XLOG record's CRC, either). Hence, the amount of block data actually
* present following the BkpBlock struct is BLCKSZ - hole_length bytes.
*
* Note that we don't attempt to align either the BkpBlock struct or the
* block's data. So, the struct must be copied to aligned local storage
* before use.
*/
typedef struct BkpBlock
{
RelFileNode node; /* relation containing block */
ForkNumber fork; /* fork within the relation */
BlockNumber block; /* block number */
uint16 hole_offset; /* number of bytes before "hole" */
uint16 hole_length; /* number of bytes in "hole" */
/* ACTUAL BLOCK DATA FOLLOWS AT END OF STRUCT */
} BkpBlock;
#endif /* XLOGRECORD_H */
|