aboutsummaryrefslogtreecommitdiff
path: root/src/test/regress/sql/aggregates.sql
blob: a9429525cab57a27af61eaf36fe56ca205057bfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
--
-- AGGREGATES
--

SELECT avg(four) AS avg_1 FROM onek;

SELECT avg(a) AS avg_32 FROM aggtest WHERE a < 100;

-- In 7.1, avg(float4) is computed using float8 arithmetic.
-- Round the result to 3 digits to avoid platform-specific results.

SELECT avg(b)::numeric(10,3) AS avg_107_943 FROM aggtest;

SELECT avg(gpa) AS avg_3_4 FROM ONLY student;


SELECT sum(four) AS sum_1500 FROM onek;
SELECT sum(a) AS sum_198 FROM aggtest;
SELECT sum(b) AS avg_431_773 FROM aggtest;
SELECT sum(gpa) AS avg_6_8 FROM ONLY student;

SELECT max(four) AS max_3 FROM onek;
SELECT max(a) AS max_100 FROM aggtest;
SELECT max(aggtest.b) AS max_324_78 FROM aggtest;
SELECT max(student.gpa) AS max_3_7 FROM student;

SELECT stddev_pop(b) FROM aggtest;
SELECT stddev_samp(b) FROM aggtest;
SELECT var_pop(b) FROM aggtest;
SELECT var_samp(b) FROM aggtest;

SELECT stddev_pop(b::numeric) FROM aggtest;
SELECT stddev_samp(b::numeric) FROM aggtest;
SELECT var_pop(b::numeric) FROM aggtest;
SELECT var_samp(b::numeric) FROM aggtest;

-- population variance is defined for a single tuple, sample variance
-- is not
SELECT var_pop(1.0), var_samp(2.0);
SELECT stddev_pop(3.0::numeric), stddev_samp(4.0::numeric);

SELECT count(four) AS cnt_1000 FROM onek;
SELECT count(DISTINCT four) AS cnt_4 FROM onek;

select ten, count(*), sum(four) from onek
group by ten order by ten;

select ten, count(four), sum(DISTINCT four) from onek
group by ten order by ten;


SELECT newavg(four) AS avg_1 FROM onek;
SELECT newsum(four) AS sum_1500 FROM onek;
SELECT newcnt(four) AS cnt_1000 FROM onek;


-- test for outer-level aggregates

-- this should work
select ten, sum(distinct four) from onek a
group by ten
having exists (select 1 from onek b where sum(distinct a.four) = b.four);

-- this should fail because subquery has an agg of its own in WHERE
select ten, sum(distinct four) from onek a
group by ten
having exists (select 1 from onek b
               where sum(distinct a.four + b.four) = b.four);

--
-- test for bitwise integer aggregates
--
CREATE TEMPORARY TABLE bitwise_test(
  i2 INT2,
  i4 INT4,
  i8 INT8,
  i INTEGER,
  x INT2,
  y BIT(4)
);

-- empty case
SELECT 
  BIT_AND(i2) AS "?",
  BIT_OR(i4)  AS "?"
FROM bitwise_test;

COPY bitwise_test FROM STDIN NULL 'null';
1	1	1	1	1	B0101
3	3	3	null	2	B0100
7	7	7	3	4	B1100
\.

SELECT
  BIT_AND(i2) AS "1",
  BIT_AND(i4) AS "1",
  BIT_AND(i8) AS "1",
  BIT_AND(i)  AS "?",
  BIT_AND(x)  AS "0",
  BIT_AND(y)  AS "0100",

  BIT_OR(i2)  AS "7",
  BIT_OR(i4)  AS "7",
  BIT_OR(i8)  AS "7",
  BIT_OR(i)   AS "?",
  BIT_OR(x)   AS "7",
  BIT_OR(y)   AS "1101"
FROM bitwise_test;

--
-- test boolean aggregates
--
-- first test all possible transition and final states

SELECT
  -- boolean and transitions
  -- null because strict
  booland_statefunc(NULL, NULL)  IS NULL AS "t",
  booland_statefunc(TRUE, NULL)  IS NULL AS "t",
  booland_statefunc(FALSE, NULL) IS NULL AS "t",
  booland_statefunc(NULL, TRUE)  IS NULL AS "t",
  booland_statefunc(NULL, FALSE) IS NULL AS "t",
  -- and actual computations
  booland_statefunc(TRUE, TRUE) AS "t",
  NOT booland_statefunc(TRUE, FALSE) AS "t",
  NOT booland_statefunc(FALSE, TRUE) AS "t",
  NOT booland_statefunc(FALSE, FALSE) AS "t";

SELECT
  -- boolean or transitions
  -- null because strict
  boolor_statefunc(NULL, NULL)  IS NULL AS "t",
  boolor_statefunc(TRUE, NULL)  IS NULL AS "t",
  boolor_statefunc(FALSE, NULL) IS NULL AS "t",
  boolor_statefunc(NULL, TRUE)  IS NULL AS "t",
  boolor_statefunc(NULL, FALSE) IS NULL AS "t",
  -- actual computations
  boolor_statefunc(TRUE, TRUE) AS "t",
  boolor_statefunc(TRUE, FALSE) AS "t",
  boolor_statefunc(FALSE, TRUE) AS "t",
  NOT boolor_statefunc(FALSE, FALSE) AS "t";

CREATE TEMPORARY TABLE bool_test(  
  b1 BOOL,
  b2 BOOL,
  b3 BOOL,
  b4 BOOL);

-- empty case
SELECT
  BOOL_AND(b1)   AS "n",
  BOOL_OR(b3)    AS "n"
FROM bool_test;

COPY bool_test FROM STDIN NULL 'null';
TRUE	null	FALSE	null
FALSE	TRUE	null	null
null	TRUE	FALSE	null
\.

SELECT
  BOOL_AND(b1)     AS "f",
  BOOL_AND(b2)     AS "t",
  BOOL_AND(b3)     AS "f",
  BOOL_AND(b4)     AS "n",
  BOOL_AND(NOT b2) AS "f",
  BOOL_AND(NOT b3) AS "t"
FROM bool_test;

SELECT
  EVERY(b1)     AS "f",
  EVERY(b2)     AS "t",
  EVERY(b3)     AS "f",
  EVERY(b4)     AS "n",
  EVERY(NOT b2) AS "f",
  EVERY(NOT b3) AS "t"
FROM bool_test;

SELECT
  BOOL_OR(b1)      AS "t",
  BOOL_OR(b2)      AS "t",
  BOOL_OR(b3)      AS "f",
  BOOL_OR(b4)      AS "n",
  BOOL_OR(NOT b2)  AS "f",
  BOOL_OR(NOT b3)  AS "t"
FROM bool_test;

--
-- Test several cases that should be optimized into indexscans instead of
-- the generic aggregate implementation.  We can't actually verify that they
-- are done as indexscans, but we can check that the results are correct.
--

-- Basic cases
select max(unique1) from tenk1;
select max(unique1) from tenk1 where unique1 < 42;
select max(unique1) from tenk1 where unique1 > 42;
select max(unique1) from tenk1 where unique1 > 42000;

-- multi-column index (uses tenk1_thous_tenthous)
select max(tenthous) from tenk1 where thousand = 33;
select min(tenthous) from tenk1 where thousand = 33;

-- check parameter propagation into an indexscan subquery
select f1, (select min(unique1) from tenk1 where unique1 > f1) AS gt
from int4_tbl;