1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
/*-------------------------------------------------------------------------
*
* simd.h
* Support for platform-specific vector operations.
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/port/simd.h
*
* NOTES
* - VectorN in this file refers to a register where the element operands
* are N bits wide. The vector width is platform-specific, so users that care
* about that will need to inspect "sizeof(VectorN)".
*
*-------------------------------------------------------------------------
*/
#ifndef SIMD_H
#define SIMD_H
#if (defined(__x86_64__) || defined(_M_AMD64))
/*
* SSE2 instructions are part of the spec for the 64-bit x86 ISA. We assume
* that compilers targeting this architecture understand SSE2 intrinsics.
*
* We use emmintrin.h rather than the comprehensive header immintrin.h in
* order to exclude extensions beyond SSE2. This is because MSVC, at least,
* will allow the use of intrinsics that haven't been enabled at compile
* time.
*/
#include <emmintrin.h>
#define USE_SSE2
typedef __m128i Vector8;
#else
/*
* If no SIMD instructions are available, we can in some cases emulate vector
* operations using bitwise operations on unsigned integers.
*/
#define USE_NO_SIMD
typedef uint64 Vector8;
#endif
/* load/store operations */
static inline void vector8_load(Vector8 *v, const uint8 *s);
/* assignment operations */
static inline Vector8 vector8_broadcast(const uint8 c);
/* element-wise comparisons to a scalar */
static inline bool vector8_has(const Vector8 v, const uint8 c);
static inline bool vector8_has_zero(const Vector8 v);
static inline bool vector8_has_le(const Vector8 v, const uint8 c);
/*
* Load a chunk of memory into the given vector.
*/
static inline void
vector8_load(Vector8 *v, const uint8 *s)
{
#if defined(USE_SSE2)
*v = _mm_loadu_si128((const __m128i *) s);
#else
memcpy(v, s, sizeof(Vector8));
#endif
}
/*
* Create a vector with all elements set to the same value.
*/
static inline Vector8
vector8_broadcast(const uint8 c)
{
#if defined(USE_SSE2)
return _mm_set1_epi8(c);
#else
return ~UINT64CONST(0) / 0xFF * c;
#endif
}
/*
* Return true if any elements in the vector are equal to the given scalar.
*/
static inline bool
vector8_has(const Vector8 v, const uint8 c)
{
bool result;
/* pre-compute the result for assert checking */
#ifdef USE_ASSERT_CHECKING
bool assert_result = false;
for (int i = 0; i < sizeof(Vector8); i++)
{
if (((const uint8 *) &v)[i] == c)
{
assert_result = true;
break;
}
}
#endif /* USE_ASSERT_CHECKING */
#if defined(USE_NO_SIMD)
/* any bytes in v equal to c will evaluate to zero via XOR */
result = vector8_has_zero(v ^ vector8_broadcast(c));
#elif defined(USE_SSE2)
result = _mm_movemask_epi8(_mm_cmpeq_epi8(v, vector8_broadcast(c)));
#endif
Assert(assert_result == result);
return result;
}
/*
* Convenience function equivalent to vector8_has(v, 0)
*/
static inline bool
vector8_has_zero(const Vector8 v)
{
#if defined(USE_NO_SIMD)
/*
* We cannot call vector8_has() here, because that would lead to a circular
* definition.
*/
return vector8_has_le(v, 0);
#elif defined(USE_SSE2)
return vector8_has(v, 0);
#endif
}
/*
* Return true if any elements in the vector are less than or equal to the
* given scalar.
*/
static inline bool
vector8_has_le(const Vector8 v, const uint8 c)
{
bool result = false;
#if defined(USE_SSE2)
__m128i sub;
#endif
/* pre-compute the result for assert checking */
#ifdef USE_ASSERT_CHECKING
bool assert_result = false;
for (int i = 0; i < sizeof(Vector8); i++)
{
if (((const uint8 *) &v)[i] <= c)
{
assert_result = true;
break;
}
}
#endif /* USE_ASSERT_CHECKING */
#if defined(USE_NO_SIMD)
/*
* To find bytes <= c, we can use bitwise operations to find bytes < c+1,
* but it only works if c+1 <= 128 and if the highest bit in v is not set.
* Adapted from
* https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
*/
if ((int64) v >= 0 && c < 0x80)
result = (v - vector8_broadcast(c + 1)) & ~v & vector8_broadcast(0x80);
else
{
/* one byte at a time */
for (int i = 0; i < sizeof(Vector8); i++)
{
if (((const uint8 *) &v)[i] <= c)
{
result = true;
break;
}
}
}
#elif defined(USE_SSE2)
/*
* Use saturating subtraction to find bytes <= c, which will present as
* NUL bytes in 'sub'.
*/
sub = _mm_subs_epu8(v, vector8_broadcast(c));
result = vector8_has_zero(sub);
#endif
Assert(assert_result == result);
return result;
}
#endif /* SIMD_H */
|