aboutsummaryrefslogtreecommitdiff
path: root/src/test/regress/expected/btree_index.out
blob: bfb1a286ea4ad0673078b625cbd31f5fdb3d7584 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
--
-- BTREE_INDEX
--
-- directory paths are passed to us in environment variables
\getenv abs_srcdir PG_ABS_SRCDIR
CREATE TABLE bt_i4_heap (
	seqno 		int4,
	random 		int4
);
CREATE TABLE bt_name_heap (
	seqno 		name,
	random 		int4
);
CREATE TABLE bt_txt_heap (
	seqno 		text,
	random 		int4
);
CREATE TABLE bt_f8_heap (
	seqno 		float8,
	random 		int4
);
\set filename :abs_srcdir '/data/desc.data'
COPY bt_i4_heap FROM :'filename';
\set filename :abs_srcdir '/data/hash.data'
COPY bt_name_heap FROM :'filename';
\set filename :abs_srcdir '/data/desc.data'
COPY bt_txt_heap FROM :'filename';
\set filename :abs_srcdir '/data/hash.data'
COPY bt_f8_heap FROM :'filename';
ANALYZE bt_i4_heap;
ANALYZE bt_name_heap;
ANALYZE bt_txt_heap;
ANALYZE bt_f8_heap;
--
-- BTREE ascending/descending cases
--
-- we load int4/text from pure descending data (each key is a new
-- low key) and name/f8 from pure ascending data (each key is a new
-- high key).  we had a bug where new low keys would sometimes be
-- "lost".
--
CREATE INDEX bt_i4_index ON bt_i4_heap USING btree (seqno int4_ops);
CREATE INDEX bt_name_index ON bt_name_heap USING btree (seqno name_ops);
CREATE INDEX bt_txt_index ON bt_txt_heap USING btree (seqno text_ops);
CREATE INDEX bt_f8_index ON bt_f8_heap USING btree (seqno float8_ops);
--
-- test retrieval of min/max keys for each index
--
SELECT b.*
   FROM bt_i4_heap b
   WHERE b.seqno < 1;
 seqno |   random   
-------+------------
     0 | 1935401906
(1 row)

SELECT b.*
   FROM bt_i4_heap b
   WHERE b.seqno >= 9999;
 seqno |   random   
-------+------------
  9999 | 1227676208
(1 row)

SELECT b.*
   FROM bt_i4_heap b
   WHERE b.seqno = 4500;
 seqno |   random   
-------+------------
  4500 | 2080851358
(1 row)

SELECT b.*
   FROM bt_name_heap b
   WHERE b.seqno < '1'::name;
 seqno |   random   
-------+------------
 0     | 1935401906
(1 row)

SELECT b.*
   FROM bt_name_heap b
   WHERE b.seqno >= '9999'::name;
 seqno |   random   
-------+------------
 9999  | 1227676208
(1 row)

SELECT b.*
   FROM bt_name_heap b
   WHERE b.seqno = '4500'::name;
 seqno |   random   
-------+------------
 4500  | 2080851358
(1 row)

SELECT b.*
   FROM bt_txt_heap b
   WHERE b.seqno < '1'::text;
 seqno |   random   
-------+------------
 0     | 1935401906
(1 row)

SELECT b.*
   FROM bt_txt_heap b
   WHERE b.seqno >= '9999'::text;
 seqno |   random   
-------+------------
 9999  | 1227676208
(1 row)

SELECT b.*
   FROM bt_txt_heap b
   WHERE b.seqno = '4500'::text;
 seqno |   random   
-------+------------
 4500  | 2080851358
(1 row)

SELECT b.*
   FROM bt_f8_heap b
   WHERE b.seqno < '1'::float8;
 seqno |   random   
-------+------------
     0 | 1935401906
(1 row)

SELECT b.*
   FROM bt_f8_heap b
   WHERE b.seqno >= '9999'::float8;
 seqno |   random   
-------+------------
  9999 | 1227676208
(1 row)

SELECT b.*
   FROM bt_f8_heap b
   WHERE b.seqno = '4500'::float8;
 seqno |   random   
-------+------------
  4500 | 2080851358
(1 row)

--
-- Add coverage of RowCompare quals whose row omits a column ("proargtypes")
-- that's after the first column, but before the final column.  The scan's
-- initial positioning strategy must become >= here (it's not the > strategy,
-- since the absence of "proargtypes" makes that tighter constraint unsafe).
--
explain (costs off)
SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE (proname, pronamespace) > ('abs', 0)
ORDER BY proname, proargtypes, pronamespace LIMIT 1;
                                  QUERY PLAN                                   
-------------------------------------------------------------------------------
 Limit
   ->  Index Only Scan using pg_proc_proname_args_nsp_index on pg_proc
         Index Cond: (ROW(proname, pronamespace) > ROW('abs'::name, '0'::oid))
(3 rows)

SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE (proname, pronamespace) > ('abs', 0)
ORDER BY proname, proargtypes, pronamespace LIMIT 1;
 proname | proargtypes | pronamespace 
---------+-------------+--------------
 abs     | 20          |           11
(1 row)

--
-- Similar to the previous test case, but this time it's a backwards scan
-- using a < RowCompare.  Must use the <= strategy (and not the < strategy).
--
explain (costs off)
SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE (proname, pronamespace) < ('abs', 1_000_000)
ORDER BY proname DESC, proargtypes DESC, pronamespace DESC LIMIT 1;
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Limit
   ->  Index Only Scan Backward using pg_proc_proname_args_nsp_index on pg_proc
         Index Cond: (ROW(proname, pronamespace) < ROW('abs'::name, '1000000'::oid))
(3 rows)

SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE (proname, pronamespace) < ('abs', 1_000_000)
ORDER BY proname DESC, proargtypes DESC, pronamespace DESC LIMIT 1;
 proname | proargtypes | pronamespace 
---------+-------------+--------------
 abs     | 1700        |           11
(1 row)

--
-- Add coverage for RowCompare quals whose rhs row has a NULL that ends scan
--
explain (costs off)
SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE proname = 'abs' AND (proname, proargtypes) < ('abs', NULL)
ORDER BY proname, proargtypes, pronamespace;
                                                 QUERY PLAN                                                  
-------------------------------------------------------------------------------------------------------------
 Index Only Scan using pg_proc_proname_args_nsp_index on pg_proc
   Index Cond: ((ROW(proname, proargtypes) < ROW('abs'::name, NULL::oidvector)) AND (proname = 'abs'::name))
(2 rows)

SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE proname = 'abs' AND (proname, proargtypes) < ('abs', NULL)
ORDER BY proname, proargtypes, pronamespace;
 proname | proargtypes | pronamespace 
---------+-------------+--------------
(0 rows)

--
-- Add coverage for backwards scan RowCompare quals whose rhs row has a NULL
-- that ends scan
--
explain (costs off)
SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE proname = 'abs' AND (proname, proargtypes) > ('abs', NULL)
ORDER BY proname DESC, proargtypes DESC, pronamespace DESC;
                                                 QUERY PLAN                                                  
-------------------------------------------------------------------------------------------------------------
 Index Only Scan Backward using pg_proc_proname_args_nsp_index on pg_proc
   Index Cond: ((ROW(proname, proargtypes) > ROW('abs'::name, NULL::oidvector)) AND (proname = 'abs'::name))
(2 rows)

SELECT proname, proargtypes, pronamespace
   FROM pg_proc
   WHERE proname = 'abs' AND (proname, proargtypes) > ('abs', NULL)
ORDER BY proname DESC, proargtypes DESC, pronamespace DESC;
 proname | proargtypes | pronamespace 
---------+-------------+--------------
(0 rows)

--
-- Add coverage for recheck of > key following array advancement on previous
-- (left sibling) page that used a high key whose attribute value corresponding
-- to the > key was -inf (due to being truncated when the high key was created).
--
-- XXX This relies on the assumption that tenk1_thous_tenthous has a truncated
-- high key "(183, -inf)" on the first page that we'll scan.  The test will only
-- provide useful coverage when the default 8K BLCKSZ is in use.
--
explain (costs off)
SELECT thousand, tenthous
  FROM tenk1
  WHERE thousand IN (182, 183) AND tenthous > 7550;
                                   QUERY PLAN                                    
---------------------------------------------------------------------------------
 Index Only Scan using tenk1_thous_tenthous on tenk1
   Index Cond: ((thousand = ANY ('{182,183}'::integer[])) AND (tenthous > 7550))
(2 rows)

SELECT thousand, tenthous
  FROM tenk1
  WHERE thousand IN (182, 183) AND tenthous > 7550;
 thousand | tenthous 
----------+----------
      182 |     8182
      182 |     9182
      183 |     8183
      183 |     9183
(4 rows)

--
-- Add coverage for optimization of backwards scan index descents
--
-- Here we expect _bt_search to descend straight to a leaf page containing a
-- non-pivot tuple with the value '47', which comes last (after 11 similar
-- non-pivot tuples).  Query execution should only need to visit a single
-- leaf page here.
--
-- Test case relies on tenk1_hundred index having a leaf page whose high key
-- is '(48, -inf)'.  We use a low cardinality index to make our test case less
-- sensitive to implementation details that may change in the future.
set enable_seqscan to false;
set enable_indexscan to true;
set enable_bitmapscan to false;
explain (costs off)
select hundred, twenty from tenk1 where hundred < 48 order by hundred desc limit 1;
                       QUERY PLAN                       
--------------------------------------------------------
 Limit
   ->  Index Scan Backward using tenk1_hundred on tenk1
         Index Cond: (hundred < 48)
(3 rows)

select hundred, twenty from tenk1 where hundred < 48 order by hundred desc limit 1;
 hundred | twenty 
---------+--------
      47 |      7
(1 row)

-- This variant of the query need only return a single tuple located to the immediate
-- right of the '(48, -inf)' high key.  It also only needs to scan one single
-- leaf page (the right sibling of the page scanned by the last test case):
explain (costs off)
select hundred, twenty from tenk1 where hundred <= 48 order by hundred desc limit 1;
                       QUERY PLAN                       
--------------------------------------------------------
 Limit
   ->  Index Scan Backward using tenk1_hundred on tenk1
         Index Cond: (hundred <= 48)
(3 rows)

select hundred, twenty from tenk1 where hundred <= 48 order by hundred desc limit 1;
 hundred | twenty 
---------+--------
      48 |      8
(1 row)

--
-- Add coverage for ScalarArrayOp btree quals with pivot tuple constants
--
explain (costs off)
select distinct hundred from tenk1 where hundred in (47, 48, 72, 82);
                            QUERY PLAN                            
------------------------------------------------------------------
 Unique
   ->  Index Only Scan using tenk1_hundred on tenk1
         Index Cond: (hundred = ANY ('{47,48,72,82}'::integer[]))
(3 rows)

select distinct hundred from tenk1 where hundred in (47, 48, 72, 82);
 hundred 
---------
      47
      48
      72
      82
(4 rows)

explain (costs off)
select distinct hundred from tenk1 where hundred in (47, 48, 72, 82) order by hundred desc;
                            QUERY PLAN                            
------------------------------------------------------------------
 Unique
   ->  Index Only Scan Backward using tenk1_hundred on tenk1
         Index Cond: (hundred = ANY ('{47,48,72,82}'::integer[]))
(3 rows)

select distinct hundred from tenk1 where hundred in (47, 48, 72, 82) order by hundred desc;
 hundred 
---------
      82
      72
      48
      47
(4 rows)

explain (costs off)
select thousand from tenk1 where thousand in (364, 366,380) and tenthous = 200000;
                                      QUERY PLAN                                       
---------------------------------------------------------------------------------------
 Index Only Scan using tenk1_thous_tenthous on tenk1
   Index Cond: ((thousand = ANY ('{364,366,380}'::integer[])) AND (tenthous = 200000))
(2 rows)

select thousand from tenk1 where thousand in (364, 366,380) and tenthous = 200000;
 thousand 
----------
(0 rows)

--
-- Check correct optimization of LIKE (special index operator support)
-- for both indexscan and bitmapscan cases
--
set enable_seqscan to false;
set enable_indexscan to true;
set enable_bitmapscan to false;
explain (costs off)
select proname from pg_proc where proname like E'RI\\_FKey%del' order by 1;
                                  QUERY PLAN                                  
------------------------------------------------------------------------------
 Index Only Scan using pg_proc_proname_args_nsp_index on pg_proc
   Index Cond: ((proname >= 'RI_FKey'::text) AND (proname < 'RI_FKez'::text))
   Filter: (proname ~~ 'RI\_FKey%del'::text)
(3 rows)

select proname from pg_proc where proname like E'RI\\_FKey%del' order by 1;
        proname         
------------------------
 RI_FKey_cascade_del
 RI_FKey_noaction_del
 RI_FKey_restrict_del
 RI_FKey_setdefault_del
 RI_FKey_setnull_del
(5 rows)

explain (costs off)
select proname from pg_proc where proname ilike '00%foo' order by 1;
                             QUERY PLAN                             
--------------------------------------------------------------------
 Index Only Scan using pg_proc_proname_args_nsp_index on pg_proc
   Index Cond: ((proname >= '00'::text) AND (proname < '01'::text))
   Filter: (proname ~~* '00%foo'::text)
(3 rows)

select proname from pg_proc where proname ilike '00%foo' order by 1;
 proname 
---------
(0 rows)

explain (costs off)
select proname from pg_proc where proname ilike 'ri%foo' order by 1;
                           QUERY PLAN                            
-----------------------------------------------------------------
 Index Only Scan using pg_proc_proname_args_nsp_index on pg_proc
   Filter: (proname ~~* 'ri%foo'::text)
(2 rows)

set enable_indexscan to false;
set enable_bitmapscan to true;
explain (costs off)
select proname from pg_proc where proname like E'RI\\_FKey%del' order by 1;
                                        QUERY PLAN                                        
------------------------------------------------------------------------------------------
 Sort
   Sort Key: proname
   ->  Bitmap Heap Scan on pg_proc
         Filter: (proname ~~ 'RI\_FKey%del'::text)
         ->  Bitmap Index Scan on pg_proc_proname_args_nsp_index
               Index Cond: ((proname >= 'RI_FKey'::text) AND (proname < 'RI_FKez'::text))
(6 rows)

select proname from pg_proc where proname like E'RI\\_FKey%del' order by 1;
        proname         
------------------------
 RI_FKey_cascade_del
 RI_FKey_noaction_del
 RI_FKey_restrict_del
 RI_FKey_setdefault_del
 RI_FKey_setnull_del
(5 rows)

explain (costs off)
select proname from pg_proc where proname ilike '00%foo' order by 1;
                                   QUERY PLAN                                   
--------------------------------------------------------------------------------
 Sort
   Sort Key: proname
   ->  Bitmap Heap Scan on pg_proc
         Filter: (proname ~~* '00%foo'::text)
         ->  Bitmap Index Scan on pg_proc_proname_args_nsp_index
               Index Cond: ((proname >= '00'::text) AND (proname < '01'::text))
(6 rows)

select proname from pg_proc where proname ilike '00%foo' order by 1;
 proname 
---------
(0 rows)

explain (costs off)
select proname from pg_proc where proname ilike 'ri%foo' order by 1;
                  QUERY PLAN                  
----------------------------------------------
 Sort
   Sort Key: proname
   ->  Seq Scan on pg_proc
         Disabled: true
         Filter: (proname ~~* 'ri%foo'::text)
(5 rows)

reset enable_seqscan;
reset enable_indexscan;
reset enable_bitmapscan;
-- Also check LIKE optimization with binary-compatible cases
create temp table btree_bpchar (f1 text collate "C");
create index on btree_bpchar(f1 bpchar_ops) WITH (deduplicate_items=on);
insert into btree_bpchar values ('foo'), ('fool'), ('bar'), ('quux');
-- doesn't match index:
explain (costs off)
select * from btree_bpchar where f1 like 'foo';
          QUERY PLAN           
-------------------------------
 Seq Scan on btree_bpchar
   Filter: (f1 ~~ 'foo'::text)
(2 rows)

select * from btree_bpchar where f1 like 'foo';
 f1  
-----
 foo
(1 row)

explain (costs off)
select * from btree_bpchar where f1 like 'foo%';
           QUERY PLAN           
--------------------------------
 Seq Scan on btree_bpchar
   Filter: (f1 ~~ 'foo%'::text)
(2 rows)

select * from btree_bpchar where f1 like 'foo%';
  f1  
------
 foo
 fool
(2 rows)

-- these do match the index:
explain (costs off)
select * from btree_bpchar where f1::bpchar like 'foo';
                     QUERY PLAN                     
----------------------------------------------------
 Bitmap Heap Scan on btree_bpchar
   Filter: ((f1)::bpchar ~~ 'foo'::text)
   ->  Bitmap Index Scan on btree_bpchar_f1_idx
         Index Cond: ((f1)::bpchar = 'foo'::bpchar)
(4 rows)

select * from btree_bpchar where f1::bpchar like 'foo';
 f1  
-----
 foo
(1 row)

explain (costs off)
select * from btree_bpchar where f1::bpchar like 'foo%';
                                        QUERY PLAN                                        
------------------------------------------------------------------------------------------
 Bitmap Heap Scan on btree_bpchar
   Filter: ((f1)::bpchar ~~ 'foo%'::text)
   ->  Bitmap Index Scan on btree_bpchar_f1_idx
         Index Cond: (((f1)::bpchar >= 'foo'::bpchar) AND ((f1)::bpchar < 'fop'::bpchar))
(4 rows)

select * from btree_bpchar where f1::bpchar like 'foo%';
  f1  
------
 foo
 fool
(2 rows)

-- get test coverage for "single value" deduplication strategy:
insert into btree_bpchar select 'foo' from generate_series(1,1500);
--
-- Perform unique checking, with and without the use of deduplication
--
CREATE TABLE dedup_unique_test_table (a int) WITH (autovacuum_enabled=false);
CREATE UNIQUE INDEX dedup_unique ON dedup_unique_test_table (a) WITH (deduplicate_items=on);
CREATE UNIQUE INDEX plain_unique ON dedup_unique_test_table (a) WITH (deduplicate_items=off);
-- Generate enough garbage tuples in index to ensure that even the unique index
-- with deduplication enabled has to check multiple leaf pages during unique
-- checking (at least with a BLCKSZ of 8192 or less)
DO $$
BEGIN
    FOR r IN 1..1350 LOOP
        DELETE FROM dedup_unique_test_table;
        INSERT INTO dedup_unique_test_table SELECT 1;
    END LOOP;
END$$;
-- Exercise the LP_DEAD-bit-set tuple deletion code with a posting list tuple.
-- The implementation prefers deleting existing items to merging any duplicate
-- tuples into a posting list, so we need an explicit test to make sure we get
-- coverage (note that this test also assumes BLCKSZ is 8192 or less):
DROP INDEX plain_unique;
DELETE FROM dedup_unique_test_table WHERE a = 1;
INSERT INTO dedup_unique_test_table SELECT i FROM generate_series(0,450) i;
--
-- Test B-tree fast path (cache rightmost leaf page) optimization.
--
-- First create a tree that's at least three levels deep (i.e. has one level
-- between the root and leaf levels). The text inserted is long.  It won't be
-- TOAST compressed because we use plain storage in the table.  Only a few
-- index tuples fit on each internal page, allowing us to get a tall tree with
-- few pages.  (A tall tree is required to trigger caching.)
--
-- The text column must be the leading column in the index, since suffix
-- truncation would otherwise truncate tuples on internal pages, leaving us
-- with a short tree.
create table btree_tall_tbl(id int4, t text);
alter table btree_tall_tbl alter COLUMN t set storage plain;
create index btree_tall_idx on btree_tall_tbl (t, id) with (fillfactor = 10);
insert into btree_tall_tbl select g, repeat('x', 250)
from generate_series(1, 130) g;
insert into btree_tall_tbl select g, NULL
from generate_series(50, 60) g;
--
-- Test for skip scan with type that lacks skip support (text)
--
set enable_seqscan to false;
set enable_bitmapscan to false;
-- Forwards scan
SELECT id FROM btree_tall_tbl WHERE id = 55 ORDER BY t, id;
 id 
----
 55
 55
(2 rows)

explain (costs off)
SELECT id FROM btree_tall_tbl WHERE id = 55 ORDER BY t, id;
                       QUERY PLAN                       
--------------------------------------------------------
 Index Only Scan using btree_tall_idx on btree_tall_tbl
   Index Cond: (id = 55)
(2 rows)

-- Backwards scan
SELECT id FROM btree_tall_tbl WHERE id = 55 ORDER BY t DESC, id DESC;
 id 
----
 55
 55
(2 rows)

explain (costs off)
SELECT id FROM btree_tall_tbl WHERE id = 55 ORDER BY t DESC, id DESC;
                           QUERY PLAN                            
-----------------------------------------------------------------
 Index Only Scan Backward using btree_tall_idx on btree_tall_tbl
   Index Cond: (id = 55)
(2 rows)

reset enable_seqscan;
reset enable_bitmapscan;
--
-- Test for multilevel page deletion
--
CREATE TABLE delete_test_table (a bigint, b bigint, c bigint, d bigint);
INSERT INTO delete_test_table SELECT i, 1, 2, 3 FROM generate_series(1,80000) i;
ALTER TABLE delete_test_table ADD PRIMARY KEY (a,b,c,d);
-- Delete most entries, and vacuum, deleting internal pages and creating "fast
-- root"
DELETE FROM delete_test_table WHERE a < 79990;
VACUUM delete_test_table;
--
-- Test B-tree insertion with a metapage update (XLOG_BTREE_INSERT_META
-- WAL record type). This happens when a "fast root" page is split.  This
-- also creates coverage for nbtree FSM page recycling.
--
-- The vacuum above should've turned the leaf page into a fast root. We just
-- need to insert some rows to cause the fast root page to split.
INSERT INTO delete_test_table SELECT i, 1, 2, 3 FROM generate_series(1,1000) i;
-- Test unsupported btree opclass parameters
create index on btree_tall_tbl (id int4_ops(foo=1));
ERROR:  operator class int4_ops has no options
-- test parallel build with immutable function.
CREATE TABLE btree_test_expr (n int);
CREATE FUNCTION btree_test_func() RETURNS int LANGUAGE sql IMMUTABLE RETURN 0;
BEGIN;
SET LOCAL min_parallel_table_scan_size = 0;
SET LOCAL max_parallel_maintenance_workers = 4;
CREATE INDEX btree_test_expr_idx ON btree_test_expr USING btree (btree_test_func());
COMMIT;
DROP TABLE btree_test_expr;
DROP FUNCTION btree_test_func();
-- Test case of ALTER INDEX with abuse of column names for indexes.
-- This grammar is not officially supported, but the parser allows it.
CREATE INDEX btree_tall_idx2 ON btree_tall_tbl (id);
ALTER INDEX btree_tall_idx2 ALTER COLUMN id SET (n_distinct=100);
ERROR:  ALTER action ALTER COLUMN ... SET cannot be performed on relation "btree_tall_idx2"
DETAIL:  This operation is not supported for indexes.
DROP INDEX btree_tall_idx2;
-- Partitioned index
CREATE TABLE btree_part (id int4) PARTITION BY RANGE (id);
CREATE INDEX btree_part_idx ON btree_part(id);
ALTER INDEX btree_part_idx ALTER COLUMN id SET (n_distinct=100);
ERROR:  ALTER action ALTER COLUMN ... SET cannot be performed on relation "btree_part_idx"
DETAIL:  This operation is not supported for partitioned indexes.
DROP TABLE btree_part;