summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFabrice Bellard <fabrice@bellard.org>2025-03-18 18:29:10 +0100
committerFabrice Bellard <fabrice@bellard.org>2025-03-18 18:29:10 +0100
commit61e8b9442840bf94a2a9b0b872c8b3a197c1eac3 (patch)
treea9a3bee4f06eed73e9ea9a440c3193cb5b613501
parent837a69758874339a75560d99cea665f1966799c8 (diff)
downloadquickjs-61e8b9442840bf94a2a9b0b872c8b3a197c1eac3.tar.gz
quickjs-61e8b9442840bf94a2a9b0b872c8b3a197c1eac3.zip
removed bignum support and qjscalc - added optimized BigInt implementation
-rw-r--r--Makefile43
-rw-r--r--TODO1
-rw-r--r--cutils.h20
-rw-r--r--examples/pi_bigdecimal.js68
-rw-r--r--examples/pi_bigfloat.js66
-rw-r--r--libbf.c8475
-rw-r--r--libbf.h535
-rw-r--r--qjs.c52
-rw-r--r--qjsc.c28
-rw-r--r--qjscalc.js2657
-rw-r--r--quickjs-atom.h17
-rw-r--r--quickjs-opcode.h5
-rw-r--r--quickjs.c6999
-rw-r--r--quickjs.h39
-rw-r--r--tests/microbench.js33
-rw-r--r--tests/test_bigfloat.js279
-rw-r--r--tests/test_bigint.js249
-rw-r--r--tests/test_bignum.js114
-rw-r--r--tests/test_op_overloading.js207
-rw-r--r--tests/test_qjscalc.js256
20 files changed, 2550 insertions, 17593 deletions
diff --git a/Makefile b/Makefile
index cf88a72..a309cb4 100644
--- a/Makefile
+++ b/Makefile
@@ -51,9 +51,6 @@ PREFIX?=/usr/local
# use UB sanitizer
#CONFIG_UBSAN=y
-# include the code for BigFloat/BigDecimal and math mode
-CONFIG_BIGNUM=y
-
OBJDIR=.obj
ifdef CONFIG_ASAN
@@ -137,9 +134,6 @@ ifdef CONFIG_WERROR
CFLAGS+=-Werror
endif
DEFINES:=-D_GNU_SOURCE -DCONFIG_VERSION=\"$(shell cat VERSION)\"
-ifdef CONFIG_BIGNUM
-DEFINES+=-DCONFIG_BIGNUM
-endif
ifdef CONFIG_WIN32
DEFINES+=-D__USE_MINGW_ANSI_STDIO # for standard snprintf behavior
endif
@@ -201,9 +195,6 @@ else
QJSC_CC=$(CC)
QJSC=./qjsc$(EXE)
endif
-ifndef CONFIG_WIN32
-PROGS+=qjscalc
-endif
ifdef CONFIG_M32
PROGS+=qjs32 qjs32_s
endif
@@ -228,12 +219,9 @@ endif
all: $(OBJDIR) $(OBJDIR)/quickjs.check.o $(OBJDIR)/qjs.check.o $(PROGS)
-QJS_LIB_OBJS=$(OBJDIR)/quickjs.o $(OBJDIR)/libregexp.o $(OBJDIR)/libunicode.o $(OBJDIR)/cutils.o $(OBJDIR)/quickjs-libc.o $(OBJDIR)/libbf.o
+QJS_LIB_OBJS=$(OBJDIR)/quickjs.o $(OBJDIR)/libregexp.o $(OBJDIR)/libunicode.o $(OBJDIR)/cutils.o $(OBJDIR)/quickjs-libc.o
QJS_OBJS=$(OBJDIR)/qjs.o $(OBJDIR)/repl.o $(QJS_LIB_OBJS)
-ifdef CONFIG_BIGNUM
-QJS_OBJS+=$(OBJDIR)/qjscalc.o
-endif
HOST_LIBS=-lm -ldl -lpthread
LIBS=-lm
@@ -289,9 +277,6 @@ qjs32_s: $(patsubst %.o, %.m32s.o, $(QJS_OBJS))
$(CC) -m32 $(LDFLAGS) -o $@ $^ $(LIBS)
@size $@
-qjscalc: qjs
- ln -sf $< $@
-
ifdef CONFIG_LTO
LTOEXT=.lto
else
@@ -312,9 +297,6 @@ libquickjs.fuzz.a: $(patsubst %.o, %.fuzz.o, $(QJS_LIB_OBJS))
repl.c: $(QJSC) repl.js
$(QJSC) -c -o $@ -m repl.js
-qjscalc.c: $(QJSC) qjscalc.js
- $(QJSC) -fbignum -c -o $@ qjscalc.js
-
ifneq ($(wildcard unicode/UnicodeData.txt),)
$(OBJDIR)/libunicode.o $(OBJDIR)/libunicode.m32.o $(OBJDIR)/libunicode.m32s.o \
$(OBJDIR)/libunicode.nolto.o: libunicode-table.h
@@ -371,7 +353,7 @@ unicode_gen: $(OBJDIR)/unicode_gen.host.o $(OBJDIR)/cutils.host.o libunicode.c u
$(HOST_CC) $(LDFLAGS) $(CFLAGS) -o $@ $(OBJDIR)/unicode_gen.host.o $(OBJDIR)/cutils.host.o
clean:
- rm -f repl.c qjscalc.c out.c
+ rm -f repl.c out.c
rm -f *.a *.o *.d *~ unicode_gen regexp_test fuzz_eval fuzz_compile fuzz_regexp $(PROGS)
rm -f hello.c test_fib.c
rm -f examples/*.so tests/*.so
@@ -383,7 +365,6 @@ install: all
mkdir -p "$(DESTDIR)$(PREFIX)/bin"
$(STRIP) qjs$(EXE) qjsc$(EXE)
install -m755 qjs$(EXE) qjsc$(EXE) "$(DESTDIR)$(PREFIX)/bin"
- ln -sf qjs$(EXE) "$(DESTDIR)$(PREFIX)/bin/qjscalc$(EXE)"
mkdir -p "$(DESTDIR)$(PREFIX)/lib/quickjs"
install -m644 libquickjs.a "$(DESTDIR)$(PREFIX)/lib/quickjs"
ifdef CONFIG_LTO
@@ -468,35 +449,21 @@ test: qjs
./qjs tests/test_language.js
./qjs --std tests/test_builtin.js
./qjs tests/test_loop.js
- ./qjs tests/test_bignum.js
+ ./qjs tests/test_bigint.js
./qjs tests/test_std.js
./qjs tests/test_worker.js
ifdef CONFIG_SHARED_LIBS
-ifdef CONFIG_BIGNUM
- ./qjs --bignum tests/test_bjson.js
-else
./qjs tests/test_bjson.js
-endif
./qjs examples/test_point.js
endif
-ifdef CONFIG_BIGNUM
- ./qjs --bignum tests/test_op_overloading.js
- ./qjs --bignum tests/test_bigfloat.js
- ./qjs --qjscalc tests/test_qjscalc.js
-endif
ifdef CONFIG_M32
./qjs32 tests/test_closure.js
./qjs32 tests/test_language.js
./qjs32 --std tests/test_builtin.js
./qjs32 tests/test_loop.js
- ./qjs32 tests/test_bignum.js
+ ./qjs32 tests/test_bigint.js
./qjs32 tests/test_std.js
./qjs32 tests/test_worker.js
-ifdef CONFIG_BIGNUM
- ./qjs32 --bignum tests/test_op_overloading.js
- ./qjs32 --bignum tests/test_bigfloat.js
- ./qjs32 --qjscalc tests/test_qjscalc.js
-endif
endif
stats: qjs qjs32
@@ -556,7 +523,7 @@ node-test:
node tests/test_language.js
node tests/test_builtin.js
node tests/test_loop.js
- node tests/test_bignum.js
+ node tests/test_bigint.js
node-microbench:
node tests/microbench.js -s microbench-node.txt
diff --git a/TODO b/TODO
index f243dee..dcf0bcf 100644
--- a/TODO
+++ b/TODO
@@ -38,7 +38,6 @@ REPL:
Optimization ideas:
- 64-bit atoms in 64-bit mode ?
-- 64-bit small bigint in 64-bit mode ?
- reuse stack slots for disjoint scopes, if strip
- add heuristic to avoid some cycles in closures
- small String (0-2 charcodes) with immediate storage
diff --git a/cutils.h b/cutils.h
index f079e5c..32b9757 100644
--- a/cutils.h
+++ b/cutils.h
@@ -344,4 +344,24 @@ void rqsort(void *base, size_t nmemb, size_t size,
int (*cmp)(const void *, const void *, void *),
void *arg);
+static inline uint64_t float64_as_uint64(double d)
+{
+ union {
+ double d;
+ uint64_t u64;
+ } u;
+ u.d = d;
+ return u.u64;
+}
+
+static inline double uint64_as_float64(uint64_t u64)
+{
+ union {
+ double d;
+ uint64_t u64;
+ } u;
+ u.u64 = u64;
+ return u.d;
+}
+
#endif /* CUTILS_H */
diff --git a/examples/pi_bigdecimal.js b/examples/pi_bigdecimal.js
deleted file mode 100644
index 7cb7ad6..0000000
--- a/examples/pi_bigdecimal.js
+++ /dev/null
@@ -1,68 +0,0 @@
-/*
- * PI computation in Javascript using the QuickJS bigdecimal type
- * (decimal floating point)
- */
-"use strict";
-
-/* compute PI with a precision of 'prec' digits */
-function calc_pi(prec) {
- const CHUD_A = 13591409m;
- const CHUD_B = 545140134m;
- const CHUD_C = 640320m;
- const CHUD_C3 = 10939058860032000m; /* C^3/24 */
- const CHUD_DIGITS_PER_TERM = 14.18164746272548; /* log10(C/12)*3 */
-
- /* return [P, Q, G] */
- function chud_bs(a, b, need_G) {
- var c, P, Q, G, P1, Q1, G1, P2, Q2, G2, b1;
- if (a == (b - 1n)) {
- b1 = BigDecimal(b);
- G = (2m * b1 - 1m) * (6m * b1 - 1m) * (6m * b1 - 5m);
- P = G * (CHUD_B * b1 + CHUD_A);
- if (b & 1n)
- P = -P;
- G = G;
- Q = b1 * b1 * b1 * CHUD_C3;
- } else {
- c = (a + b) >> 1n;
- [P1, Q1, G1] = chud_bs(a, c, true);
- [P2, Q2, G2] = chud_bs(c, b, need_G);
- P = P1 * Q2 + P2 * G1;
- Q = Q1 * Q2;
- if (need_G)
- G = G1 * G2;
- else
- G = 0m;
- }
- return [P, Q, G];
- }
-
- var n, P, Q, G;
- /* number of serie terms */
- n = BigInt(Math.ceil(prec / CHUD_DIGITS_PER_TERM)) + 10n;
- [P, Q, G] = chud_bs(0n, n, false);
- Q = BigDecimal.div(Q, (P + Q * CHUD_A),
- { roundingMode: "half-even",
- maximumSignificantDigits: prec });
- G = (CHUD_C / 12m) * BigDecimal.sqrt(CHUD_C,
- { roundingMode: "half-even",
- maximumSignificantDigits: prec });
- return Q * G;
-}
-
-(function() {
- var r, n_digits, n_bits;
- if (typeof scriptArgs != "undefined") {
- if (scriptArgs.length < 2) {
- print("usage: pi n_digits");
- return;
- }
- n_digits = scriptArgs[1] | 0;
- } else {
- n_digits = 1000;
- }
- /* we add more digits to reduce the probability of bad rounding for
- the last digits */
- r = calc_pi(n_digits + 20);
- print(r.toFixed(n_digits, "down"));
-})();
diff --git a/examples/pi_bigfloat.js b/examples/pi_bigfloat.js
deleted file mode 100644
index 8372379..0000000
--- a/examples/pi_bigfloat.js
+++ /dev/null
@@ -1,66 +0,0 @@
-/*
- * PI computation in Javascript using the QuickJS bigfloat type
- * (binary floating point)
- */
-"use strict";
-
-/* compute PI with a precision of 'prec' bits */
-function calc_pi() {
- const CHUD_A = 13591409n;
- const CHUD_B = 545140134n;
- const CHUD_C = 640320n;
- const CHUD_C3 = 10939058860032000n; /* C^3/24 */
- const CHUD_BITS_PER_TERM = 47.11041313821584202247; /* log2(C/12)*3 */
-
- /* return [P, Q, G] */
- function chud_bs(a, b, need_G) {
- var c, P, Q, G, P1, Q1, G1, P2, Q2, G2;
- if (a == (b - 1n)) {
- G = (2n * b - 1n) * (6n * b - 1n) * (6n * b - 5n);
- P = BigFloat(G * (CHUD_B * b + CHUD_A));
- if (b & 1n)
- P = -P;
- G = BigFloat(G);
- Q = BigFloat(b * b * b * CHUD_C3);
- } else {
- c = (a + b) >> 1n;
- [P1, Q1, G1] = chud_bs(a, c, true);
- [P2, Q2, G2] = chud_bs(c, b, need_G);
- P = P1 * Q2 + P2 * G1;
- Q = Q1 * Q2;
- if (need_G)
- G = G1 * G2;
- else
- G = 0l;
- }
- return [P, Q, G];
- }
-
- var n, P, Q, G;
- /* number of serie terms */
- n = BigInt(Math.ceil(BigFloatEnv.prec / CHUD_BITS_PER_TERM)) + 10n;
- [P, Q, G] = chud_bs(0n, n, false);
- Q = Q / (P + Q * BigFloat(CHUD_A));
- G = BigFloat((CHUD_C / 12n)) * BigFloat.sqrt(BigFloat(CHUD_C));
- return Q * G;
-}
-
-(function() {
- var r, n_digits, n_bits;
- if (typeof scriptArgs != "undefined") {
- if (scriptArgs.length < 2) {
- print("usage: pi n_digits");
- return;
- }
- n_digits = scriptArgs[1];
- } else {
- n_digits = 1000;
- }
- n_bits = Math.ceil(n_digits * Math.log2(10));
- /* we add more bits to reduce the probability of bad rounding for
- the last digits */
- BigFloatEnv.setPrec( () => {
- r = calc_pi();
- print(r.toFixed(n_digits, BigFloatEnv.RNDZ));
- }, n_bits + 32);
-})();
diff --git a/libbf.c b/libbf.c
deleted file mode 100644
index 05d62ed..0000000
--- a/libbf.c
+++ /dev/null
@@ -1,8475 +0,0 @@
-/*
- * Tiny arbitrary precision floating point library
- *
- * Copyright (c) 2017-2021 Fabrice Bellard
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-#include <stdlib.h>
-#include <stdio.h>
-#include <inttypes.h>
-#include <math.h>
-#include <string.h>
-#include <assert.h>
-
-#ifdef __AVX2__
-#include <immintrin.h>
-#endif
-
-#include "cutils.h"
-#include "libbf.h"
-
-/* enable it to check the multiplication result */
-//#define USE_MUL_CHECK
-#ifdef CONFIG_BIGNUM
-/* enable it to use FFT/NTT multiplication */
-#define USE_FFT_MUL
-/* enable decimal floating point support */
-#define USE_BF_DEC
-#endif
-
-//#define inline __attribute__((always_inline))
-
-#ifdef __AVX2__
-#define FFT_MUL_THRESHOLD 100 /* in limbs of the smallest factor */
-#else
-#define FFT_MUL_THRESHOLD 100 /* in limbs of the smallest factor */
-#endif
-
-/* XXX: adjust */
-#define DIVNORM_LARGE_THRESHOLD 50
-#define UDIV1NORM_THRESHOLD 3
-
-#if LIMB_BITS == 64
-#define FMT_LIMB1 "%" PRIx64
-#define FMT_LIMB "%016" PRIx64
-#define PRId_LIMB PRId64
-#define PRIu_LIMB PRIu64
-
-#else
-
-#define FMT_LIMB1 "%x"
-#define FMT_LIMB "%08x"
-#define PRId_LIMB "d"
-#define PRIu_LIMB "u"
-
-#endif
-
-typedef intptr_t mp_size_t;
-
-typedef int bf_op2_func_t(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags);
-
-#ifdef USE_FFT_MUL
-
-#define FFT_MUL_R_OVERLAP_A (1 << 0)
-#define FFT_MUL_R_OVERLAP_B (1 << 1)
-#define FFT_MUL_R_NORESIZE (1 << 2)
-
-static no_inline int fft_mul(bf_context_t *s,
- bf_t *res, limb_t *a_tab, limb_t a_len,
- limb_t *b_tab, limb_t b_len, int mul_flags);
-static void fft_clear_cache(bf_context_t *s);
-#endif
-#ifdef USE_BF_DEC
-static limb_t get_digit(const limb_t *tab, limb_t len, slimb_t pos);
-#endif
-
-
-/* could leading zeros */
-static inline int clz(limb_t a)
-{
- if (a == 0) {
- return LIMB_BITS;
- } else {
-#if LIMB_BITS == 64
- return clz64(a);
-#else
- return clz32(a);
-#endif
- }
-}
-
-static inline int ctz(limb_t a)
-{
- if (a == 0) {
- return LIMB_BITS;
- } else {
-#if LIMB_BITS == 64
- return ctz64(a);
-#else
- return ctz32(a);
-#endif
- }
-}
-
-static inline int ceil_log2(limb_t a)
-{
- if (a <= 1)
- return 0;
- else
- return LIMB_BITS - clz(a - 1);
-}
-
-/* b must be >= 1 */
-static inline slimb_t ceil_div(slimb_t a, slimb_t b)
-{
- if (a >= 0)
- return (a + b - 1) / b;
- else
- return a / b;
-}
-
-#ifdef USE_BF_DEC
-/* b must be >= 1 */
-static inline slimb_t floor_div(slimb_t a, slimb_t b)
-{
- if (a >= 0) {
- return a / b;
- } else {
- return (a - b + 1) / b;
- }
-}
-#endif
-
-/* return r = a modulo b (0 <= r <= b - 1. b must be >= 1 */
-static inline limb_t smod(slimb_t a, slimb_t b)
-{
- a = a % (slimb_t)b;
- if (a < 0)
- a += b;
- return a;
-}
-
-/* signed addition with saturation */
-static inline slimb_t sat_add(slimb_t a, slimb_t b)
-{
- slimb_t r;
- r = a + b;
- /* overflow ? */
- if (((a ^ r) & (b ^ r)) < 0)
- r = (a >> (LIMB_BITS - 1)) ^ (((limb_t)1 << (LIMB_BITS - 1)) - 1);
- return r;
-}
-
-static inline __maybe_unused limb_t shrd(limb_t low, limb_t high, long shift)
-{
- if (shift != 0)
- low = (low >> shift) | (high << (LIMB_BITS - shift));
- return low;
-}
-
-static inline __maybe_unused limb_t shld(limb_t a1, limb_t a0, long shift)
-{
- if (shift != 0)
- return (a1 << shift) | (a0 >> (LIMB_BITS - shift));
- else
- return a1;
-}
-
-#define malloc(s) malloc_is_forbidden(s)
-#define free(p) free_is_forbidden(p)
-#define realloc(p, s) realloc_is_forbidden(p, s)
-
-void bf_context_init(bf_context_t *s, bf_realloc_func_t *realloc_func,
- void *realloc_opaque)
-{
- memset(s, 0, sizeof(*s));
- s->realloc_func = realloc_func;
- s->realloc_opaque = realloc_opaque;
-}
-
-void bf_context_end(bf_context_t *s)
-{
- bf_clear_cache(s);
-}
-
-void bf_init(bf_context_t *s, bf_t *r)
-{
- r->ctx = s;
- r->sign = 0;
- r->expn = BF_EXP_ZERO;
- r->len = 0;
- r->tab = NULL;
-}
-
-/* return 0 if OK, -1 if alloc error */
-int bf_resize(bf_t *r, limb_t len)
-{
- limb_t *tab;
-
- if (len != r->len) {
- tab = bf_realloc(r->ctx, r->tab, len * sizeof(limb_t));
- if (!tab && len != 0)
- return -1;
- r->tab = tab;
- r->len = len;
- }
- return 0;
-}
-
-/* return 0 or BF_ST_MEM_ERROR */
-int bf_set_ui(bf_t *r, uint64_t a)
-{
- r->sign = 0;
- if (a == 0) {
- r->expn = BF_EXP_ZERO;
- bf_resize(r, 0); /* cannot fail */
- }
-#if LIMB_BITS == 32
- else if (a <= 0xffffffff)
-#else
- else
-#endif
- {
- int shift;
- if (bf_resize(r, 1))
- goto fail;
- shift = clz(a);
- r->tab[0] = a << shift;
- r->expn = LIMB_BITS - shift;
- }
-#if LIMB_BITS == 32
- else {
- uint32_t a1, a0;
- int shift;
- if (bf_resize(r, 2))
- goto fail;
- a0 = a;
- a1 = a >> 32;
- shift = clz(a1);
- r->tab[0] = a0 << shift;
- r->tab[1] = shld(a1, a0, shift);
- r->expn = 2 * LIMB_BITS - shift;
- }
-#endif
- return 0;
- fail:
- bf_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-/* return 0 or BF_ST_MEM_ERROR */
-int bf_set_si(bf_t *r, int64_t a)
-{
- int ret;
-
- if (a < 0) {
- ret = bf_set_ui(r, -a);
- r->sign = 1;
- } else {
- ret = bf_set_ui(r, a);
- }
- return ret;
-}
-
-void bf_set_nan(bf_t *r)
-{
- bf_resize(r, 0); /* cannot fail */
- r->expn = BF_EXP_NAN;
- r->sign = 0;
-}
-
-void bf_set_zero(bf_t *r, int is_neg)
-{
- bf_resize(r, 0); /* cannot fail */
- r->expn = BF_EXP_ZERO;
- r->sign = is_neg;
-}
-
-void bf_set_inf(bf_t *r, int is_neg)
-{
- bf_resize(r, 0); /* cannot fail */
- r->expn = BF_EXP_INF;
- r->sign = is_neg;
-}
-
-/* return 0 or BF_ST_MEM_ERROR */
-int bf_set(bf_t *r, const bf_t *a)
-{
- if (r == a)
- return 0;
- if (bf_resize(r, a->len)) {
- bf_set_nan(r);
- return BF_ST_MEM_ERROR;
- }
- r->sign = a->sign;
- r->expn = a->expn;
- memcpy_no_ub(r->tab, a->tab, a->len * sizeof(limb_t));
- return 0;
-}
-
-/* equivalent to bf_set(r, a); bf_delete(a) */
-void bf_move(bf_t *r, bf_t *a)
-{
- bf_context_t *s = r->ctx;
- if (r == a)
- return;
- bf_free(s, r->tab);
- *r = *a;
-}
-
-static limb_t get_limbz(const bf_t *a, limb_t idx)
-{
- if (idx >= a->len)
- return 0;
- else
- return a->tab[idx];
-}
-
-/* get LIMB_BITS at bit position 'pos' in tab */
-static inline limb_t get_bits(const limb_t *tab, limb_t len, slimb_t pos)
-{
- limb_t i, a0, a1;
- int p;
-
- i = pos >> LIMB_LOG2_BITS;
- p = pos & (LIMB_BITS - 1);
- if (i < len)
- a0 = tab[i];
- else
- a0 = 0;
- if (p == 0) {
- return a0;
- } else {
- i++;
- if (i < len)
- a1 = tab[i];
- else
- a1 = 0;
- return (a0 >> p) | (a1 << (LIMB_BITS - p));
- }
-}
-
-static inline limb_t get_bit(const limb_t *tab, limb_t len, slimb_t pos)
-{
- slimb_t i;
- i = pos >> LIMB_LOG2_BITS;
- if (i < 0 || i >= len)
- return 0;
- return (tab[i] >> (pos & (LIMB_BITS - 1))) & 1;
-}
-
-static inline limb_t limb_mask(int start, int last)
-{
- limb_t v;
- int n;
- n = last - start + 1;
- if (n == LIMB_BITS)
- v = -1;
- else
- v = (((limb_t)1 << n) - 1) << start;
- return v;
-}
-
-static limb_t mp_scan_nz(const limb_t *tab, mp_size_t n)
-{
- mp_size_t i;
- for(i = 0; i < n; i++) {
- if (tab[i] != 0)
- return 1;
- }
- return 0;
-}
-
-/* return != 0 if one bit between 0 and bit_pos inclusive is not zero. */
-static inline limb_t scan_bit_nz(const bf_t *r, slimb_t bit_pos)
-{
- slimb_t pos;
- limb_t v;
-
- pos = bit_pos >> LIMB_LOG2_BITS;
- if (pos < 0)
- return 0;
- v = r->tab[pos] & limb_mask(0, bit_pos & (LIMB_BITS - 1));
- if (v != 0)
- return 1;
- pos--;
- while (pos >= 0) {
- if (r->tab[pos] != 0)
- return 1;
- pos--;
- }
- return 0;
-}
-
-/* return the addend for rounding. Note that prec can be <= 0 (for
- BF_FLAG_RADPNT_PREC) */
-static int bf_get_rnd_add(int *pret, const bf_t *r, limb_t l,
- slimb_t prec, int rnd_mode)
-{
- int add_one, inexact;
- limb_t bit1, bit0;
-
- if (rnd_mode == BF_RNDF) {
- bit0 = 1; /* faithful rounding does not honor the INEXACT flag */
- } else {
- /* starting limb for bit 'prec + 1' */
- bit0 = scan_bit_nz(r, l * LIMB_BITS - 1 - bf_max(0, prec + 1));
- }
-
- /* get the bit at 'prec' */
- bit1 = get_bit(r->tab, l, l * LIMB_BITS - 1 - prec);
- inexact = (bit1 | bit0) != 0;
-
- add_one = 0;
- switch(rnd_mode) {
- case BF_RNDZ:
- break;
- case BF_RNDN:
- if (bit1) {
- if (bit0) {
- add_one = 1;
- } else {
- /* round to even */
- add_one =
- get_bit(r->tab, l, l * LIMB_BITS - 1 - (prec - 1));
- }
- }
- break;
- case BF_RNDD:
- case BF_RNDU:
- if (r->sign == (rnd_mode == BF_RNDD))
- add_one = inexact;
- break;
- case BF_RNDA:
- add_one = inexact;
- break;
- case BF_RNDNA:
- case BF_RNDF:
- add_one = bit1;
- break;
- default:
- abort();
- }
-
- if (inexact)
- *pret |= BF_ST_INEXACT;
- return add_one;
-}
-
-static int bf_set_overflow(bf_t *r, int sign, limb_t prec, bf_flags_t flags)
-{
- slimb_t i, l, e_max;
- int rnd_mode;
-
- rnd_mode = flags & BF_RND_MASK;
- if (prec == BF_PREC_INF ||
- rnd_mode == BF_RNDN ||
- rnd_mode == BF_RNDNA ||
- rnd_mode == BF_RNDA ||
- (rnd_mode == BF_RNDD && sign == 1) ||
- (rnd_mode == BF_RNDU && sign == 0)) {
- bf_set_inf(r, sign);
- } else {
- /* set to maximum finite number */
- l = (prec + LIMB_BITS - 1) / LIMB_BITS;
- if (bf_resize(r, l)) {
- bf_set_nan(r);
- return BF_ST_MEM_ERROR;
- }
- r->tab[0] = limb_mask((-prec) & (LIMB_BITS - 1),
- LIMB_BITS - 1);
- for(i = 1; i < l; i++)
- r->tab[i] = (limb_t)-1;
- e_max = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
- r->expn = e_max;
- r->sign = sign;
- }
- return BF_ST_OVERFLOW | BF_ST_INEXACT;
-}
-
-/* round to prec1 bits assuming 'r' is non zero and finite. 'r' is
- assumed to have length 'l' (1 <= l <= r->len). Note: 'prec1' can be
- infinite (BF_PREC_INF). 'ret' is 0 or BF_ST_INEXACT if the result
- is known to be inexact. Can fail with BF_ST_MEM_ERROR in case of
- overflow not returning infinity. */
-static int __bf_round(bf_t *r, limb_t prec1, bf_flags_t flags, limb_t l,
- int ret)
-{
- limb_t v, a;
- int shift, add_one, rnd_mode;
- slimb_t i, bit_pos, pos, e_min, e_max, e_range, prec;
-
- /* e_min and e_max are computed to match the IEEE 754 conventions */
- e_range = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
- e_min = -e_range + 3;
- e_max = e_range;
-
- if (flags & BF_FLAG_RADPNT_PREC) {
- /* 'prec' is the precision after the radix point */
- if (prec1 != BF_PREC_INF)
- prec = r->expn + prec1;
- else
- prec = prec1;
- } else if (unlikely(r->expn < e_min) && (flags & BF_FLAG_SUBNORMAL)) {
- /* restrict the precision in case of potentially subnormal
- result */
- assert(prec1 != BF_PREC_INF);
- prec = prec1 - (e_min - r->expn);
- } else {
- prec = prec1;
- }
-
- /* round to prec bits */
- rnd_mode = flags & BF_RND_MASK;
- add_one = bf_get_rnd_add(&ret, r, l, prec, rnd_mode);
-
- if (prec <= 0) {
- if (add_one) {
- bf_resize(r, 1); /* cannot fail */
- r->tab[0] = (limb_t)1 << (LIMB_BITS - 1);
- r->expn += 1 - prec;
- ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
- return ret;
- } else {
- goto underflow;
- }
- } else if (add_one) {
- limb_t carry;
-
- /* add one starting at digit 'prec - 1' */
- bit_pos = l * LIMB_BITS - 1 - (prec - 1);
- pos = bit_pos >> LIMB_LOG2_BITS;
- carry = (limb_t)1 << (bit_pos & (LIMB_BITS - 1));
-
- for(i = pos; i < l; i++) {
- v = r->tab[i] + carry;
- carry = (v < carry);
- r->tab[i] = v;
- if (carry == 0)
- break;
- }
- if (carry) {
- /* shift right by one digit */
- v = 1;
- for(i = l - 1; i >= pos; i--) {
- a = r->tab[i];
- r->tab[i] = (a >> 1) | (v << (LIMB_BITS - 1));
- v = a;
- }
- r->expn++;
- }
- }
-
- /* check underflow */
- if (unlikely(r->expn < e_min)) {
- if (flags & BF_FLAG_SUBNORMAL) {
- /* if inexact, also set the underflow flag */
- if (ret & BF_ST_INEXACT)
- ret |= BF_ST_UNDERFLOW;
- } else {
- underflow:
- ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
- bf_set_zero(r, r->sign);
- return ret;
- }
- }
-
- /* check overflow */
- if (unlikely(r->expn > e_max))
- return bf_set_overflow(r, r->sign, prec1, flags);
-
- /* keep the bits starting at 'prec - 1' */
- bit_pos = l * LIMB_BITS - 1 - (prec - 1);
- i = bit_pos >> LIMB_LOG2_BITS;
- if (i >= 0) {
- shift = bit_pos & (LIMB_BITS - 1);
- if (shift != 0)
- r->tab[i] &= limb_mask(shift, LIMB_BITS - 1);
- } else {
- i = 0;
- }
- /* remove trailing zeros */
- while (r->tab[i] == 0)
- i++;
- if (i > 0) {
- l -= i;
- memmove(r->tab, r->tab + i, l * sizeof(limb_t));
- }
- bf_resize(r, l); /* cannot fail */
- return ret;
-}
-
-/* 'r' must be a finite number. */
-int bf_normalize_and_round(bf_t *r, limb_t prec1, bf_flags_t flags)
-{
- limb_t l, v, a;
- int shift, ret;
- slimb_t i;
-
- // bf_print_str("bf_renorm", r);
- l = r->len;
- while (l > 0 && r->tab[l - 1] == 0)
- l--;
- if (l == 0) {
- /* zero */
- r->expn = BF_EXP_ZERO;
- bf_resize(r, 0); /* cannot fail */
- ret = 0;
- } else {
- r->expn -= (r->len - l) * LIMB_BITS;
- /* shift to have the MSB set to '1' */
- v = r->tab[l - 1];
- shift = clz(v);
- if (shift != 0) {
- v = 0;
- for(i = 0; i < l; i++) {
- a = r->tab[i];
- r->tab[i] = (a << shift) | (v >> (LIMB_BITS - shift));
- v = a;
- }
- r->expn -= shift;
- }
- ret = __bf_round(r, prec1, flags, l, 0);
- }
- // bf_print_str("r_final", r);
- return ret;
-}
-
-/* return true if rounding can be done at precision 'prec' assuming
- the exact result r is such that |r-a| <= 2^(EXP(a)-k). */
-/* XXX: check the case where the exponent would be incremented by the
- rounding */
-int bf_can_round(const bf_t *a, slimb_t prec, bf_rnd_t rnd_mode, slimb_t k)
-{
- BOOL is_rndn;
- slimb_t bit_pos, n;
- limb_t bit;
-
- if (a->expn == BF_EXP_INF || a->expn == BF_EXP_NAN)
- return FALSE;
- if (rnd_mode == BF_RNDF) {
- return (k >= (prec + 1));
- }
- if (a->expn == BF_EXP_ZERO)
- return FALSE;
- is_rndn = (rnd_mode == BF_RNDN || rnd_mode == BF_RNDNA);
- if (k < (prec + 2))
- return FALSE;
- bit_pos = a->len * LIMB_BITS - 1 - prec;
- n = k - prec;
- /* bit pattern for RNDN or RNDNA: 0111.. or 1000...
- for other rounding modes: 000... or 111...
- */
- bit = get_bit(a->tab, a->len, bit_pos);
- bit_pos--;
- n--;
- bit ^= is_rndn;
- /* XXX: slow, but a few iterations on average */
- while (n != 0) {
- if (get_bit(a->tab, a->len, bit_pos) != bit)
- return TRUE;
- bit_pos--;
- n--;
- }
- return FALSE;
-}
-
-/* Cannot fail with BF_ST_MEM_ERROR. */
-int bf_round(bf_t *r, limb_t prec, bf_flags_t flags)
-{
- if (r->len == 0)
- return 0;
- return __bf_round(r, prec, flags, r->len, 0);
-}
-
-/* for debugging */
-static __maybe_unused void dump_limbs(const char *str, const limb_t *tab, limb_t n)
-{
- limb_t i;
- printf("%s: len=%" PRId_LIMB "\n", str, n);
- for(i = 0; i < n; i++) {
- printf("%" PRId_LIMB ": " FMT_LIMB "\n",
- i, tab[i]);
- }
-}
-
-void mp_print_str(const char *str, const limb_t *tab, limb_t n)
-{
- slimb_t i;
- printf("%s= 0x", str);
- for(i = n - 1; i >= 0; i--) {
- if (i != (n - 1))
- printf("_");
- printf(FMT_LIMB, tab[i]);
- }
- printf("\n");
-}
-
-static __maybe_unused void mp_print_str_h(const char *str,
- const limb_t *tab, limb_t n,
- limb_t high)
-{
- slimb_t i;
- printf("%s= 0x", str);
- printf(FMT_LIMB, high);
- for(i = n - 1; i >= 0; i--) {
- printf("_");
- printf(FMT_LIMB, tab[i]);
- }
- printf("\n");
-}
-
-/* for debugging */
-void bf_print_str(const char *str, const bf_t *a)
-{
- slimb_t i;
- printf("%s=", str);
-
- if (a->expn == BF_EXP_NAN) {
- printf("NaN");
- } else {
- if (a->sign)
- putchar('-');
- if (a->expn == BF_EXP_ZERO) {
- putchar('0');
- } else if (a->expn == BF_EXP_INF) {
- printf("Inf");
- } else {
- printf("0x0.");
- for(i = a->len - 1; i >= 0; i--)
- printf(FMT_LIMB, a->tab[i]);
- printf("p%" PRId_LIMB, a->expn);
- }
- }
- printf("\n");
-}
-
-/* compare the absolute value of 'a' and 'b'. Return < 0 if a < b, 0
- if a = b and > 0 otherwise. */
-int bf_cmpu(const bf_t *a, const bf_t *b)
-{
- slimb_t i;
- limb_t len, v1, v2;
-
- if (a->expn != b->expn) {
- if (a->expn < b->expn)
- return -1;
- else
- return 1;
- }
- len = bf_max(a->len, b->len);
- for(i = len - 1; i >= 0; i--) {
- v1 = get_limbz(a, a->len - len + i);
- v2 = get_limbz(b, b->len - len + i);
- if (v1 != v2) {
- if (v1 < v2)
- return -1;
- else
- return 1;
- }
- }
- return 0;
-}
-
-/* Full order: -0 < 0, NaN == NaN and NaN is larger than all other numbers */
-int bf_cmp_full(const bf_t *a, const bf_t *b)
-{
- int res;
-
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- if (a->expn == b->expn)
- res = 0;
- else if (a->expn == BF_EXP_NAN)
- res = 1;
- else
- res = -1;
- } else if (a->sign != b->sign) {
- res = 1 - 2 * a->sign;
- } else {
- res = bf_cmpu(a, b);
- if (a->sign)
- res = -res;
- }
- return res;
-}
-
-/* Standard floating point comparison: return 2 if one of the operands
- is NaN (unordered) or -1, 0, 1 depending on the ordering assuming
- -0 == +0 */
-int bf_cmp(const bf_t *a, const bf_t *b)
-{
- int res;
-
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- res = 2;
- } else if (a->sign != b->sign) {
- if (a->expn == BF_EXP_ZERO && b->expn == BF_EXP_ZERO)
- res = 0;
- else
- res = 1 - 2 * a->sign;
- } else {
- res = bf_cmpu(a, b);
- if (a->sign)
- res = -res;
- }
- return res;
-}
-
-/* Compute the number of bits 'n' matching the pattern:
- a= X1000..0
- b= X0111..1
-
- When computing a-b, the result will have at least n leading zero
- bits.
-
- Precondition: a > b and a.expn - b.expn = 0 or 1
-*/
-static limb_t count_cancelled_bits(const bf_t *a, const bf_t *b)
-{
- slimb_t bit_offset, b_offset, n;
- int p, p1;
- limb_t v1, v2, mask;
-
- bit_offset = a->len * LIMB_BITS - 1;
- b_offset = (b->len - a->len) * LIMB_BITS - (LIMB_BITS - 1) +
- a->expn - b->expn;
- n = 0;
-
- /* first search the equals bits */
- for(;;) {
- v1 = get_limbz(a, bit_offset >> LIMB_LOG2_BITS);
- v2 = get_bits(b->tab, b->len, bit_offset + b_offset);
- // printf("v1=" FMT_LIMB " v2=" FMT_LIMB "\n", v1, v2);
- if (v1 != v2)
- break;
- n += LIMB_BITS;
- bit_offset -= LIMB_BITS;
- }
- /* find the position of the first different bit */
- p = clz(v1 ^ v2) + 1;
- n += p;
- /* then search for '0' in a and '1' in b */
- p = LIMB_BITS - p;
- if (p > 0) {
- /* search in the trailing p bits of v1 and v2 */
- mask = limb_mask(0, p - 1);
- p1 = bf_min(clz(v1 & mask), clz((~v2) & mask)) - (LIMB_BITS - p);
- n += p1;
- if (p1 != p)
- goto done;
- }
- bit_offset -= LIMB_BITS;
- for(;;) {
- v1 = get_limbz(a, bit_offset >> LIMB_LOG2_BITS);
- v2 = get_bits(b->tab, b->len, bit_offset + b_offset);
- // printf("v1=" FMT_LIMB " v2=" FMT_LIMB "\n", v1, v2);
- if (v1 != 0 || v2 != -1) {
- /* different: count the matching bits */
- p1 = bf_min(clz(v1), clz(~v2));
- n += p1;
- break;
- }
- n += LIMB_BITS;
- bit_offset -= LIMB_BITS;
- }
- done:
- return n;
-}
-
-static int bf_add_internal(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags, int b_neg)
-{
- const bf_t *tmp;
- int is_sub, ret, cmp_res, a_sign, b_sign;
-
- a_sign = a->sign;
- b_sign = b->sign ^ b_neg;
- is_sub = a_sign ^ b_sign;
- cmp_res = bf_cmpu(a, b);
- if (cmp_res < 0) {
- tmp = a;
- a = b;
- b = tmp;
- a_sign = b_sign; /* b_sign is never used later */
- }
- /* abs(a) >= abs(b) */
- if (cmp_res == 0 && is_sub && a->expn < BF_EXP_INF) {
- /* zero result */
- bf_set_zero(r, (flags & BF_RND_MASK) == BF_RNDD);
- ret = 0;
- } else if (a->len == 0 || b->len == 0) {
- ret = 0;
- if (a->expn >= BF_EXP_INF) {
- if (a->expn == BF_EXP_NAN) {
- /* at least one operand is NaN */
- bf_set_nan(r);
- } else if (b->expn == BF_EXP_INF && is_sub) {
- /* infinities with different signs */
- bf_set_nan(r);
- ret = BF_ST_INVALID_OP;
- } else {
- bf_set_inf(r, a_sign);
- }
- } else {
- /* at least one zero and not subtract */
- bf_set(r, a);
- r->sign = a_sign;
- goto renorm;
- }
- } else {
- slimb_t d, a_offset, b_bit_offset, i, cancelled_bits;
- limb_t carry, v1, v2, u, r_len, carry1, precl, tot_len, z, sub_mask;
-
- r->sign = a_sign;
- r->expn = a->expn;
- d = a->expn - b->expn;
- /* must add more precision for the leading cancelled bits in
- subtraction */
- if (is_sub) {
- if (d <= 1)
- cancelled_bits = count_cancelled_bits(a, b);
- else
- cancelled_bits = 1;
- } else {
- cancelled_bits = 0;
- }
-
- /* add two extra bits for rounding */
- precl = (cancelled_bits + prec + 2 + LIMB_BITS - 1) / LIMB_BITS;
- tot_len = bf_max(a->len, b->len + (d + LIMB_BITS - 1) / LIMB_BITS);
- r_len = bf_min(precl, tot_len);
- if (bf_resize(r, r_len))
- goto fail;
- a_offset = a->len - r_len;
- b_bit_offset = (b->len - r_len) * LIMB_BITS + d;
-
- /* compute the bits before for the rounding */
- carry = is_sub;
- z = 0;
- sub_mask = -is_sub;
- i = r_len - tot_len;
- while (i < 0) {
- slimb_t ap, bp;
- BOOL inflag;
-
- ap = a_offset + i;
- bp = b_bit_offset + i * LIMB_BITS;
- inflag = FALSE;
- if (ap >= 0 && ap < a->len) {
- v1 = a->tab[ap];
- inflag = TRUE;
- } else {
- v1 = 0;
- }
- if (bp + LIMB_BITS > 0 && bp < (slimb_t)(b->len * LIMB_BITS)) {
- v2 = get_bits(b->tab, b->len, bp);
- inflag = TRUE;
- } else {
- v2 = 0;
- }
- if (!inflag) {
- /* outside 'a' and 'b': go directly to the next value
- inside a or b so that the running time does not
- depend on the exponent difference */
- i = 0;
- if (ap < 0)
- i = bf_min(i, -a_offset);
- /* b_bit_offset + i * LIMB_BITS + LIMB_BITS >= 1
- equivalent to
- i >= ceil(-b_bit_offset + 1 - LIMB_BITS) / LIMB_BITS)
- */
- if (bp + LIMB_BITS <= 0)
- i = bf_min(i, (-b_bit_offset) >> LIMB_LOG2_BITS);
- } else {
- i++;
- }
- v2 ^= sub_mask;
- u = v1 + v2;
- carry1 = u < v1;
- u += carry;
- carry = (u < carry) | carry1;
- z |= u;
- }
- /* and the result */
- for(i = 0; i < r_len; i++) {
- v1 = get_limbz(a, a_offset + i);
- v2 = get_bits(b->tab, b->len, b_bit_offset + i * LIMB_BITS);
- v2 ^= sub_mask;
- u = v1 + v2;
- carry1 = u < v1;
- u += carry;
- carry = (u < carry) | carry1;
- r->tab[i] = u;
- }
- /* set the extra bits for the rounding */
- r->tab[0] |= (z != 0);
-
- /* carry is only possible in add case */
- if (!is_sub && carry) {
- if (bf_resize(r, r_len + 1))
- goto fail;
- r->tab[r_len] = 1;
- r->expn += LIMB_BITS;
- }
- renorm:
- ret = bf_normalize_and_round(r, prec, flags);
- }
- return ret;
- fail:
- bf_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-static int __bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_add_internal(r, a, b, prec, flags, 0);
-}
-
-static int __bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_add_internal(r, a, b, prec, flags, 1);
-}
-
-limb_t mp_add(limb_t *res, const limb_t *op1, const limb_t *op2,
- limb_t n, limb_t carry)
-{
- slimb_t i;
- limb_t k, a, v, k1;
-
- k = carry;
- for(i=0;i<n;i++) {
- v = op1[i];
- a = v + op2[i];
- k1 = a < v;
- a = a + k;
- k = (a < k) | k1;
- res[i] = a;
- }
- return k;
-}
-
-limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n)
-{
- size_t i;
- limb_t k, a;
-
- k=b;
- for(i=0;i<n;i++) {
- if (k == 0)
- break;
- a = tab[i] + k;
- k = (a < k);
- tab[i] = a;
- }
- return k;
-}
-
-limb_t mp_sub(limb_t *res, const limb_t *op1, const limb_t *op2,
- mp_size_t n, limb_t carry)
-{
- int i;
- limb_t k, a, v, k1;
-
- k = carry;
- for(i=0;i<n;i++) {
- v = op1[i];
- a = v - op2[i];
- k1 = a > v;
- v = a - k;
- k = (v > a) | k1;
- res[i] = v;
- }
- return k;
-}
-
-/* compute 0 - op2 */
-static limb_t mp_neg(limb_t *res, const limb_t *op2, mp_size_t n, limb_t carry)
-{
- int i;
- limb_t k, a, v, k1;
-
- k = carry;
- for(i=0;i<n;i++) {
- v = 0;
- a = v - op2[i];
- k1 = a > v;
- v = a - k;
- k = (v > a) | k1;
- res[i] = v;
- }
- return k;
-}
-
-limb_t mp_sub_ui(limb_t *tab, limb_t b, mp_size_t n)
-{
- mp_size_t i;
- limb_t k, a, v;
-
- k=b;
- for(i=0;i<n;i++) {
- v = tab[i];
- a = v - k;
- k = a > v;
- tab[i] = a;
- if (k == 0)
- break;
- }
- return k;
-}
-
-/* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift).
- 1 <= shift <= LIMB_BITS - 1 */
-static limb_t mp_shr(limb_t *tab_r, const limb_t *tab, mp_size_t n,
- int shift, limb_t high)
-{
- mp_size_t i;
- limb_t l, a;
-
- assert(shift >= 1 && shift < LIMB_BITS);
- l = high;
- for(i = n - 1; i >= 0; i--) {
- a = tab[i];
- tab_r[i] = (a >> shift) | (l << (LIMB_BITS - shift));
- l = a;
- }
- return l & (((limb_t)1 << shift) - 1);
-}
-
-/* tabr[] = taba[] * b + l. Return the high carry */
-static limb_t mp_mul1(limb_t *tabr, const limb_t *taba, limb_t n,
- limb_t b, limb_t l)
-{
- limb_t i;
- dlimb_t t;
-
- for(i = 0; i < n; i++) {
- t = (dlimb_t)taba[i] * (dlimb_t)b + l;
- tabr[i] = t;
- l = t >> LIMB_BITS;
- }
- return l;
-}
-
-/* tabr[] += taba[] * b, return the high word. */
-static limb_t mp_add_mul1(limb_t *tabr, const limb_t *taba, limb_t n,
- limb_t b)
-{
- limb_t i, l;
- dlimb_t t;
-
- l = 0;
- for(i = 0; i < n; i++) {
- t = (dlimb_t)taba[i] * (dlimb_t)b + l + tabr[i];
- tabr[i] = t;
- l = t >> LIMB_BITS;
- }
- return l;
-}
-
-/* size of the result : op1_size + op2_size. */
-static void mp_mul_basecase(limb_t *result,
- const limb_t *op1, limb_t op1_size,
- const limb_t *op2, limb_t op2_size)
-{
- limb_t i, r;
-
- result[op1_size] = mp_mul1(result, op1, op1_size, op2[0], 0);
- for(i=1;i<op2_size;i++) {
- r = mp_add_mul1(result + i, op1, op1_size, op2[i]);
- result[i + op1_size] = r;
- }
-}
-
-/* return 0 if OK, -1 if memory error */
-/* XXX: change API so that result can be allocated */
-int mp_mul(bf_context_t *s, limb_t *result,
- const limb_t *op1, limb_t op1_size,
- const limb_t *op2, limb_t op2_size)
-{
-#ifdef USE_FFT_MUL
- if (unlikely(bf_min(op1_size, op2_size) >= FFT_MUL_THRESHOLD)) {
- bf_t r_s, *r = &r_s;
- r->tab = result;
- /* XXX: optimize memory usage in API */
- if (fft_mul(s, r, (limb_t *)op1, op1_size,
- (limb_t *)op2, op2_size, FFT_MUL_R_NORESIZE))
- return -1;
- } else
-#endif
- {
- mp_mul_basecase(result, op1, op1_size, op2, op2_size);
- }
- return 0;
-}
-
-/* tabr[] -= taba[] * b. Return the value to substract to the high
- word. */
-static limb_t mp_sub_mul1(limb_t *tabr, const limb_t *taba, limb_t n,
- limb_t b)
-{
- limb_t i, l;
- dlimb_t t;
-
- l = 0;
- for(i = 0; i < n; i++) {
- t = tabr[i] - (dlimb_t)taba[i] * (dlimb_t)b - l;
- tabr[i] = t;
- l = -(t >> LIMB_BITS);
- }
- return l;
-}
-
-/* WARNING: d must be >= 2^(LIMB_BITS-1) */
-static inline limb_t udiv1norm_init(limb_t d)
-{
- limb_t a0, a1;
- a1 = -d - 1;
- a0 = -1;
- return (((dlimb_t)a1 << LIMB_BITS) | a0) / d;
-}
-
-/* return the quotient and the remainder in '*pr'of 'a1*2^LIMB_BITS+a0
- / d' with 0 <= a1 < d. */
-static inline limb_t udiv1norm(limb_t *pr, limb_t a1, limb_t a0,
- limb_t d, limb_t d_inv)
-{
- limb_t n1m, n_adj, q, r, ah;
- dlimb_t a;
- n1m = ((slimb_t)a0 >> (LIMB_BITS - 1));
- n_adj = a0 + (n1m & d);
- a = (dlimb_t)d_inv * (a1 - n1m) + n_adj;
- q = (a >> LIMB_BITS) + a1;
- /* compute a - q * r and update q so that the remainder is\
- between 0 and d - 1 */
- a = ((dlimb_t)a1 << LIMB_BITS) | a0;
- a = a - (dlimb_t)q * d - d;
- ah = a >> LIMB_BITS;
- q += 1 + ah;
- r = (limb_t)a + (ah & d);
- *pr = r;
- return q;
-}
-
-/* b must be >= 1 << (LIMB_BITS - 1) */
-static limb_t mp_div1norm(limb_t *tabr, const limb_t *taba, limb_t n,
- limb_t b, limb_t r)
-{
- slimb_t i;
-
- if (n >= UDIV1NORM_THRESHOLD) {
- limb_t b_inv;
- b_inv = udiv1norm_init(b);
- for(i = n - 1; i >= 0; i--) {
- tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv);
- }
- } else {
- dlimb_t a1;
- for(i = n - 1; i >= 0; i--) {
- a1 = ((dlimb_t)r << LIMB_BITS) | taba[i];
- tabr[i] = a1 / b;
- r = a1 % b;
- }
- }
- return r;
-}
-
-static int mp_divnorm_large(bf_context_t *s,
- limb_t *tabq, limb_t *taba, limb_t na,
- const limb_t *tabb, limb_t nb);
-
-/* base case division: divides taba[0..na-1] by tabb[0..nb-1]. tabb[nb
- - 1] must be >= 1 << (LIMB_BITS - 1). na - nb must be >= 0. 'taba'
- is modified and contains the remainder (nb limbs). tabq[0..na-nb]
- contains the quotient with tabq[na - nb] <= 1. */
-static int mp_divnorm(bf_context_t *s, limb_t *tabq, limb_t *taba, limb_t na,
- const limb_t *tabb, limb_t nb)
-{
- limb_t r, a, c, q, v, b1, b1_inv, n, dummy_r;
- slimb_t i, j;
-
- b1 = tabb[nb - 1];
- if (nb == 1) {
- taba[0] = mp_div1norm(tabq, taba, na, b1, 0);
- return 0;
- }
- n = na - nb;
- if (bf_min(n, nb) >= DIVNORM_LARGE_THRESHOLD) {
- return mp_divnorm_large(s, tabq, taba, na, tabb, nb);
- }
-
- if (n >= UDIV1NORM_THRESHOLD)
- b1_inv = udiv1norm_init(b1);
- else
- b1_inv = 0;
-
- /* first iteration: the quotient is only 0 or 1 */
- q = 1;
- for(j = nb - 1; j >= 0; j--) {
- if (taba[n + j] != tabb[j]) {
- if (taba[n + j] < tabb[j])
- q = 0;
- break;
- }
- }
- tabq[n] = q;
- if (q) {
- mp_sub(taba + n, taba + n, tabb, nb, 0);
- }
-
- for(i = n - 1; i >= 0; i--) {
- if (unlikely(taba[i + nb] >= b1)) {
- q = -1;
- } else if (b1_inv) {
- q = udiv1norm(&dummy_r, taba[i + nb], taba[i + nb - 1], b1, b1_inv);
- } else {
- dlimb_t al;
- al = ((dlimb_t)taba[i + nb] << LIMB_BITS) | taba[i + nb - 1];
- q = al / b1;
- r = al % b1;
- }
- r = mp_sub_mul1(taba + i, tabb, nb, q);
-
- v = taba[i + nb];
- a = v - r;
- c = (a > v);
- taba[i + nb] = a;
-
- if (c != 0) {
- /* negative result */
- for(;;) {
- q--;
- c = mp_add(taba + i, taba + i, tabb, nb, 0);
- /* propagate carry and test if positive result */
- if (c != 0) {
- if (++taba[i + nb] == 0) {
- break;
- }
- }
- }
- }
- tabq[i] = q;
- }
- return 0;
-}
-
-/* compute r=B^(2*n)/a such as a*r < B^(2*n) < a*r + 2 with n >= 1. 'a'
- has n limbs with a[n-1] >= B/2 and 'r' has n+1 limbs with r[n] = 1.
-
- See Modern Computer Arithmetic by Richard P. Brent and Paul
- Zimmermann, algorithm 3.5 */
-int mp_recip(bf_context_t *s, limb_t *tabr, const limb_t *taba, limb_t n)
-{
- mp_size_t l, h, k, i;
- limb_t *tabxh, *tabt, c, *tabu;
-
- if (n <= 2) {
- /* return ceil(B^(2*n)/a) - 1 */
- /* XXX: could avoid allocation */
- tabu = bf_malloc(s, sizeof(limb_t) * (2 * n + 1));
- tabt = bf_malloc(s, sizeof(limb_t) * (n + 2));
- if (!tabt || !tabu)
- goto fail;
- for(i = 0; i < 2 * n; i++)
- tabu[i] = 0;
- tabu[2 * n] = 1;
- if (mp_divnorm(s, tabt, tabu, 2 * n + 1, taba, n))
- goto fail;
- for(i = 0; i < n + 1; i++)
- tabr[i] = tabt[i];
- if (mp_scan_nz(tabu, n) == 0) {
- /* only happens for a=B^n/2 */
- mp_sub_ui(tabr, 1, n + 1);
- }
- } else {
- l = (n - 1) / 2;
- h = n - l;
- /* n=2p -> l=p-1, h = p + 1, k = p + 3
- n=2p+1-> l=p, h = p + 1; k = p + 2
- */
- tabt = bf_malloc(s, sizeof(limb_t) * (n + h + 1));
- tabu = bf_malloc(s, sizeof(limb_t) * (n + 2 * h - l + 2));
- if (!tabt || !tabu)
- goto fail;
- tabxh = tabr + l;
- if (mp_recip(s, tabxh, taba + l, h))
- goto fail;
- if (mp_mul(s, tabt, taba, n, tabxh, h + 1)) /* n + h + 1 limbs */
- goto fail;
- while (tabt[n + h] != 0) {
- mp_sub_ui(tabxh, 1, h + 1);
- c = mp_sub(tabt, tabt, taba, n, 0);
- mp_sub_ui(tabt + n, c, h + 1);
- }
- /* T = B^(n+h) - T */
- mp_neg(tabt, tabt, n + h + 1, 0);
- tabt[n + h]++;
- if (mp_mul(s, tabu, tabt + l, n + h + 1 - l, tabxh, h + 1))
- goto fail;
- /* n + 2*h - l + 2 limbs */
- k = 2 * h - l;
- for(i = 0; i < l; i++)
- tabr[i] = tabu[i + k];
- mp_add(tabr + l, tabr + l, tabu + 2 * h, h, 0);
- }
- bf_free(s, tabt);
- bf_free(s, tabu);
- return 0;
- fail:
- bf_free(s, tabt);
- bf_free(s, tabu);
- return -1;
-}
-
-/* return -1, 0 or 1 */
-static int mp_cmp(const limb_t *taba, const limb_t *tabb, mp_size_t n)
-{
- mp_size_t i;
- for(i = n - 1; i >= 0; i--) {
- if (taba[i] != tabb[i]) {
- if (taba[i] < tabb[i])
- return -1;
- else
- return 1;
- }
- }
- return 0;
-}
-
-//#define DEBUG_DIVNORM_LARGE
-//#define DEBUG_DIVNORM_LARGE2
-
-/* subquadratic divnorm */
-static int mp_divnorm_large(bf_context_t *s,
- limb_t *tabq, limb_t *taba, limb_t na,
- const limb_t *tabb, limb_t nb)
-{
- limb_t *tabb_inv, nq, *tabt, i, n;
- nq = na - nb;
-#ifdef DEBUG_DIVNORM_LARGE
- printf("na=%d nb=%d nq=%d\n", (int)na, (int)nb, (int)nq);
- mp_print_str("a", taba, na);
- mp_print_str("b", tabb, nb);
-#endif
- assert(nq >= 1);
- n = nq;
- if (nq < nb)
- n++;
- tabb_inv = bf_malloc(s, sizeof(limb_t) * (n + 1));
- tabt = bf_malloc(s, sizeof(limb_t) * 2 * (n + 1));
- if (!tabb_inv || !tabt)
- goto fail;
-
- if (n >= nb) {
- for(i = 0; i < n - nb; i++)
- tabt[i] = 0;
- for(i = 0; i < nb; i++)
- tabt[i + n - nb] = tabb[i];
- } else {
- /* truncate B: need to increment it so that the approximate
- inverse is smaller that the exact inverse */
- for(i = 0; i < n; i++)
- tabt[i] = tabb[i + nb - n];
- if (mp_add_ui(tabt, 1, n)) {
- /* tabt = B^n : tabb_inv = B^n */
- memset(tabb_inv, 0, n * sizeof(limb_t));
- tabb_inv[n] = 1;
- goto recip_done;
- }
- }
- if (mp_recip(s, tabb_inv, tabt, n))
- goto fail;
- recip_done:
- /* Q=A*B^-1 */
- if (mp_mul(s, tabt, tabb_inv, n + 1, taba + na - (n + 1), n + 1))
- goto fail;
-
- for(i = 0; i < nq + 1; i++)
- tabq[i] = tabt[i + 2 * (n + 1) - (nq + 1)];
-#ifdef DEBUG_DIVNORM_LARGE
- mp_print_str("q", tabq, nq + 1);
-#endif
-
- bf_free(s, tabt);
- bf_free(s, tabb_inv);
- tabb_inv = NULL;
-
- /* R=A-B*Q */
- tabt = bf_malloc(s, sizeof(limb_t) * (na + 1));
- if (!tabt)
- goto fail;
- if (mp_mul(s, tabt, tabq, nq + 1, tabb, nb))
- goto fail;
- /* we add one more limb for the result */
- mp_sub(taba, taba, tabt, nb + 1, 0);
- bf_free(s, tabt);
- /* the approximated quotient is smaller than than the exact one,
- hence we may have to increment it */
-#ifdef DEBUG_DIVNORM_LARGE2
- int cnt = 0;
- static int cnt_max;
-#endif
- for(;;) {
- if (taba[nb] == 0 && mp_cmp(taba, tabb, nb) < 0)
- break;
- taba[nb] -= mp_sub(taba, taba, tabb, nb, 0);
- mp_add_ui(tabq, 1, nq + 1);
-#ifdef DEBUG_DIVNORM_LARGE2
- cnt++;
-#endif
- }
-#ifdef DEBUG_DIVNORM_LARGE2
- if (cnt > cnt_max) {
- cnt_max = cnt;
- printf("\ncnt=%d nq=%d nb=%d\n", cnt_max, (int)nq, (int)nb);
- }
-#endif
- return 0;
- fail:
- bf_free(s, tabb_inv);
- bf_free(s, tabt);
- return -1;
-}
-
-int bf_mul(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags)
-{
- int ret, r_sign;
-
- if (a->len < b->len) {
- const bf_t *tmp = a;
- a = b;
- b = tmp;
- }
- r_sign = a->sign ^ b->sign;
- /* here b->len <= a->len */
- if (b->len == 0) {
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- ret = 0;
- } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_INF) {
- if ((a->expn == BF_EXP_INF && b->expn == BF_EXP_ZERO) ||
- (a->expn == BF_EXP_ZERO && b->expn == BF_EXP_INF)) {
- bf_set_nan(r);
- ret = BF_ST_INVALID_OP;
- } else {
- bf_set_inf(r, r_sign);
- ret = 0;
- }
- } else {
- bf_set_zero(r, r_sign);
- ret = 0;
- }
- } else {
- bf_t tmp, *r1 = NULL;
- limb_t a_len, b_len, precl;
- limb_t *a_tab, *b_tab;
-
- a_len = a->len;
- b_len = b->len;
-
- if ((flags & BF_RND_MASK) == BF_RNDF) {
- /* faithful rounding does not require using the full inputs */
- precl = (prec + 2 + LIMB_BITS - 1) / LIMB_BITS;
- a_len = bf_min(a_len, precl);
- b_len = bf_min(b_len, precl);
- }
- a_tab = a->tab + a->len - a_len;
- b_tab = b->tab + b->len - b_len;
-
-#ifdef USE_FFT_MUL
- if (b_len >= FFT_MUL_THRESHOLD) {
- int mul_flags = 0;
- if (r == a)
- mul_flags |= FFT_MUL_R_OVERLAP_A;
- if (r == b)
- mul_flags |= FFT_MUL_R_OVERLAP_B;
- if (fft_mul(r->ctx, r, a_tab, a_len, b_tab, b_len, mul_flags))
- goto fail;
- } else
-#endif
- {
- if (r == a || r == b) {
- bf_init(r->ctx, &tmp);
- r1 = r;
- r = &tmp;
- }
- if (bf_resize(r, a_len + b_len)) {
-#ifdef USE_FFT_MUL
- fail:
-#endif
- bf_set_nan(r);
- ret = BF_ST_MEM_ERROR;
- goto done;
- }
- mp_mul_basecase(r->tab, a_tab, a_len, b_tab, b_len);
- }
- r->sign = r_sign;
- r->expn = a->expn + b->expn;
- ret = bf_normalize_and_round(r, prec, flags);
- done:
- if (r == &tmp)
- bf_move(r1, &tmp);
- }
- return ret;
-}
-
-/* multiply 'r' by 2^e */
-int bf_mul_2exp(bf_t *r, slimb_t e, limb_t prec, bf_flags_t flags)
-{
- slimb_t e_max;
- if (r->len == 0)
- return 0;
- e_max = ((limb_t)1 << BF_EXT_EXP_BITS_MAX) - 1;
- e = bf_max(e, -e_max);
- e = bf_min(e, e_max);
- r->expn += e;
- return __bf_round(r, prec, flags, r->len, 0);
-}
-
-/* Return e such as a=m*2^e with m odd integer. return 0 if a is zero,
- Infinite or Nan. */
-slimb_t bf_get_exp_min(const bf_t *a)
-{
- slimb_t i;
- limb_t v;
- int k;
-
- for(i = 0; i < a->len; i++) {
- v = a->tab[i];
- if (v != 0) {
- k = ctz(v);
- return a->expn - (a->len - i) * LIMB_BITS + k;
- }
- }
- return 0;
-}
-
-/* a and b must be finite numbers with a >= 0 and b > 0. 'q' is the
- integer defined as floor(a/b) and r = a - q * b. */
-static void bf_tdivremu(bf_t *q, bf_t *r,
- const bf_t *a, const bf_t *b)
-{
- if (bf_cmpu(a, b) < 0) {
- bf_set_ui(q, 0);
- bf_set(r, a);
- } else {
- bf_div(q, a, b, bf_max(a->expn - b->expn + 1, 2), BF_RNDZ);
- bf_rint(q, BF_RNDZ);
- bf_mul(r, q, b, BF_PREC_INF, BF_RNDZ);
- bf_sub(r, a, r, BF_PREC_INF, BF_RNDZ);
- }
-}
-
-static int __bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags)
-{
- bf_context_t *s = r->ctx;
- int ret, r_sign;
- limb_t n, nb, precl;
-
- r_sign = a->sign ^ b->sign;
- if (a->expn >= BF_EXP_INF || b->expn >= BF_EXP_INF) {
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF && b->expn == BF_EXP_INF) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else if (a->expn == BF_EXP_INF) {
- bf_set_inf(r, r_sign);
- return 0;
- } else {
- bf_set_zero(r, r_sign);
- return 0;
- }
- } else if (a->expn == BF_EXP_ZERO) {
- if (b->expn == BF_EXP_ZERO) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_set_zero(r, r_sign);
- return 0;
- }
- } else if (b->expn == BF_EXP_ZERO) {
- bf_set_inf(r, r_sign);
- return BF_ST_DIVIDE_ZERO;
- }
-
- /* number of limbs of the quotient (2 extra bits for rounding) */
- precl = (prec + 2 + LIMB_BITS - 1) / LIMB_BITS;
- nb = b->len;
- n = bf_max(a->len, precl);
-
- {
- limb_t *taba, na;
- slimb_t d;
-
- na = n + nb;
- taba = bf_malloc(s, (na + 1) * sizeof(limb_t));
- if (!taba)
- goto fail;
- d = na - a->len;
- memset(taba, 0, d * sizeof(limb_t));
- memcpy(taba + d, a->tab, a->len * sizeof(limb_t));
- if (bf_resize(r, n + 1))
- goto fail1;
- if (mp_divnorm(s, r->tab, taba, na, b->tab, nb)) {
- fail1:
- bf_free(s, taba);
- goto fail;
- }
- /* see if non zero remainder */
- if (mp_scan_nz(taba, nb))
- r->tab[0] |= 1;
- bf_free(r->ctx, taba);
- r->expn = a->expn - b->expn + LIMB_BITS;
- r->sign = r_sign;
- ret = bf_normalize_and_round(r, prec, flags);
- }
- return ret;
- fail:
- bf_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-/* division and remainder.
-
- rnd_mode is the rounding mode for the quotient. The additional
- rounding mode BF_RND_EUCLIDIAN is supported.
-
- 'q' is an integer. 'r' is rounded with prec and flags (prec can be
- BF_PREC_INF).
-*/
-int bf_divrem(bf_t *q, bf_t *r, const bf_t *a, const bf_t *b,
- limb_t prec, bf_flags_t flags, int rnd_mode)
-{
- bf_t a1_s, *a1 = &a1_s;
- bf_t b1_s, *b1 = &b1_s;
- int q_sign, ret;
- BOOL is_ceil, is_rndn;
-
- assert(q != a && q != b);
- assert(r != a && r != b);
- assert(q != r);
-
- if (a->len == 0 || b->len == 0) {
- bf_set_zero(q, 0);
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_ZERO) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_set(r, a);
- return bf_round(r, prec, flags);
- }
- }
-
- q_sign = a->sign ^ b->sign;
- is_rndn = (rnd_mode == BF_RNDN || rnd_mode == BF_RNDNA);
- switch(rnd_mode) {
- default:
- case BF_RNDZ:
- case BF_RNDN:
- case BF_RNDNA:
- is_ceil = FALSE;
- break;
- case BF_RNDD:
- is_ceil = q_sign;
- break;
- case BF_RNDU:
- is_ceil = q_sign ^ 1;
- break;
- case BF_RNDA:
- is_ceil = TRUE;
- break;
- case BF_DIVREM_EUCLIDIAN:
- is_ceil = a->sign;
- break;
- }
-
- a1->expn = a->expn;
- a1->tab = a->tab;
- a1->len = a->len;
- a1->sign = 0;
-
- b1->expn = b->expn;
- b1->tab = b->tab;
- b1->len = b->len;
- b1->sign = 0;
-
- /* XXX: could improve to avoid having a large 'q' */
- bf_tdivremu(q, r, a1, b1);
- if (bf_is_nan(q) || bf_is_nan(r))
- goto fail;
-
- if (r->len != 0) {
- if (is_rndn) {
- int res;
- b1->expn--;
- res = bf_cmpu(r, b1);
- b1->expn++;
- if (res > 0 ||
- (res == 0 &&
- (rnd_mode == BF_RNDNA ||
- get_bit(q->tab, q->len, q->len * LIMB_BITS - q->expn)))) {
- goto do_sub_r;
- }
- } else if (is_ceil) {
- do_sub_r:
- ret = bf_add_si(q, q, 1, BF_PREC_INF, BF_RNDZ);
- ret |= bf_sub(r, r, b1, BF_PREC_INF, BF_RNDZ);
- if (ret & BF_ST_MEM_ERROR)
- goto fail;
- }
- }
-
- r->sign ^= a->sign;
- q->sign = q_sign;
- return bf_round(r, prec, flags);
- fail:
- bf_set_nan(q);
- bf_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-int bf_rem(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags, int rnd_mode)
-{
- bf_t q_s, *q = &q_s;
- int ret;
-
- bf_init(r->ctx, q);
- ret = bf_divrem(q, r, a, b, prec, flags, rnd_mode);
- bf_delete(q);
- return ret;
-}
-
-static inline int bf_get_limb(slimb_t *pres, const bf_t *a, int flags)
-{
-#if LIMB_BITS == 32
- return bf_get_int32(pres, a, flags);
-#else
- return bf_get_int64(pres, a, flags);
-#endif
-}
-
-int bf_remquo(slimb_t *pq, bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags, int rnd_mode)
-{
- bf_t q_s, *q = &q_s;
- int ret;
-
- bf_init(r->ctx, q);
- ret = bf_divrem(q, r, a, b, prec, flags, rnd_mode);
- bf_get_limb(pq, q, BF_GET_INT_MOD);
- bf_delete(q);
- return ret;
-}
-
-static __maybe_unused inline limb_t mul_mod(limb_t a, limb_t b, limb_t m)
-{
- dlimb_t t;
- t = (dlimb_t)a * (dlimb_t)b;
- return t % m;
-}
-
-#if defined(USE_MUL_CHECK)
-static limb_t mp_mod1(const limb_t *tab, limb_t n, limb_t m, limb_t r)
-{
- slimb_t i;
- dlimb_t t;
-
- for(i = n - 1; i >= 0; i--) {
- t = ((dlimb_t)r << LIMB_BITS) | tab[i];
- r = t % m;
- }
- return r;
-}
-#endif
-
-static const uint16_t sqrt_table[192] = {
-128,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,144,145,146,147,148,149,150,150,151,152,153,154,155,155,156,157,158,159,160,160,161,162,163,163,164,165,166,167,167,168,169,170,170,171,172,173,173,174,175,176,176,177,178,178,179,180,181,181,182,183,183,184,185,185,186,187,187,188,189,189,190,191,192,192,193,193,194,195,195,196,197,197,198,199,199,200,201,201,202,203,203,204,204,205,206,206,207,208,208,209,209,210,211,211,212,212,213,214,214,215,215,216,217,217,218,218,219,219,220,221,221,222,222,223,224,224,225,225,226,226,227,227,228,229,229,230,230,231,231,232,232,233,234,234,235,235,236,236,237,237,238,238,239,240,240,241,241,242,242,243,243,244,244,245,245,246,246,247,247,248,248,249,249,250,250,251,251,252,252,253,253,254,254,255,
-};
-
-/* a >= 2^(LIMB_BITS - 2). Return (s, r) with s=floor(sqrt(a)) and
- r=a-s^2. 0 <= r <= 2 * s */
-static limb_t mp_sqrtrem1(limb_t *pr, limb_t a)
-{
- limb_t s1, r1, s, r, q, u, num;
-
- /* use a table for the 16 -> 8 bit sqrt */
- s1 = sqrt_table[(a >> (LIMB_BITS - 8)) - 64];
- r1 = (a >> (LIMB_BITS - 16)) - s1 * s1;
- if (r1 > 2 * s1) {
- r1 -= 2 * s1 + 1;
- s1++;
- }
-
- /* one iteration to get a 32 -> 16 bit sqrt */
- num = (r1 << 8) | ((a >> (LIMB_BITS - 32 + 8)) & 0xff);
- q = num / (2 * s1); /* q <= 2^8 */
- u = num % (2 * s1);
- s = (s1 << 8) + q;
- r = (u << 8) | ((a >> (LIMB_BITS - 32)) & 0xff);
- r -= q * q;
- if ((slimb_t)r < 0) {
- s--;
- r += 2 * s + 1;
- }
-
-#if LIMB_BITS == 64
- s1 = s;
- r1 = r;
- /* one more iteration for 64 -> 32 bit sqrt */
- num = (r1 << 16) | ((a >> (LIMB_BITS - 64 + 16)) & 0xffff);
- q = num / (2 * s1); /* q <= 2^16 */
- u = num % (2 * s1);
- s = (s1 << 16) + q;
- r = (u << 16) | ((a >> (LIMB_BITS - 64)) & 0xffff);
- r -= q * q;
- if ((slimb_t)r < 0) {
- s--;
- r += 2 * s + 1;
- }
-#endif
- *pr = r;
- return s;
-}
-
-/* return floor(sqrt(a)) */
-limb_t bf_isqrt(limb_t a)
-{
- limb_t s, r;
- int k;
-
- if (a == 0)
- return 0;
- k = clz(a) & ~1;
- s = mp_sqrtrem1(&r, a << k);
- s >>= (k >> 1);
- return s;
-}
-
-static limb_t mp_sqrtrem2(limb_t *tabs, limb_t *taba)
-{
- limb_t s1, r1, s, q, u, a0, a1;
- dlimb_t r, num;
- int l;
-
- a0 = taba[0];
- a1 = taba[1];
- s1 = mp_sqrtrem1(&r1, a1);
- l = LIMB_BITS / 2;
- num = ((dlimb_t)r1 << l) | (a0 >> l);
- q = num / (2 * s1);
- u = num % (2 * s1);
- s = (s1 << l) + q;
- r = ((dlimb_t)u << l) | (a0 & (((limb_t)1 << l) - 1));
- if (unlikely((q >> l) != 0))
- r -= (dlimb_t)1 << LIMB_BITS; /* special case when q=2^l */
- else
- r -= q * q;
- if ((slimb_t)(r >> LIMB_BITS) < 0) {
- s--;
- r += 2 * (dlimb_t)s + 1;
- }
- tabs[0] = s;
- taba[0] = r;
- return r >> LIMB_BITS;
-}
-
-//#define DEBUG_SQRTREM
-
-/* tmp_buf must contain (n / 2 + 1 limbs). *prh contains the highest
- limb of the remainder. */
-static int mp_sqrtrem_rec(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n,
- limb_t *tmp_buf, limb_t *prh)
-{
- limb_t l, h, rh, ql, qh, c, i;
-
- if (n == 1) {
- *prh = mp_sqrtrem2(tabs, taba);
- return 0;
- }
-#ifdef DEBUG_SQRTREM
- mp_print_str("a", taba, 2 * n);
-#endif
- l = n / 2;
- h = n - l;
- if (mp_sqrtrem_rec(s, tabs + l, taba + 2 * l, h, tmp_buf, &qh))
- return -1;
-#ifdef DEBUG_SQRTREM
- mp_print_str("s1", tabs + l, h);
- mp_print_str_h("r1", taba + 2 * l, h, qh);
- mp_print_str_h("r2", taba + l, n, qh);
-#endif
-
- /* the remainder is in taba + 2 * l. Its high bit is in qh */
- if (qh) {
- mp_sub(taba + 2 * l, taba + 2 * l, tabs + l, h, 0);
- }
- /* instead of dividing by 2*s, divide by s (which is normalized)
- and update q and r */
- if (mp_divnorm(s, tmp_buf, taba + l, n, tabs + l, h))
- return -1;
- qh += tmp_buf[l];
- for(i = 0; i < l; i++)
- tabs[i] = tmp_buf[i];
- ql = mp_shr(tabs, tabs, l, 1, qh & 1);
- qh = qh >> 1; /* 0 or 1 */
- if (ql)
- rh = mp_add(taba + l, taba + l, tabs + l, h, 0);
- else
- rh = 0;
-#ifdef DEBUG_SQRTREM
- mp_print_str_h("q", tabs, l, qh);
- mp_print_str_h("u", taba + l, h, rh);
-#endif
-
- mp_add_ui(tabs + l, qh, h);
-#ifdef DEBUG_SQRTREM
- mp_print_str_h("s2", tabs, n, sh);
-#endif
-
- /* q = qh, tabs[l - 1 ... 0], r = taba[n - 1 ... l] */
- /* subtract q^2. if qh = 1 then q = B^l, so we can take shortcuts */
- if (qh) {
- c = qh;
- } else {
- if (mp_mul(s, taba + n, tabs, l, tabs, l))
- return -1;
- c = mp_sub(taba, taba, taba + n, 2 * l, 0);
- }
- rh -= mp_sub_ui(taba + 2 * l, c, n - 2 * l);
- if ((slimb_t)rh < 0) {
- mp_sub_ui(tabs, 1, n);
- rh += mp_add_mul1(taba, tabs, n, 2);
- rh += mp_add_ui(taba, 1, n);
- }
- *prh = rh;
- return 0;
-}
-
-/* 'taba' has 2*n limbs with n >= 1 and taba[2*n-1] >= 2 ^ (LIMB_BITS
- - 2). Return (s, r) with s=floor(sqrt(a)) and r=a-s^2. 0 <= r <= 2
- * s. tabs has n limbs. r is returned in the lower n limbs of
- taba. Its r[n] is the returned value of the function. */
-/* Algorithm from the article "Karatsuba Square Root" by Paul Zimmermann and
- inspirated from its GMP implementation */
-int mp_sqrtrem(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n)
-{
- limb_t tmp_buf1[8];
- limb_t *tmp_buf;
- mp_size_t n2;
- int ret;
- n2 = n / 2 + 1;
- if (n2 <= countof(tmp_buf1)) {
- tmp_buf = tmp_buf1;
- } else {
- tmp_buf = bf_malloc(s, sizeof(limb_t) * n2);
- if (!tmp_buf)
- return -1;
- }
- ret = mp_sqrtrem_rec(s, tabs, taba, n, tmp_buf, taba + n);
- if (tmp_buf != tmp_buf1)
- bf_free(s, tmp_buf);
- return ret;
-}
-
-/* Integer square root with remainder. 'a' must be an integer. r =
- floor(sqrt(a)) and rem = a - r^2. BF_ST_INEXACT is set if the result
- is inexact. 'rem' can be NULL if the remainder is not needed. */
-int bf_sqrtrem(bf_t *r, bf_t *rem1, const bf_t *a)
-{
- int ret;
-
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- } else if (a->expn == BF_EXP_INF && a->sign) {
- goto invalid_op;
- } else {
- bf_set(r, a);
- }
- if (rem1)
- bf_set_ui(rem1, 0);
- ret = 0;
- } else if (a->sign) {
- invalid_op:
- bf_set_nan(r);
- if (rem1)
- bf_set_ui(rem1, 0);
- ret = BF_ST_INVALID_OP;
- } else {
- bf_t rem_s, *rem;
-
- bf_sqrt(r, a, (a->expn + 1) / 2, BF_RNDZ);
- bf_rint(r, BF_RNDZ);
- /* see if the result is exact by computing the remainder */
- if (rem1) {
- rem = rem1;
- } else {
- rem = &rem_s;
- bf_init(r->ctx, rem);
- }
- /* XXX: could avoid recomputing the remainder */
- bf_mul(rem, r, r, BF_PREC_INF, BF_RNDZ);
- bf_neg(rem);
- bf_add(rem, rem, a, BF_PREC_INF, BF_RNDZ);
- if (bf_is_nan(rem)) {
- ret = BF_ST_MEM_ERROR;
- goto done;
- }
- if (rem->len != 0) {
- ret = BF_ST_INEXACT;
- } else {
- ret = 0;
- }
- done:
- if (!rem1)
- bf_delete(rem);
- }
- return ret;
-}
-
-int bf_sqrt(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = a->ctx;
- int ret;
-
- assert(r != a);
-
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- } else if (a->expn == BF_EXP_INF && a->sign) {
- goto invalid_op;
- } else {
- bf_set(r, a);
- }
- ret = 0;
- } else if (a->sign) {
- invalid_op:
- bf_set_nan(r);
- ret = BF_ST_INVALID_OP;
- } else {
- limb_t *a1;
- slimb_t n, n1;
- limb_t res;
-
- /* convert the mantissa to an integer with at least 2 *
- prec + 4 bits */
- n = (2 * (prec + 2) + 2 * LIMB_BITS - 1) / (2 * LIMB_BITS);
- if (bf_resize(r, n))
- goto fail;
- a1 = bf_malloc(s, sizeof(limb_t) * 2 * n);
- if (!a1)
- goto fail;
- n1 = bf_min(2 * n, a->len);
- memset(a1, 0, (2 * n - n1) * sizeof(limb_t));
- memcpy(a1 + 2 * n - n1, a->tab + a->len - n1, n1 * sizeof(limb_t));
- if (a->expn & 1) {
- res = mp_shr(a1, a1, 2 * n, 1, 0);
- } else {
- res = 0;
- }
- if (mp_sqrtrem(s, r->tab, a1, n)) {
- bf_free(s, a1);
- goto fail;
- }
- if (!res) {
- res = mp_scan_nz(a1, n + 1);
- }
- bf_free(s, a1);
- if (!res) {
- res = mp_scan_nz(a->tab, a->len - n1);
- }
- if (res != 0)
- r->tab[0] |= 1;
- r->sign = 0;
- r->expn = (a->expn + 1) >> 1;
- ret = bf_round(r, prec, flags);
- }
- return ret;
- fail:
- bf_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-static no_inline int bf_op2(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags, bf_op2_func_t *func)
-{
- bf_t tmp;
- int ret;
-
- if (r == a || r == b) {
- bf_init(r->ctx, &tmp);
- ret = func(&tmp, a, b, prec, flags);
- bf_move(r, &tmp);
- } else {
- ret = func(r, a, b, prec, flags);
- }
- return ret;
-}
-
-int bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_op2(r, a, b, prec, flags, __bf_add);
-}
-
-int bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_op2(r, a, b, prec, flags, __bf_sub);
-}
-
-int bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_op2(r, a, b, prec, flags, __bf_div);
-}
-
-int bf_mul_ui(bf_t *r, const bf_t *a, uint64_t b1, limb_t prec,
- bf_flags_t flags)
-{
- bf_t b;
- int ret;
- bf_init(r->ctx, &b);
- ret = bf_set_ui(&b, b1);
- ret |= bf_mul(r, a, &b, prec, flags);
- bf_delete(&b);
- return ret;
-}
-
-int bf_mul_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
- bf_flags_t flags)
-{
- bf_t b;
- int ret;
- bf_init(r->ctx, &b);
- ret = bf_set_si(&b, b1);
- ret |= bf_mul(r, a, &b, prec, flags);
- bf_delete(&b);
- return ret;
-}
-
-int bf_add_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
- bf_flags_t flags)
-{
- bf_t b;
- int ret;
-
- bf_init(r->ctx, &b);
- ret = bf_set_si(&b, b1);
- ret |= bf_add(r, a, &b, prec, flags);
- bf_delete(&b);
- return ret;
-}
-
-static int bf_pow_ui(bf_t *r, const bf_t *a, limb_t b, limb_t prec,
- bf_flags_t flags)
-{
- int ret, n_bits, i;
-
- assert(r != a);
- if (b == 0)
- return bf_set_ui(r, 1);
- ret = bf_set(r, a);
- n_bits = LIMB_BITS - clz(b);
- for(i = n_bits - 2; i >= 0; i--) {
- ret |= bf_mul(r, r, r, prec, flags);
- if ((b >> i) & 1)
- ret |= bf_mul(r, r, a, prec, flags);
- }
- return ret;
-}
-
-static int bf_pow_ui_ui(bf_t *r, limb_t a1, limb_t b,
- limb_t prec, bf_flags_t flags)
-{
- bf_t a;
- int ret;
-
-#ifdef USE_BF_DEC
- if (a1 == 10 && b <= LIMB_DIGITS) {
- /* use precomputed powers. We do not round at this point
- because we expect the caller to do it */
- ret = bf_set_ui(r, mp_pow_dec[b]);
- } else
-#endif
- {
- bf_init(r->ctx, &a);
- ret = bf_set_ui(&a, a1);
- ret |= bf_pow_ui(r, &a, b, prec, flags);
- bf_delete(&a);
- }
- return ret;
-}
-
-/* convert to integer (infinite precision) */
-int bf_rint(bf_t *r, int rnd_mode)
-{
- return bf_round(r, 0, rnd_mode | BF_FLAG_RADPNT_PREC);
-}
-
-/* logical operations */
-#define BF_LOGIC_OR 0
-#define BF_LOGIC_XOR 1
-#define BF_LOGIC_AND 2
-
-static inline limb_t bf_logic_op1(limb_t a, limb_t b, int op)
-{
- switch(op) {
- case BF_LOGIC_OR:
- return a | b;
- case BF_LOGIC_XOR:
- return a ^ b;
- default:
- case BF_LOGIC_AND:
- return a & b;
- }
-}
-
-static int bf_logic_op(bf_t *r, const bf_t *a1, const bf_t *b1, int op)
-{
- bf_t b1_s, a1_s, *a, *b;
- limb_t a_sign, b_sign, r_sign;
- slimb_t l, i, a_bit_offset, b_bit_offset;
- limb_t v1, v2, v1_mask, v2_mask, r_mask;
- int ret;
-
- assert(r != a1 && r != b1);
-
- if (a1->expn <= 0)
- a_sign = 0; /* minus zero is considered as positive */
- else
- a_sign = a1->sign;
-
- if (b1->expn <= 0)
- b_sign = 0; /* minus zero is considered as positive */
- else
- b_sign = b1->sign;
-
- if (a_sign) {
- a = &a1_s;
- bf_init(r->ctx, a);
- if (bf_add_si(a, a1, 1, BF_PREC_INF, BF_RNDZ)) {
- b = NULL;
- goto fail;
- }
- } else {
- a = (bf_t *)a1;
- }
-
- if (b_sign) {
- b = &b1_s;
- bf_init(r->ctx, b);
- if (bf_add_si(b, b1, 1, BF_PREC_INF, BF_RNDZ))
- goto fail;
- } else {
- b = (bf_t *)b1;
- }
-
- r_sign = bf_logic_op1(a_sign, b_sign, op);
- if (op == BF_LOGIC_AND && r_sign == 0) {
- /* no need to compute extra zeros for and */
- if (a_sign == 0 && b_sign == 0)
- l = bf_min(a->expn, b->expn);
- else if (a_sign == 0)
- l = a->expn;
- else
- l = b->expn;
- } else {
- l = bf_max(a->expn, b->expn);
- }
- /* Note: a or b can be zero */
- l = (bf_max(l, 1) + LIMB_BITS - 1) / LIMB_BITS;
- if (bf_resize(r, l))
- goto fail;
- a_bit_offset = a->len * LIMB_BITS - a->expn;
- b_bit_offset = b->len * LIMB_BITS - b->expn;
- v1_mask = -a_sign;
- v2_mask = -b_sign;
- r_mask = -r_sign;
- for(i = 0; i < l; i++) {
- v1 = get_bits(a->tab, a->len, a_bit_offset + i * LIMB_BITS) ^ v1_mask;
- v2 = get_bits(b->tab, b->len, b_bit_offset + i * LIMB_BITS) ^ v2_mask;
- r->tab[i] = bf_logic_op1(v1, v2, op) ^ r_mask;
- }
- r->expn = l * LIMB_BITS;
- r->sign = r_sign;
- bf_normalize_and_round(r, BF_PREC_INF, BF_RNDZ); /* cannot fail */
- if (r_sign) {
- if (bf_add_si(r, r, -1, BF_PREC_INF, BF_RNDZ))
- goto fail;
- }
- ret = 0;
- done:
- if (a == &a1_s)
- bf_delete(a);
- if (b == &b1_s)
- bf_delete(b);
- return ret;
- fail:
- bf_set_nan(r);
- ret = BF_ST_MEM_ERROR;
- goto done;
-}
-
-/* 'a' and 'b' must be integers. Return 0 or BF_ST_MEM_ERROR. */
-int bf_logic_or(bf_t *r, const bf_t *a, const bf_t *b)
-{
- return bf_logic_op(r, a, b, BF_LOGIC_OR);
-}
-
-/* 'a' and 'b' must be integers. Return 0 or BF_ST_MEM_ERROR. */
-int bf_logic_xor(bf_t *r, const bf_t *a, const bf_t *b)
-{
- return bf_logic_op(r, a, b, BF_LOGIC_XOR);
-}
-
-/* 'a' and 'b' must be integers. Return 0 or BF_ST_MEM_ERROR. */
-int bf_logic_and(bf_t *r, const bf_t *a, const bf_t *b)
-{
- return bf_logic_op(r, a, b, BF_LOGIC_AND);
-}
-
-/* conversion between fixed size types */
-
-typedef union {
- double d;
- uint64_t u;
-} Float64Union;
-
-int bf_get_float64(const bf_t *a, double *pres, bf_rnd_t rnd_mode)
-{
- Float64Union u;
- int e, ret;
- uint64_t m;
-
- ret = 0;
- if (a->expn == BF_EXP_NAN) {
- u.u = 0x7ff8000000000000; /* quiet nan */
- } else {
- bf_t b_s, *b = &b_s;
-
- bf_init(a->ctx, b);
- bf_set(b, a);
- if (bf_is_finite(b)) {
- ret = bf_round(b, 53, rnd_mode | BF_FLAG_SUBNORMAL | bf_set_exp_bits(11));
- }
- if (b->expn == BF_EXP_INF) {
- e = (1 << 11) - 1;
- m = 0;
- } else if (b->expn == BF_EXP_ZERO) {
- e = 0;
- m = 0;
- } else {
- e = b->expn + 1023 - 1;
-#if LIMB_BITS == 32
- if (b->len == 2) {
- m = ((uint64_t)b->tab[1] << 32) | b->tab[0];
- } else {
- m = ((uint64_t)b->tab[0] << 32);
- }
-#else
- m = b->tab[0];
-#endif
- if (e <= 0) {
- /* subnormal */
- m = m >> (12 - e);
- e = 0;
- } else {
- m = (m << 1) >> 12;
- }
- }
- u.u = m | ((uint64_t)e << 52) | ((uint64_t)b->sign << 63);
- bf_delete(b);
- }
- *pres = u.d;
- return ret;
-}
-
-int bf_set_float64(bf_t *a, double d)
-{
- Float64Union u;
- uint64_t m;
- int shift, e, sgn;
-
- u.d = d;
- sgn = u.u >> 63;
- e = (u.u >> 52) & ((1 << 11) - 1);
- m = u.u & (((uint64_t)1 << 52) - 1);
- if (e == ((1 << 11) - 1)) {
- if (m != 0) {
- bf_set_nan(a);
- } else {
- bf_set_inf(a, sgn);
- }
- } else if (e == 0) {
- if (m == 0) {
- bf_set_zero(a, sgn);
- } else {
- /* subnormal number */
- m <<= 12;
- shift = clz64(m);
- m <<= shift;
- e = -shift;
- goto norm;
- }
- } else {
- m = (m << 11) | ((uint64_t)1 << 63);
- norm:
- a->expn = e - 1023 + 1;
-#if LIMB_BITS == 32
- if (bf_resize(a, 2))
- goto fail;
- a->tab[0] = m;
- a->tab[1] = m >> 32;
-#else
- if (bf_resize(a, 1))
- goto fail;
- a->tab[0] = m;
-#endif
- a->sign = sgn;
- }
- return 0;
-fail:
- bf_set_nan(a);
- return BF_ST_MEM_ERROR;
-}
-
-/* The rounding mode is always BF_RNDZ. Return BF_ST_INVALID_OP if there
- is an overflow and 0 otherwise. */
-int bf_get_int32(int *pres, const bf_t *a, int flags)
-{
- uint32_t v;
- int ret;
- if (a->expn >= BF_EXP_INF) {
- ret = BF_ST_INVALID_OP;
- if (flags & BF_GET_INT_MOD) {
- v = 0;
- } else if (a->expn == BF_EXP_INF) {
- v = (uint32_t)INT32_MAX + a->sign;
- } else {
- v = INT32_MAX;
- }
- } else if (a->expn <= 0) {
- v = 0;
- ret = 0;
- } else if (a->expn <= 31) {
- v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
- if (a->sign)
- v = -v;
- ret = 0;
- } else if (!(flags & BF_GET_INT_MOD)) {
- ret = BF_ST_INVALID_OP;
- if (a->sign) {
- v = (uint32_t)INT32_MAX + 1;
- if (a->expn == 32 &&
- (a->tab[a->len - 1] >> (LIMB_BITS - 32)) == v) {
- ret = 0;
- }
- } else {
- v = INT32_MAX;
- }
- } else {
- v = get_bits(a->tab, a->len, a->len * LIMB_BITS - a->expn);
- if (a->sign)
- v = -v;
- ret = 0;
- }
- *pres = v;
- return ret;
-}
-
-/* The rounding mode is always BF_RNDZ. Return BF_ST_INVALID_OP if there
- is an overflow and 0 otherwise. */
-int bf_get_int64(int64_t *pres, const bf_t *a, int flags)
-{
- uint64_t v;
- int ret;
- if (a->expn >= BF_EXP_INF) {
- ret = BF_ST_INVALID_OP;
- if (flags & BF_GET_INT_MOD) {
- v = 0;
- } else if (a->expn == BF_EXP_INF) {
- v = (uint64_t)INT64_MAX + a->sign;
- } else {
- v = INT64_MAX;
- }
- } else if (a->expn <= 0) {
- v = 0;
- ret = 0;
- } else if (a->expn <= 63) {
-#if LIMB_BITS == 32
- if (a->expn <= 32)
- v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
- else
- v = (((uint64_t)a->tab[a->len - 1] << 32) |
- get_limbz(a, a->len - 2)) >> (64 - a->expn);
-#else
- v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
-#endif
- if (a->sign)
- v = -v;
- ret = 0;
- } else if (!(flags & BF_GET_INT_MOD)) {
- ret = BF_ST_INVALID_OP;
- if (a->sign) {
- uint64_t v1;
- v = (uint64_t)INT64_MAX + 1;
- if (a->expn == 64) {
- v1 = a->tab[a->len - 1];
-#if LIMB_BITS == 32
- v1 = (v1 << 32) | get_limbz(a, a->len - 2);
-#endif
- if (v1 == v)
- ret = 0;
- }
- } else {
- v = INT64_MAX;
- }
- } else {
- slimb_t bit_pos = a->len * LIMB_BITS - a->expn;
- v = get_bits(a->tab, a->len, bit_pos);
-#if LIMB_BITS == 32
- v |= (uint64_t)get_bits(a->tab, a->len, bit_pos + 32) << 32;
-#endif
- if (a->sign)
- v = -v;
- ret = 0;
- }
- *pres = v;
- return ret;
-}
-
-/* The rounding mode is always BF_RNDZ. Return BF_ST_INVALID_OP if there
- is an overflow and 0 otherwise. */
-int bf_get_uint64(uint64_t *pres, const bf_t *a)
-{
- uint64_t v;
- int ret;
- if (a->expn == BF_EXP_NAN) {
- goto overflow;
- } else if (a->expn <= 0) {
- v = 0;
- ret = 0;
- } else if (a->sign) {
- v = 0;
- ret = BF_ST_INVALID_OP;
- } else if (a->expn <= 64) {
-#if LIMB_BITS == 32
- if (a->expn <= 32)
- v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
- else
- v = (((uint64_t)a->tab[a->len - 1] << 32) |
- get_limbz(a, a->len - 2)) >> (64 - a->expn);
-#else
- v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
-#endif
- ret = 0;
- } else {
- overflow:
- v = UINT64_MAX;
- ret = BF_ST_INVALID_OP;
- }
- *pres = v;
- return ret;
-}
-
-/* base conversion from radix */
-
-static const uint8_t digits_per_limb_table[BF_RADIX_MAX - 1] = {
-#if LIMB_BITS == 32
-32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
-#else
-64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12,
-#endif
-};
-
-static limb_t get_limb_radix(int radix)
-{
- int i, k;
- limb_t radixl;
-
- k = digits_per_limb_table[radix - 2];
- radixl = radix;
- for(i = 1; i < k; i++)
- radixl *= radix;
- return radixl;
-}
-
-/* return != 0 if error */
-static int bf_integer_from_radix_rec(bf_t *r, const limb_t *tab,
- limb_t n, int level, limb_t n0,
- limb_t radix, bf_t *pow_tab)
-{
- int ret;
- if (n == 1) {
- ret = bf_set_ui(r, tab[0]);
- } else {
- bf_t T_s, *T = &T_s, *B;
- limb_t n1, n2;
-
- n2 = (((n0 * 2) >> (level + 1)) + 1) / 2;
- n1 = n - n2;
- // printf("level=%d n0=%ld n1=%ld n2=%ld\n", level, n0, n1, n2);
- B = &pow_tab[level];
- if (B->len == 0) {
- ret = bf_pow_ui_ui(B, radix, n2, BF_PREC_INF, BF_RNDZ);
- if (ret)
- return ret;
- }
- ret = bf_integer_from_radix_rec(r, tab + n2, n1, level + 1, n0,
- radix, pow_tab);
- if (ret)
- return ret;
- ret = bf_mul(r, r, B, BF_PREC_INF, BF_RNDZ);
- if (ret)
- return ret;
- bf_init(r->ctx, T);
- ret = bf_integer_from_radix_rec(T, tab, n2, level + 1, n0,
- radix, pow_tab);
- if (!ret)
- ret = bf_add(r, r, T, BF_PREC_INF, BF_RNDZ);
- bf_delete(T);
- }
- return ret;
- // bf_print_str(" r=", r);
-}
-
-/* return 0 if OK != 0 if memory error */
-static int bf_integer_from_radix(bf_t *r, const limb_t *tab,
- limb_t n, limb_t radix)
-{
- bf_context_t *s = r->ctx;
- int pow_tab_len, i, ret;
- limb_t radixl;
- bf_t *pow_tab;
-
- radixl = get_limb_radix(radix);
- pow_tab_len = ceil_log2(n) + 2; /* XXX: check */
- pow_tab = bf_malloc(s, sizeof(pow_tab[0]) * pow_tab_len);
- if (!pow_tab)
- return -1;
- for(i = 0; i < pow_tab_len; i++)
- bf_init(r->ctx, &pow_tab[i]);
- ret = bf_integer_from_radix_rec(r, tab, n, 0, n, radixl, pow_tab);
- for(i = 0; i < pow_tab_len; i++) {
- bf_delete(&pow_tab[i]);
- }
- bf_free(s, pow_tab);
- return ret;
-}
-
-/* compute and round T * radix^expn. */
-int bf_mul_pow_radix(bf_t *r, const bf_t *T, limb_t radix,
- slimb_t expn, limb_t prec, bf_flags_t flags)
-{
- int ret, expn_sign, overflow;
- slimb_t e, extra_bits, prec1, ziv_extra_bits;
- bf_t B_s, *B = &B_s;
-
- if (T->len == 0) {
- return bf_set(r, T);
- } else if (expn == 0) {
- ret = bf_set(r, T);
- ret |= bf_round(r, prec, flags);
- return ret;
- }
-
- e = expn;
- expn_sign = 0;
- if (e < 0) {
- e = -e;
- expn_sign = 1;
- }
- bf_init(r->ctx, B);
- if (prec == BF_PREC_INF) {
- /* infinite precision: only used if the result is known to be exact */
- ret = bf_pow_ui_ui(B, radix, e, BF_PREC_INF, BF_RNDN);
- if (expn_sign) {
- ret |= bf_div(r, T, B, T->len * LIMB_BITS, BF_RNDN);
- } else {
- ret |= bf_mul(r, T, B, BF_PREC_INF, BF_RNDN);
- }
- } else {
- ziv_extra_bits = 16;
- for(;;) {
- prec1 = prec + ziv_extra_bits;
- /* XXX: correct overflow/underflow handling */
- /* XXX: rigorous error analysis needed */
- extra_bits = ceil_log2(e) * 2 + 1;
- ret = bf_pow_ui_ui(B, radix, e, prec1 + extra_bits, BF_RNDN | BF_FLAG_EXT_EXP);
- overflow = !bf_is_finite(B);
- /* XXX: if bf_pow_ui_ui returns an exact result, can stop
- after the next operation */
- if (expn_sign)
- ret |= bf_div(r, T, B, prec1 + extra_bits, BF_RNDN | BF_FLAG_EXT_EXP);
- else
- ret |= bf_mul(r, T, B, prec1 + extra_bits, BF_RNDN | BF_FLAG_EXT_EXP);
- if (ret & BF_ST_MEM_ERROR)
- break;
- if ((ret & BF_ST_INEXACT) &&
- !bf_can_round(r, prec, flags & BF_RND_MASK, prec1) &&
- !overflow) {
- /* and more precision and retry */
- ziv_extra_bits = ziv_extra_bits + (ziv_extra_bits / 2);
- } else {
- /* XXX: need to use __bf_round() to pass the inexact
- flag for the subnormal case */
- ret = bf_round(r, prec, flags) | (ret & BF_ST_INEXACT);
- break;
- }
- }
- }
- bf_delete(B);
- return ret;
-}
-
-static inline int to_digit(int c)
-{
- if (c >= '0' && c <= '9')
- return c - '0';
- else if (c >= 'A' && c <= 'Z')
- return c - 'A' + 10;
- else if (c >= 'a' && c <= 'z')
- return c - 'a' + 10;
- else
- return 36;
-}
-
-/* add a limb at 'pos' and decrement pos. new space is created if
- needed. Return 0 if OK, -1 if memory error */
-static int bf_add_limb(bf_t *a, slimb_t *ppos, limb_t v)
-{
- slimb_t pos;
- pos = *ppos;
- if (unlikely(pos < 0)) {
- limb_t new_size, d, *new_tab;
- new_size = bf_max(a->len + 1, a->len * 3 / 2);
- new_tab = bf_realloc(a->ctx, a->tab, sizeof(limb_t) * new_size);
- if (!new_tab)
- return -1;
- a->tab = new_tab;
- d = new_size - a->len;
- memmove(a->tab + d, a->tab, a->len * sizeof(limb_t));
- a->len = new_size;
- pos += d;
- }
- a->tab[pos--] = v;
- *ppos = pos;
- return 0;
-}
-
-static int bf_tolower(int c)
-{
- if (c >= 'A' && c <= 'Z')
- c = c - 'A' + 'a';
- return c;
-}
-
-static int strcasestart(const char *str, const char *val, const char **ptr)
-{
- const char *p, *q;
- p = str;
- q = val;
- while (*q != '\0') {
- if (bf_tolower(*p) != *q)
- return 0;
- p++;
- q++;
- }
- if (ptr)
- *ptr = p;
- return 1;
-}
-
-static int bf_atof_internal(bf_t *r, slimb_t *pexponent,
- const char *str, const char **pnext, int radix,
- limb_t prec, bf_flags_t flags, BOOL is_dec)
-{
- const char *p, *p_start;
- int is_neg, radix_bits, exp_is_neg, ret, digits_per_limb, shift;
- limb_t cur_limb;
- slimb_t pos, expn, int_len, digit_count;
- BOOL has_decpt, is_bin_exp;
- bf_t a_s, *a;
-
- *pexponent = 0;
- p = str;
- if (!(flags & BF_ATOF_NO_NAN_INF) && radix <= 16 &&
- strcasestart(p, "nan", &p)) {
- bf_set_nan(r);
- ret = 0;
- goto done;
- }
- is_neg = 0;
-
- if (p[0] == '+') {
- p++;
- p_start = p;
- } else if (p[0] == '-') {
- is_neg = 1;
- p++;
- p_start = p;
- } else {
- p_start = p;
- }
- if (p[0] == '0') {
- if ((p[1] == 'x' || p[1] == 'X') &&
- (radix == 0 || radix == 16) &&
- !(flags & BF_ATOF_NO_HEX)) {
- radix = 16;
- p += 2;
- } else if ((p[1] == 'o' || p[1] == 'O') &&
- radix == 0 && (flags & BF_ATOF_BIN_OCT)) {
- p += 2;
- radix = 8;
- } else if ((p[1] == 'b' || p[1] == 'B') &&
- radix == 0 && (flags & BF_ATOF_BIN_OCT)) {
- p += 2;
- radix = 2;
- } else {
- goto no_prefix;
- }
- /* there must be a digit after the prefix */
- if (to_digit((uint8_t)*p) >= radix) {
- bf_set_nan(r);
- ret = 0;
- goto done;
- }
- no_prefix: ;
- } else {
- if (!(flags & BF_ATOF_NO_NAN_INF) && radix <= 16 &&
- strcasestart(p, "inf", &p)) {
- bf_set_inf(r, is_neg);
- ret = 0;
- goto done;
- }
- }
-
- if (radix == 0)
- radix = 10;
- if (is_dec) {
- assert(radix == 10);
- radix_bits = 0;
- a = r;
- } else if ((radix & (radix - 1)) != 0) {
- radix_bits = 0; /* base is not a power of two */
- a = &a_s;
- bf_init(r->ctx, a);
- } else {
- radix_bits = ceil_log2(radix);
- a = r;
- }
-
- /* skip leading zeros */
- /* XXX: could also skip zeros after the decimal point */
- while (*p == '0')
- p++;
-
- if (radix_bits) {
- shift = digits_per_limb = LIMB_BITS;
- } else {
- radix_bits = 0;
- shift = digits_per_limb = digits_per_limb_table[radix - 2];
- }
- cur_limb = 0;
- bf_resize(a, 1);
- pos = 0;
- has_decpt = FALSE;
- int_len = digit_count = 0;
- for(;;) {
- limb_t c;
- if (*p == '.' && (p > p_start || to_digit(p[1]) < radix)) {
- if (has_decpt)
- break;
- has_decpt = TRUE;
- int_len = digit_count;
- p++;
- }
- c = to_digit(*p);
- if (c >= radix)
- break;
- digit_count++;
- p++;
- if (radix_bits) {
- shift -= radix_bits;
- if (shift <= 0) {
- cur_limb |= c >> (-shift);
- if (bf_add_limb(a, &pos, cur_limb))
- goto mem_error;
- if (shift < 0)
- cur_limb = c << (LIMB_BITS + shift);
- else
- cur_limb = 0;
- shift += LIMB_BITS;
- } else {
- cur_limb |= c << shift;
- }
- } else {
- cur_limb = cur_limb * radix + c;
- shift--;
- if (shift == 0) {
- if (bf_add_limb(a, &pos, cur_limb))
- goto mem_error;
- shift = digits_per_limb;
- cur_limb = 0;
- }
- }
- }
- if (!has_decpt)
- int_len = digit_count;
-
- /* add the last limb and pad with zeros */
- if (shift != digits_per_limb) {
- if (radix_bits == 0) {
- while (shift != 0) {
- cur_limb *= radix;
- shift--;
- }
- }
- if (bf_add_limb(a, &pos, cur_limb)) {
- mem_error:
- ret = BF_ST_MEM_ERROR;
- if (!radix_bits)
- bf_delete(a);
- bf_set_nan(r);
- goto done;
- }
- }
-
- /* reset the next limbs to zero (we prefer to reallocate in the
- renormalization) */
- memset(a->tab, 0, (pos + 1) * sizeof(limb_t));
-
- if (p == p_start) {
- ret = 0;
- if (!radix_bits)
- bf_delete(a);
- bf_set_nan(r);
- goto done;
- }
-
- /* parse the exponent, if any */
- expn = 0;
- is_bin_exp = FALSE;
- if (((radix == 10 && (*p == 'e' || *p == 'E')) ||
- (radix != 10 && (*p == '@' ||
- (radix_bits && (*p == 'p' || *p == 'P'))))) &&
- p > p_start) {
- is_bin_exp = (*p == 'p' || *p == 'P');
- p++;
- exp_is_neg = 0;
- if (*p == '+') {
- p++;
- } else if (*p == '-') {
- exp_is_neg = 1;
- p++;
- }
- for(;;) {
- int c;
- c = to_digit(*p);
- if (c >= 10)
- break;
- if (unlikely(expn > ((BF_RAW_EXP_MAX - 2 - 9) / 10))) {
- /* exponent overflow */
- if (exp_is_neg) {
- bf_set_zero(r, is_neg);
- ret = BF_ST_UNDERFLOW | BF_ST_INEXACT;
- } else {
- bf_set_inf(r, is_neg);
- ret = BF_ST_OVERFLOW | BF_ST_INEXACT;
- }
- goto done;
- }
- p++;
- expn = expn * 10 + c;
- }
- if (exp_is_neg)
- expn = -expn;
- }
- if (is_dec) {
- a->expn = expn + int_len;
- a->sign = is_neg;
- ret = bfdec_normalize_and_round((bfdec_t *)a, prec, flags);
- } else if (radix_bits) {
- /* XXX: may overflow */
- if (!is_bin_exp)
- expn *= radix_bits;
- a->expn = expn + (int_len * radix_bits);
- a->sign = is_neg;
- ret = bf_normalize_and_round(a, prec, flags);
- } else {
- limb_t l;
- pos++;
- l = a->len - pos; /* number of limbs */
- if (l == 0) {
- bf_set_zero(r, is_neg);
- ret = 0;
- } else {
- bf_t T_s, *T = &T_s;
-
- expn -= l * digits_per_limb - int_len;
- bf_init(r->ctx, T);
- if (bf_integer_from_radix(T, a->tab + pos, l, radix)) {
- bf_set_nan(r);
- ret = BF_ST_MEM_ERROR;
- } else {
- T->sign = is_neg;
- if (flags & BF_ATOF_EXPONENT) {
- /* return the exponent */
- *pexponent = expn;
- ret = bf_set(r, T);
- } else {
- ret = bf_mul_pow_radix(r, T, radix, expn, prec, flags);
- }
- }
- bf_delete(T);
- }
- bf_delete(a);
- }
- done:
- if (pnext)
- *pnext = p;
- return ret;
-}
-
-/*
- Return (status, n, exp). 'status' is the floating point status. 'n'
- is the parsed number.
-
- If (flags & BF_ATOF_EXPONENT) and if the radix is not a power of
- two, the parsed number is equal to r *
- (*pexponent)^radix. Otherwise *pexponent = 0.
-*/
-int bf_atof2(bf_t *r, slimb_t *pexponent,
- const char *str, const char **pnext, int radix,
- limb_t prec, bf_flags_t flags)
-{
- return bf_atof_internal(r, pexponent, str, pnext, radix, prec, flags,
- FALSE);
-}
-
-int bf_atof(bf_t *r, const char *str, const char **pnext, int radix,
- limb_t prec, bf_flags_t flags)
-{
- slimb_t dummy_exp;
- return bf_atof_internal(r, &dummy_exp, str, pnext, radix, prec, flags, FALSE);
-}
-
-/* base conversion to radix */
-
-#if LIMB_BITS == 64
-#define RADIXL_10 UINT64_C(10000000000000000000)
-#else
-#define RADIXL_10 UINT64_C(1000000000)
-#endif
-
-static const uint32_t inv_log2_radix[BF_RADIX_MAX - 1][LIMB_BITS / 32 + 1] = {
-#if LIMB_BITS == 32
-{ 0x80000000, 0x00000000,},
-{ 0x50c24e60, 0xd4d4f4a7,},
-{ 0x40000000, 0x00000000,},
-{ 0x372068d2, 0x0a1ee5ca,},
-{ 0x3184648d, 0xb8153e7a,},
-{ 0x2d983275, 0x9d5369c4,},
-{ 0x2aaaaaaa, 0xaaaaaaab,},
-{ 0x28612730, 0x6a6a7a54,},
-{ 0x268826a1, 0x3ef3fde6,},
-{ 0x25001383, 0xbac8a744,},
-{ 0x23b46706, 0x82c0c709,},
-{ 0x229729f1, 0xb2c83ded,},
-{ 0x219e7ffd, 0xa5ad572b,},
-{ 0x20c33b88, 0xda7c29ab,},
-{ 0x20000000, 0x00000000,},
-{ 0x1f50b57e, 0xac5884b3,},
-{ 0x1eb22cc6, 0x8aa6e26f,},
-{ 0x1e21e118, 0x0c5daab2,},
-{ 0x1d9dcd21, 0x439834e4,},
-{ 0x1d244c78, 0x367a0d65,},
-{ 0x1cb40589, 0xac173e0c,},
-{ 0x1c4bd95b, 0xa8d72b0d,},
-{ 0x1bead768, 0x98f8ce4c,},
-{ 0x1b903469, 0x050f72e5,},
-{ 0x1b3b433f, 0x2eb06f15,},
-{ 0x1aeb6f75, 0x9c46fc38,},
-{ 0x1aa038eb, 0x0e3bfd17,},
-{ 0x1a593062, 0xb38d8c56,},
-{ 0x1a15f4c3, 0x2b95a2e6,},
-{ 0x19d630dc, 0xcc7ddef9,},
-{ 0x19999999, 0x9999999a,},
-{ 0x195fec80, 0x8a609431,},
-{ 0x1928ee7b, 0x0b4f22f9,},
-{ 0x18f46acf, 0x8c06e318,},
-{ 0x18c23246, 0xdc0a9f3d,},
-#else
-{ 0x80000000, 0x00000000, 0x00000000,},
-{ 0x50c24e60, 0xd4d4f4a7, 0x021f57bc,},
-{ 0x40000000, 0x00000000, 0x00000000,},
-{ 0x372068d2, 0x0a1ee5ca, 0x19ea911b,},
-{ 0x3184648d, 0xb8153e7a, 0x7fc2d2e1,},
-{ 0x2d983275, 0x9d5369c4, 0x4dec1661,},
-{ 0x2aaaaaaa, 0xaaaaaaaa, 0xaaaaaaab,},
-{ 0x28612730, 0x6a6a7a53, 0x810fabde,},
-{ 0x268826a1, 0x3ef3fde6, 0x23e2566b,},
-{ 0x25001383, 0xbac8a744, 0x385a3349,},
-{ 0x23b46706, 0x82c0c709, 0x3f891718,},
-{ 0x229729f1, 0xb2c83ded, 0x15fba800,},
-{ 0x219e7ffd, 0xa5ad572a, 0xe169744b,},
-{ 0x20c33b88, 0xda7c29aa, 0x9bddee52,},
-{ 0x20000000, 0x00000000, 0x00000000,},
-{ 0x1f50b57e, 0xac5884b3, 0x70e28eee,},
-{ 0x1eb22cc6, 0x8aa6e26f, 0x06d1a2a2,},
-{ 0x1e21e118, 0x0c5daab1, 0x81b4f4bf,},
-{ 0x1d9dcd21, 0x439834e3, 0x81667575,},
-{ 0x1d244c78, 0x367a0d64, 0xc8204d6d,},
-{ 0x1cb40589, 0xac173e0c, 0x3b7b16ba,},
-{ 0x1c4bd95b, 0xa8d72b0d, 0x5879f25a,},
-{ 0x1bead768, 0x98f8ce4c, 0x66cc2858,},
-{ 0x1b903469, 0x050f72e5, 0x0cf5488e,},
-{ 0x1b3b433f, 0x2eb06f14, 0x8c89719c,},
-{ 0x1aeb6f75, 0x9c46fc37, 0xab5fc7e9,},
-{ 0x1aa038eb, 0x0e3bfd17, 0x1bd62080,},
-{ 0x1a593062, 0xb38d8c56, 0x7998ab45,},
-{ 0x1a15f4c3, 0x2b95a2e6, 0x46aed6a0,},
-{ 0x19d630dc, 0xcc7ddef9, 0x5aadd61b,},
-{ 0x19999999, 0x99999999, 0x9999999a,},
-{ 0x195fec80, 0x8a609430, 0xe1106014,},
-{ 0x1928ee7b, 0x0b4f22f9, 0x5f69791d,},
-{ 0x18f46acf, 0x8c06e318, 0x4d2aeb2c,},
-{ 0x18c23246, 0xdc0a9f3d, 0x3fe16970,},
-#endif
-};
-
-static const limb_t log2_radix[BF_RADIX_MAX - 1] = {
-#if LIMB_BITS == 32
-0x20000000,
-0x32b80347,
-0x40000000,
-0x4a4d3c26,
-0x52b80347,
-0x59d5d9fd,
-0x60000000,
-0x6570068e,
-0x6a4d3c26,
-0x6eb3a9f0,
-0x72b80347,
-0x766a008e,
-0x79d5d9fd,
-0x7d053f6d,
-0x80000000,
-0x82cc7edf,
-0x8570068e,
-0x87ef05ae,
-0x8a4d3c26,
-0x8c8ddd45,
-0x8eb3a9f0,
-0x90c10501,
-0x92b80347,
-0x949a784c,
-0x966a008e,
-0x982809d6,
-0x99d5d9fd,
-0x9b74948f,
-0x9d053f6d,
-0x9e88c6b3,
-0xa0000000,
-0xa16bad37,
-0xa2cc7edf,
-0xa4231623,
-0xa570068e,
-#else
-0x2000000000000000,
-0x32b803473f7ad0f4,
-0x4000000000000000,
-0x4a4d3c25e68dc57f,
-0x52b803473f7ad0f4,
-0x59d5d9fd5010b366,
-0x6000000000000000,
-0x6570068e7ef5a1e8,
-0x6a4d3c25e68dc57f,
-0x6eb3a9f01975077f,
-0x72b803473f7ad0f4,
-0x766a008e4788cbcd,
-0x79d5d9fd5010b366,
-0x7d053f6d26089673,
-0x8000000000000000,
-0x82cc7edf592262d0,
-0x8570068e7ef5a1e8,
-0x87ef05ae409a0289,
-0x8a4d3c25e68dc57f,
-0x8c8ddd448f8b845a,
-0x8eb3a9f01975077f,
-0x90c10500d63aa659,
-0x92b803473f7ad0f4,
-0x949a784bcd1b8afe,
-0x966a008e4788cbcd,
-0x982809d5be7072dc,
-0x99d5d9fd5010b366,
-0x9b74948f5532da4b,
-0x9d053f6d26089673,
-0x9e88c6b3626a72aa,
-0xa000000000000000,
-0xa16bad3758efd873,
-0xa2cc7edf592262d0,
-0xa4231623369e78e6,
-0xa570068e7ef5a1e8,
-#endif
-};
-
-/* compute floor(a*b) or ceil(a*b) with b = log2(radix) or
- b=1/log2(radix). For is_inv = 0, strict accuracy is not guaranteed
- when radix is not a power of two. */
-slimb_t bf_mul_log2_radix(slimb_t a1, unsigned int radix, int is_inv,
- int is_ceil1)
-{
- int is_neg;
- limb_t a;
- BOOL is_ceil;
-
- is_ceil = is_ceil1;
- a = a1;
- if (a1 < 0) {
- a = -a;
- is_neg = 1;
- } else {
- is_neg = 0;
- }
- is_ceil ^= is_neg;
- if ((radix & (radix - 1)) == 0) {
- int radix_bits;
- /* radix is a power of two */
- radix_bits = ceil_log2(radix);
- if (is_inv) {
- if (is_ceil)
- a += radix_bits - 1;
- a = a / radix_bits;
- } else {
- a = a * radix_bits;
- }
- } else {
- const uint32_t *tab;
- limb_t b0, b1;
- dlimb_t t;
-
- if (is_inv) {
- tab = inv_log2_radix[radix - 2];
-#if LIMB_BITS == 32
- b1 = tab[0];
- b0 = tab[1];
-#else
- b1 = ((limb_t)tab[0] << 32) | tab[1];
- b0 = (limb_t)tab[2] << 32;
-#endif
- t = (dlimb_t)b0 * (dlimb_t)a;
- t = (dlimb_t)b1 * (dlimb_t)a + (t >> LIMB_BITS);
- a = t >> (LIMB_BITS - 1);
- } else {
- b0 = log2_radix[radix - 2];
- t = (dlimb_t)b0 * (dlimb_t)a;
- a = t >> (LIMB_BITS - 3);
- }
- /* a = floor(result) and 'result' cannot be an integer */
- a += is_ceil;
- }
- if (is_neg)
- a = -a;
- return a;
-}
-
-/* 'n' is the number of output limbs */
-static int bf_integer_to_radix_rec(bf_t *pow_tab,
- limb_t *out, const bf_t *a, limb_t n,
- int level, limb_t n0, limb_t radixl,
- unsigned int radixl_bits)
-{
- limb_t n1, n2, q_prec;
- int ret;
-
- assert(n >= 1);
- if (n == 1) {
- out[0] = get_bits(a->tab, a->len, a->len * LIMB_BITS - a->expn);
- } else if (n == 2) {
- dlimb_t t;
- slimb_t pos;
- pos = a->len * LIMB_BITS - a->expn;
- t = ((dlimb_t)get_bits(a->tab, a->len, pos + LIMB_BITS) << LIMB_BITS) |
- get_bits(a->tab, a->len, pos);
- if (likely(radixl == RADIXL_10)) {
- /* use division by a constant when possible */
- out[0] = t % RADIXL_10;
- out[1] = t / RADIXL_10;
- } else {
- out[0] = t % radixl;
- out[1] = t / radixl;
- }
- } else {
- bf_t Q, R, *B, *B_inv;
- int q_add;
- bf_init(a->ctx, &Q);
- bf_init(a->ctx, &R);
- n2 = (((n0 * 2) >> (level + 1)) + 1) / 2;
- n1 = n - n2;
- B = &pow_tab[2 * level];
- B_inv = &pow_tab[2 * level + 1];
- ret = 0;
- if (B->len == 0) {
- /* compute BASE^n2 */
- ret |= bf_pow_ui_ui(B, radixl, n2, BF_PREC_INF, BF_RNDZ);
- /* we use enough bits for the maximum possible 'n1' value,
- i.e. n2 + 1 */
- ret |= bf_set_ui(&R, 1);
- ret |= bf_div(B_inv, &R, B, (n2 + 1) * radixl_bits + 2, BF_RNDN);
- }
- // printf("%d: n1=% " PRId64 " n2=%" PRId64 "\n", level, n1, n2);
- q_prec = n1 * radixl_bits;
- ret |= bf_mul(&Q, a, B_inv, q_prec, BF_RNDN);
- ret |= bf_rint(&Q, BF_RNDZ);
-
- ret |= bf_mul(&R, &Q, B, BF_PREC_INF, BF_RNDZ);
- ret |= bf_sub(&R, a, &R, BF_PREC_INF, BF_RNDZ);
-
- if (ret & BF_ST_MEM_ERROR)
- goto fail;
- /* adjust if necessary */
- q_add = 0;
- while (R.sign && R.len != 0) {
- if (bf_add(&R, &R, B, BF_PREC_INF, BF_RNDZ))
- goto fail;
- q_add--;
- }
- while (bf_cmpu(&R, B) >= 0) {
- if (bf_sub(&R, &R, B, BF_PREC_INF, BF_RNDZ))
- goto fail;
- q_add++;
- }
- if (q_add != 0) {
- if (bf_add_si(&Q, &Q, q_add, BF_PREC_INF, BF_RNDZ))
- goto fail;
- }
- if (bf_integer_to_radix_rec(pow_tab, out + n2, &Q, n1, level + 1, n0,
- radixl, radixl_bits))
- goto fail;
- if (bf_integer_to_radix_rec(pow_tab, out, &R, n2, level + 1, n0,
- radixl, radixl_bits)) {
- fail:
- bf_delete(&Q);
- bf_delete(&R);
- return -1;
- }
- bf_delete(&Q);
- bf_delete(&R);
- }
- return 0;
-}
-
-/* return 0 if OK != 0 if memory error */
-static int bf_integer_to_radix(bf_t *r, const bf_t *a, limb_t radixl)
-{
- bf_context_t *s = r->ctx;
- limb_t r_len;
- bf_t *pow_tab;
- int i, pow_tab_len, ret;
-
- r_len = r->len;
- pow_tab_len = (ceil_log2(r_len) + 2) * 2; /* XXX: check */
- pow_tab = bf_malloc(s, sizeof(pow_tab[0]) * pow_tab_len);
- if (!pow_tab)
- return -1;
- for(i = 0; i < pow_tab_len; i++)
- bf_init(r->ctx, &pow_tab[i]);
-
- ret = bf_integer_to_radix_rec(pow_tab, r->tab, a, r_len, 0, r_len, radixl,
- ceil_log2(radixl));
-
- for(i = 0; i < pow_tab_len; i++) {
- bf_delete(&pow_tab[i]);
- }
- bf_free(s, pow_tab);
- return ret;
-}
-
-/* a must be >= 0. 'P' is the wanted number of digits in radix
- 'radix'. 'r' is the mantissa represented as an integer. *pE
- contains the exponent. Return != 0 if memory error. */
-static int bf_convert_to_radix(bf_t *r, slimb_t *pE,
- const bf_t *a, int radix,
- limb_t P, bf_rnd_t rnd_mode,
- BOOL is_fixed_exponent)
-{
- slimb_t E, e, prec, extra_bits, ziv_extra_bits, prec0;
- bf_t B_s, *B = &B_s;
- int e_sign, ret, res;
-
- if (a->len == 0) {
- /* zero case */
- *pE = 0;
- return bf_set(r, a);
- }
-
- if (is_fixed_exponent) {
- E = *pE;
- } else {
- /* compute the new exponent */
- E = 1 + bf_mul_log2_radix(a->expn - 1, radix, TRUE, FALSE);
- }
- // bf_print_str("a", a);
- // printf("E=%ld P=%ld radix=%d\n", E, P, radix);
-
- for(;;) {
- e = P - E;
- e_sign = 0;
- if (e < 0) {
- e = -e;
- e_sign = 1;
- }
- /* Note: precision for log2(radix) is not critical here */
- prec0 = bf_mul_log2_radix(P, radix, FALSE, TRUE);
- ziv_extra_bits = 16;
- for(;;) {
- prec = prec0 + ziv_extra_bits;
- /* XXX: rigorous error analysis needed */
- extra_bits = ceil_log2(e) * 2 + 1;
- ret = bf_pow_ui_ui(r, radix, e, prec + extra_bits,
- BF_RNDN | BF_FLAG_EXT_EXP);
- if (!e_sign)
- ret |= bf_mul(r, r, a, prec + extra_bits,
- BF_RNDN | BF_FLAG_EXT_EXP);
- else
- ret |= bf_div(r, a, r, prec + extra_bits,
- BF_RNDN | BF_FLAG_EXT_EXP);
- if (ret & BF_ST_MEM_ERROR)
- return BF_ST_MEM_ERROR;
- /* if the result is not exact, check that it can be safely
- rounded to an integer */
- if ((ret & BF_ST_INEXACT) &&
- !bf_can_round(r, r->expn, rnd_mode, prec)) {
- /* and more precision and retry */
- ziv_extra_bits = ziv_extra_bits + (ziv_extra_bits / 2);
- continue;
- } else {
- ret = bf_rint(r, rnd_mode);
- if (ret & BF_ST_MEM_ERROR)
- return BF_ST_MEM_ERROR;
- break;
- }
- }
- if (is_fixed_exponent)
- break;
- /* check that the result is < B^P */
- /* XXX: do a fast approximate test first ? */
- bf_init(r->ctx, B);
- ret = bf_pow_ui_ui(B, radix, P, BF_PREC_INF, BF_RNDZ);
- if (ret) {
- bf_delete(B);
- return ret;
- }
- res = bf_cmpu(r, B);
- bf_delete(B);
- if (res < 0)
- break;
- /* try a larger exponent */
- E++;
- }
- *pE = E;
- return 0;
-}
-
-static void limb_to_a(char *buf, limb_t n, unsigned int radix, int len)
-{
- int digit, i;
-
- if (radix == 10) {
- /* specific case with constant divisor */
- for(i = len - 1; i >= 0; i--) {
- digit = (limb_t)n % 10;
- n = (limb_t)n / 10;
- buf[i] = digit + '0';
- }
- } else {
- for(i = len - 1; i >= 0; i--) {
- digit = (limb_t)n % radix;
- n = (limb_t)n / radix;
- if (digit < 10)
- digit += '0';
- else
- digit += 'a' - 10;
- buf[i] = digit;
- }
- }
-}
-
-/* for power of 2 radixes */
-static void limb_to_a2(char *buf, limb_t n, unsigned int radix_bits, int len)
-{
- int digit, i;
- unsigned int mask;
-
- mask = (1 << radix_bits) - 1;
- for(i = len - 1; i >= 0; i--) {
- digit = n & mask;
- n >>= radix_bits;
- if (digit < 10)
- digit += '0';
- else
- digit += 'a' - 10;
- buf[i] = digit;
- }
-}
-
-/* 'a' must be an integer if the is_dec = FALSE or if the radix is not
- a power of two. A dot is added before the 'dot_pos' digit. dot_pos
- = n_digits does not display the dot. 0 <= dot_pos <=
- n_digits. n_digits >= 1. */
-static void output_digits(DynBuf *s, const bf_t *a1, int radix, limb_t n_digits,
- limb_t dot_pos, BOOL is_dec)
-{
- limb_t i, v, l;
- slimb_t pos, pos_incr;
- int digits_per_limb, buf_pos, radix_bits, first_buf_pos;
- char buf[65];
- bf_t a_s, *a;
-
- if (is_dec) {
- digits_per_limb = LIMB_DIGITS;
- a = (bf_t *)a1;
- radix_bits = 0;
- pos = a->len;
- pos_incr = 1;
- first_buf_pos = 0;
- } else if ((radix & (radix - 1)) == 0) {
- a = (bf_t *)a1;
- radix_bits = ceil_log2(radix);
- digits_per_limb = LIMB_BITS / radix_bits;
- pos_incr = digits_per_limb * radix_bits;
- /* digits are aligned relative to the radix point */
- pos = a->len * LIMB_BITS + smod(-a->expn, radix_bits);
- first_buf_pos = 0;
- } else {
- limb_t n, radixl;
-
- digits_per_limb = digits_per_limb_table[radix - 2];
- radixl = get_limb_radix(radix);
- a = &a_s;
- bf_init(a1->ctx, a);
- n = (n_digits + digits_per_limb - 1) / digits_per_limb;
- if (bf_resize(a, n)) {
- dbuf_set_error(s);
- goto done;
- }
- if (bf_integer_to_radix(a, a1, radixl)) {
- dbuf_set_error(s);
- goto done;
- }
- radix_bits = 0;
- pos = n;
- pos_incr = 1;
- first_buf_pos = pos * digits_per_limb - n_digits;
- }
- buf_pos = digits_per_limb;
- i = 0;
- while (i < n_digits) {
- if (buf_pos == digits_per_limb) {
- pos -= pos_incr;
- if (radix_bits == 0) {
- v = get_limbz(a, pos);
- limb_to_a(buf, v, radix, digits_per_limb);
- } else {
- v = get_bits(a->tab, a->len, pos);
- limb_to_a2(buf, v, radix_bits, digits_per_limb);
- }
- buf_pos = first_buf_pos;
- first_buf_pos = 0;
- }
- if (i < dot_pos) {
- l = dot_pos;
- } else {
- if (i == dot_pos)
- dbuf_putc(s, '.');
- l = n_digits;
- }
- l = bf_min(digits_per_limb - buf_pos, l - i);
- dbuf_put(s, (uint8_t *)(buf + buf_pos), l);
- buf_pos += l;
- i += l;
- }
- done:
- if (a != a1)
- bf_delete(a);
-}
-
-static void *bf_dbuf_realloc(void *opaque, void *ptr, size_t size)
-{
- bf_context_t *s = opaque;
- return bf_realloc(s, ptr, size);
-}
-
-/* return the length in bytes. A trailing '\0' is added */
-static char *bf_ftoa_internal(size_t *plen, const bf_t *a2, int radix,
- limb_t prec, bf_flags_t flags, BOOL is_dec)
-{
- bf_context_t *ctx = a2->ctx;
- DynBuf s_s, *s = &s_s;
- int radix_bits;
-
- // bf_print_str("ftoa", a2);
- // printf("radix=%d\n", radix);
- dbuf_init2(s, ctx, bf_dbuf_realloc);
- if (a2->expn == BF_EXP_NAN) {
- dbuf_putstr(s, "NaN");
- } else {
- if (a2->sign)
- dbuf_putc(s, '-');
- if (a2->expn == BF_EXP_INF) {
- if (flags & BF_FTOA_JS_QUIRKS)
- dbuf_putstr(s, "Infinity");
- else
- dbuf_putstr(s, "Inf");
- } else {
- int fmt, ret;
- slimb_t n_digits, n, i, n_max, n1;
- bf_t a1_s, *a1 = &a1_s;
-
- if ((radix & (radix - 1)) != 0)
- radix_bits = 0;
- else
- radix_bits = ceil_log2(radix);
-
- fmt = flags & BF_FTOA_FORMAT_MASK;
- bf_init(ctx, a1);
- if (fmt == BF_FTOA_FORMAT_FRAC) {
- if (is_dec || radix_bits != 0) {
- if (bf_set(a1, a2))
- goto fail1;
-#ifdef USE_BF_DEC
- if (is_dec) {
- if (bfdec_round((bfdec_t *)a1, prec, (flags & BF_RND_MASK) | BF_FLAG_RADPNT_PREC) & BF_ST_MEM_ERROR)
- goto fail1;
- n = a1->expn;
- } else
-#endif
- {
- if (bf_round(a1, prec * radix_bits, (flags & BF_RND_MASK) | BF_FLAG_RADPNT_PREC) & BF_ST_MEM_ERROR)
- goto fail1;
- n = ceil_div(a1->expn, radix_bits);
- }
- if (flags & BF_FTOA_ADD_PREFIX) {
- if (radix == 16)
- dbuf_putstr(s, "0x");
- else if (radix == 8)
- dbuf_putstr(s, "0o");
- else if (radix == 2)
- dbuf_putstr(s, "0b");
- }
- if (a1->expn == BF_EXP_ZERO) {
- dbuf_putstr(s, "0");
- if (prec > 0) {
- dbuf_putstr(s, ".");
- for(i = 0; i < prec; i++) {
- dbuf_putc(s, '0');
- }
- }
- } else {
- n_digits = prec + n;
- if (n <= 0) {
- /* 0.x */
- dbuf_putstr(s, "0.");
- for(i = 0; i < -n; i++) {
- dbuf_putc(s, '0');
- }
- if (n_digits > 0) {
- output_digits(s, a1, radix, n_digits, n_digits, is_dec);
- }
- } else {
- output_digits(s, a1, radix, n_digits, n, is_dec);
- }
- }
- } else {
- size_t pos, start;
- bf_t a_s, *a = &a_s;
-
- /* make a positive number */
- a->tab = a2->tab;
- a->len = a2->len;
- a->expn = a2->expn;
- a->sign = 0;
-
- /* one more digit for the rounding */
- n = 1 + bf_mul_log2_radix(bf_max(a->expn, 0), radix, TRUE, TRUE);
- n_digits = n + prec;
- n1 = n;
- if (bf_convert_to_radix(a1, &n1, a, radix, n_digits,
- flags & BF_RND_MASK, TRUE))
- goto fail1;
- start = s->size;
- output_digits(s, a1, radix, n_digits, n, is_dec);
- /* remove leading zeros because we allocated one more digit */
- pos = start;
- while ((pos + 1) < s->size && s->buf[pos] == '0' &&
- s->buf[pos + 1] != '.')
- pos++;
- if (pos > start) {
- memmove(s->buf + start, s->buf + pos, s->size - pos);
- s->size -= (pos - start);
- }
- }
- } else {
-#ifdef USE_BF_DEC
- if (is_dec) {
- if (bf_set(a1, a2))
- goto fail1;
- if (fmt == BF_FTOA_FORMAT_FIXED) {
- n_digits = prec;
- n_max = n_digits;
- if (bfdec_round((bfdec_t *)a1, prec, (flags & BF_RND_MASK)) & BF_ST_MEM_ERROR)
- goto fail1;
- } else {
- /* prec is ignored */
- prec = n_digits = a1->len * LIMB_DIGITS;
- /* remove the trailing zero digits */
- while (n_digits > 1 &&
- get_digit(a1->tab, a1->len, prec - n_digits) == 0) {
- n_digits--;
- }
- n_max = n_digits + 4;
- }
- n = a1->expn;
- } else
-#endif
- if (radix_bits != 0) {
- if (bf_set(a1, a2))
- goto fail1;
- if (fmt == BF_FTOA_FORMAT_FIXED) {
- slimb_t prec_bits;
- n_digits = prec;
- n_max = n_digits;
- /* align to the radix point */
- prec_bits = prec * radix_bits -
- smod(-a1->expn, radix_bits);
- if (bf_round(a1, prec_bits,
- (flags & BF_RND_MASK)) & BF_ST_MEM_ERROR)
- goto fail1;
- } else {
- limb_t digit_mask;
- slimb_t pos;
- /* position of the digit before the most
- significant digit in bits */
- pos = a1->len * LIMB_BITS +
- smod(-a1->expn, radix_bits);
- n_digits = ceil_div(pos, radix_bits);
- /* remove the trailing zero digits */
- digit_mask = ((limb_t)1 << radix_bits) - 1;
- while (n_digits > 1 &&
- (get_bits(a1->tab, a1->len, pos - n_digits * radix_bits) & digit_mask) == 0) {
- n_digits--;
- }
- n_max = n_digits + 4;
- }
- n = ceil_div(a1->expn, radix_bits);
- } else {
- bf_t a_s, *a = &a_s;
-
- /* make a positive number */
- a->tab = a2->tab;
- a->len = a2->len;
- a->expn = a2->expn;
- a->sign = 0;
-
- if (fmt == BF_FTOA_FORMAT_FIXED) {
- n_digits = prec;
- n_max = n_digits;
- } else {
- slimb_t n_digits_max, n_digits_min;
-
- assert(prec != BF_PREC_INF);
- n_digits = 1 + bf_mul_log2_radix(prec, radix, TRUE, TRUE);
- /* max number of digits for non exponential
- notation. The rational is to have the same rule
- as JS i.e. n_max = 21 for 64 bit float in base 10. */
- n_max = n_digits + 4;
- if (fmt == BF_FTOA_FORMAT_FREE_MIN) {
- bf_t b_s, *b = &b_s;
-
- /* find the minimum number of digits by
- dichotomy. */
- /* XXX: inefficient */
- n_digits_max = n_digits;
- n_digits_min = 1;
- bf_init(ctx, b);
- while (n_digits_min < n_digits_max) {
- n_digits = (n_digits_min + n_digits_max) / 2;
- if (bf_convert_to_radix(a1, &n, a, radix, n_digits,
- flags & BF_RND_MASK, FALSE)) {
- bf_delete(b);
- goto fail1;
- }
- /* convert back to a number and compare */
- ret = bf_mul_pow_radix(b, a1, radix, n - n_digits,
- prec,
- (flags & ~BF_RND_MASK) |
- BF_RNDN);
- if (ret & BF_ST_MEM_ERROR) {
- bf_delete(b);
- goto fail1;
- }
- if (bf_cmpu(b, a) == 0) {
- n_digits_max = n_digits;
- } else {
- n_digits_min = n_digits + 1;
- }
- }
- bf_delete(b);
- n_digits = n_digits_max;
- }
- }
- if (bf_convert_to_radix(a1, &n, a, radix, n_digits,
- flags & BF_RND_MASK, FALSE)) {
- fail1:
- bf_delete(a1);
- goto fail;
- }
- }
- if (a1->expn == BF_EXP_ZERO &&
- fmt != BF_FTOA_FORMAT_FIXED &&
- !(flags & BF_FTOA_FORCE_EXP)) {
- /* just output zero */
- dbuf_putstr(s, "0");
- } else {
- if (flags & BF_FTOA_ADD_PREFIX) {
- if (radix == 16)
- dbuf_putstr(s, "0x");
- else if (radix == 8)
- dbuf_putstr(s, "0o");
- else if (radix == 2)
- dbuf_putstr(s, "0b");
- }
- if (a1->expn == BF_EXP_ZERO)
- n = 1;
- if ((flags & BF_FTOA_FORCE_EXP) ||
- n <= -6 || n > n_max) {
- const char *fmt;
- /* exponential notation */
- output_digits(s, a1, radix, n_digits, 1, is_dec);
- if (radix_bits != 0 && radix <= 16) {
- if (flags & BF_FTOA_JS_QUIRKS)
- fmt = "p%+" PRId_LIMB;
- else
- fmt = "p%" PRId_LIMB;
- dbuf_printf(s, fmt, (n - 1) * radix_bits);
- } else {
- if (flags & BF_FTOA_JS_QUIRKS)
- fmt = "%c%+" PRId_LIMB;
- else
- fmt = "%c%" PRId_LIMB;
- dbuf_printf(s, fmt,
- radix <= 10 ? 'e' : '@', n - 1);
- }
- } else if (n <= 0) {
- /* 0.x */
- dbuf_putstr(s, "0.");
- for(i = 0; i < -n; i++) {
- dbuf_putc(s, '0');
- }
- output_digits(s, a1, radix, n_digits, n_digits, is_dec);
- } else {
- if (n_digits <= n) {
- /* no dot */
- output_digits(s, a1, radix, n_digits, n_digits, is_dec);
- for(i = 0; i < (n - n_digits); i++)
- dbuf_putc(s, '0');
- } else {
- output_digits(s, a1, radix, n_digits, n, is_dec);
- }
- }
- }
- }
- bf_delete(a1);
- }
- }
- dbuf_putc(s, '\0');
- if (dbuf_error(s))
- goto fail;
- if (plen)
- *plen = s->size - 1;
- return (char *)s->buf;
- fail:
- bf_free(ctx, s->buf);
- if (plen)
- *plen = 0;
- return NULL;
-}
-
-char *bf_ftoa(size_t *plen, const bf_t *a, int radix, limb_t prec,
- bf_flags_t flags)
-{
- return bf_ftoa_internal(plen, a, radix, prec, flags, FALSE);
-}
-
-/***************************************************************/
-/* transcendental functions */
-
-/* Note: the algorithm is from MPFR */
-static void bf_const_log2_rec(bf_t *T, bf_t *P, bf_t *Q, limb_t n1,
- limb_t n2, BOOL need_P)
-{
- bf_context_t *s = T->ctx;
- if ((n2 - n1) == 1) {
- if (n1 == 0) {
- bf_set_ui(P, 3);
- } else {
- bf_set_ui(P, n1);
- P->sign = 1;
- }
- bf_set_ui(Q, 2 * n1 + 1);
- Q->expn += 2;
- bf_set(T, P);
- } else {
- limb_t m;
- bf_t T1_s, *T1 = &T1_s;
- bf_t P1_s, *P1 = &P1_s;
- bf_t Q1_s, *Q1 = &Q1_s;
-
- m = n1 + ((n2 - n1) >> 1);
- bf_const_log2_rec(T, P, Q, n1, m, TRUE);
- bf_init(s, T1);
- bf_init(s, P1);
- bf_init(s, Q1);
- bf_const_log2_rec(T1, P1, Q1, m, n2, need_P);
- bf_mul(T, T, Q1, BF_PREC_INF, BF_RNDZ);
- bf_mul(T1, T1, P, BF_PREC_INF, BF_RNDZ);
- bf_add(T, T, T1, BF_PREC_INF, BF_RNDZ);
- if (need_P)
- bf_mul(P, P, P1, BF_PREC_INF, BF_RNDZ);
- bf_mul(Q, Q, Q1, BF_PREC_INF, BF_RNDZ);
- bf_delete(T1);
- bf_delete(P1);
- bf_delete(Q1);
- }
-}
-
-/* compute log(2) with faithful rounding at precision 'prec' */
-static void bf_const_log2_internal(bf_t *T, limb_t prec)
-{
- limb_t w, N;
- bf_t P_s, *P = &P_s;
- bf_t Q_s, *Q = &Q_s;
-
- w = prec + 15;
- N = w / 3 + 1;
- bf_init(T->ctx, P);
- bf_init(T->ctx, Q);
- bf_const_log2_rec(T, P, Q, 0, N, FALSE);
- bf_div(T, T, Q, prec, BF_RNDN);
- bf_delete(P);
- bf_delete(Q);
-}
-
-/* PI constant */
-
-#define CHUD_A 13591409
-#define CHUD_B 545140134
-#define CHUD_C 640320
-#define CHUD_BITS_PER_TERM 47
-
-static void chud_bs(bf_t *P, bf_t *Q, bf_t *G, int64_t a, int64_t b, int need_g,
- limb_t prec)
-{
- bf_context_t *s = P->ctx;
- int64_t c;
-
- if (a == (b - 1)) {
- bf_t T0, T1;
-
- bf_init(s, &T0);
- bf_init(s, &T1);
- bf_set_ui(G, 2 * b - 1);
- bf_mul_ui(G, G, 6 * b - 1, prec, BF_RNDN);
- bf_mul_ui(G, G, 6 * b - 5, prec, BF_RNDN);
- bf_set_ui(&T0, CHUD_B);
- bf_mul_ui(&T0, &T0, b, prec, BF_RNDN);
- bf_set_ui(&T1, CHUD_A);
- bf_add(&T0, &T0, &T1, prec, BF_RNDN);
- bf_mul(P, G, &T0, prec, BF_RNDN);
- P->sign = b & 1;
-
- bf_set_ui(Q, b);
- bf_mul_ui(Q, Q, b, prec, BF_RNDN);
- bf_mul_ui(Q, Q, b, prec, BF_RNDN);
- bf_mul_ui(Q, Q, (uint64_t)CHUD_C * CHUD_C * CHUD_C / 24, prec, BF_RNDN);
- bf_delete(&T0);
- bf_delete(&T1);
- } else {
- bf_t P2, Q2, G2;
-
- bf_init(s, &P2);
- bf_init(s, &Q2);
- bf_init(s, &G2);
-
- c = (a + b) / 2;
- chud_bs(P, Q, G, a, c, 1, prec);
- chud_bs(&P2, &Q2, &G2, c, b, need_g, prec);
-
- /* Q = Q1 * Q2 */
- /* G = G1 * G2 */
- /* P = P1 * Q2 + P2 * G1 */
- bf_mul(&P2, &P2, G, prec, BF_RNDN);
- if (!need_g)
- bf_set_ui(G, 0);
- bf_mul(P, P, &Q2, prec, BF_RNDN);
- bf_add(P, P, &P2, prec, BF_RNDN);
- bf_delete(&P2);
-
- bf_mul(Q, Q, &Q2, prec, BF_RNDN);
- bf_delete(&Q2);
- if (need_g)
- bf_mul(G, G, &G2, prec, BF_RNDN);
- bf_delete(&G2);
- }
-}
-
-/* compute Pi with faithful rounding at precision 'prec' using the
- Chudnovsky formula */
-static void bf_const_pi_internal(bf_t *Q, limb_t prec)
-{
- bf_context_t *s = Q->ctx;
- int64_t n, prec1;
- bf_t P, G;
-
- /* number of serie terms */
- n = prec / CHUD_BITS_PER_TERM + 1;
- /* XXX: precision analysis */
- prec1 = prec + 32;
-
- bf_init(s, &P);
- bf_init(s, &G);
-
- chud_bs(&P, Q, &G, 0, n, 0, BF_PREC_INF);
-
- bf_mul_ui(&G, Q, CHUD_A, prec1, BF_RNDN);
- bf_add(&P, &G, &P, prec1, BF_RNDN);
- bf_div(Q, Q, &P, prec1, BF_RNDF);
-
- bf_set_ui(&P, CHUD_C);
- bf_sqrt(&G, &P, prec1, BF_RNDF);
- bf_mul_ui(&G, &G, (uint64_t)CHUD_C / 12, prec1, BF_RNDF);
- bf_mul(Q, Q, &G, prec, BF_RNDN);
- bf_delete(&P);
- bf_delete(&G);
-}
-
-static int bf_const_get(bf_t *T, limb_t prec, bf_flags_t flags,
- BFConstCache *c,
- void (*func)(bf_t *res, limb_t prec), int sign)
-{
- limb_t ziv_extra_bits, prec1;
-
- ziv_extra_bits = 32;
- for(;;) {
- prec1 = prec + ziv_extra_bits;
- if (c->prec < prec1) {
- if (c->val.len == 0)
- bf_init(T->ctx, &c->val);
- func(&c->val, prec1);
- c->prec = prec1;
- } else {
- prec1 = c->prec;
- }
- bf_set(T, &c->val);
- T->sign = sign;
- if (!bf_can_round(T, prec, flags & BF_RND_MASK, prec1)) {
- /* and more precision and retry */
- ziv_extra_bits = ziv_extra_bits + (ziv_extra_bits / 2);
- } else {
- break;
- }
- }
- return bf_round(T, prec, flags);
-}
-
-static void bf_const_free(BFConstCache *c)
-{
- bf_delete(&c->val);
- memset(c, 0, sizeof(*c));
-}
-
-int bf_const_log2(bf_t *T, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = T->ctx;
- return bf_const_get(T, prec, flags, &s->log2_cache, bf_const_log2_internal, 0);
-}
-
-/* return rounded pi * (1 - 2 * sign) */
-static int bf_const_pi_signed(bf_t *T, int sign, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = T->ctx;
- return bf_const_get(T, prec, flags, &s->pi_cache, bf_const_pi_internal,
- sign);
-}
-
-int bf_const_pi(bf_t *T, limb_t prec, bf_flags_t flags)
-{
- return bf_const_pi_signed(T, 0, prec, flags);
-}
-
-void bf_clear_cache(bf_context_t *s)
-{
-#ifdef USE_FFT_MUL
- fft_clear_cache(s);
-#endif
- bf_const_free(&s->log2_cache);
- bf_const_free(&s->pi_cache);
-}
-
-/* ZivFunc should compute the result 'r' with faithful rounding at
- precision 'prec'. For efficiency purposes, the final bf_round()
- does not need to be done in the function. */
-typedef int ZivFunc(bf_t *r, const bf_t *a, limb_t prec, void *opaque);
-
-static int bf_ziv_rounding(bf_t *r, const bf_t *a,
- limb_t prec, bf_flags_t flags,
- ZivFunc *f, void *opaque)
-{
- int rnd_mode, ret;
- slimb_t prec1, ziv_extra_bits;
-
- rnd_mode = flags & BF_RND_MASK;
- if (rnd_mode == BF_RNDF) {
- /* no need to iterate */
- f(r, a, prec, opaque);
- ret = 0;
- } else {
- ziv_extra_bits = 32;
- for(;;) {
- prec1 = prec + ziv_extra_bits;
- ret = f(r, a, prec1, opaque);
- if (ret & (BF_ST_OVERFLOW | BF_ST_UNDERFLOW | BF_ST_MEM_ERROR)) {
- /* overflow or underflow should never happen because
- it indicates the rounding cannot be done correctly,
- but we do not catch all the cases */
- return ret;
- }
- /* if the result is exact, we can stop */
- if (!(ret & BF_ST_INEXACT)) {
- ret = 0;
- break;
- }
- if (bf_can_round(r, prec, rnd_mode, prec1)) {
- ret = BF_ST_INEXACT;
- break;
- }
- ziv_extra_bits = ziv_extra_bits * 2;
- // printf("ziv_extra_bits=%" PRId64 "\n", (int64_t)ziv_extra_bits);
- }
- }
- if (r->len == 0)
- return ret;
- else
- return __bf_round(r, prec, flags, r->len, ret);
-}
-
-/* add (1 - 2*e_sign) * 2^e */
-static int bf_add_epsilon(bf_t *r, const bf_t *a, slimb_t e, int e_sign,
- limb_t prec, int flags)
-{
- bf_t T_s, *T = &T_s;
- int ret;
- /* small argument case: result = 1 + epsilon * sign(x) */
- bf_init(a->ctx, T);
- bf_set_ui(T, 1);
- T->sign = e_sign;
- T->expn += e;
- ret = bf_add(r, r, T, prec, flags);
- bf_delete(T);
- return ret;
-}
-
-/* Compute the exponential using faithful rounding at precision 'prec'.
- Note: the algorithm is from MPFR */
-static int bf_exp_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- slimb_t n, K, l, i, prec1;
-
- assert(r != a);
-
- /* argument reduction:
- T = a - n*log(2) with 0 <= T < log(2) and n integer.
- */
- bf_init(s, T);
- if (a->expn <= -1) {
- /* 0 <= abs(a) <= 0.5 */
- if (a->sign)
- n = -1;
- else
- n = 0;
- } else {
- bf_const_log2(T, LIMB_BITS, BF_RNDZ);
- bf_div(T, a, T, LIMB_BITS, BF_RNDD);
- bf_get_limb(&n, T, 0);
- }
-
- K = bf_isqrt((prec + 1) / 2);
- l = (prec - 1) / K + 1;
- /* XXX: precision analysis ? */
- prec1 = prec + (K + 2 * l + 18) + K + 8;
- if (a->expn > 0)
- prec1 += a->expn;
- // printf("n=%ld K=%ld prec1=%ld\n", n, K, prec1);
-
- bf_const_log2(T, prec1, BF_RNDF);
- bf_mul_si(T, T, n, prec1, BF_RNDN);
- bf_sub(T, a, T, prec1, BF_RNDN);
-
- /* reduce the range of T */
- bf_mul_2exp(T, -K, BF_PREC_INF, BF_RNDZ);
-
- /* Taylor expansion around zero :
- 1 + x + x^2/2 + ... + x^n/n!
- = (1 + x * (1 + x/2 * (1 + ... (x/n))))
- */
- {
- bf_t U_s, *U = &U_s;
-
- bf_init(s, U);
- bf_set_ui(r, 1);
- for(i = l ; i >= 1; i--) {
- bf_set_ui(U, i);
- bf_div(U, T, U, prec1, BF_RNDN);
- bf_mul(r, r, U, prec1, BF_RNDN);
- bf_add_si(r, r, 1, prec1, BF_RNDN);
- }
- bf_delete(U);
- }
- bf_delete(T);
-
- /* undo the range reduction */
- for(i = 0; i < K; i++) {
- bf_mul(r, r, r, prec1, BF_RNDN | BF_FLAG_EXT_EXP);
- }
-
- /* undo the argument reduction */
- bf_mul_2exp(r, n, BF_PREC_INF, BF_RNDZ | BF_FLAG_EXT_EXP);
-
- return BF_ST_INEXACT;
-}
-
-/* crude overflow and underflow tests for exp(a). a_low <= a <= a_high */
-static int check_exp_underflow_overflow(bf_context_t *s, bf_t *r,
- const bf_t *a_low, const bf_t *a_high,
- limb_t prec, bf_flags_t flags)
-{
- bf_t T_s, *T = &T_s;
- bf_t log2_s, *log2 = &log2_s;
- slimb_t e_min, e_max;
-
- if (a_high->expn <= 0)
- return 0;
-
- e_max = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
- e_min = -e_max + 3;
- if (flags & BF_FLAG_SUBNORMAL)
- e_min -= (prec - 1);
-
- bf_init(s, T);
- bf_init(s, log2);
- bf_const_log2(log2, LIMB_BITS, BF_RNDU);
- bf_mul_ui(T, log2, e_max, LIMB_BITS, BF_RNDU);
- /* a_low > e_max * log(2) implies exp(a) > e_max */
- if (bf_cmp_lt(T, a_low) > 0) {
- /* overflow */
- bf_delete(T);
- bf_delete(log2);
- return bf_set_overflow(r, 0, prec, flags);
- }
- /* a_high < (e_min - 2) * log(2) implies exp(a) < (e_min - 2) */
- bf_const_log2(log2, LIMB_BITS, BF_RNDD);
- bf_mul_si(T, log2, e_min - 2, LIMB_BITS, BF_RNDD);
- if (bf_cmp_lt(a_high, T)) {
- int rnd_mode = flags & BF_RND_MASK;
-
- /* underflow */
- bf_delete(T);
- bf_delete(log2);
- if (rnd_mode == BF_RNDU) {
- /* set the smallest value */
- bf_set_ui(r, 1);
- r->expn = e_min;
- } else {
- bf_set_zero(r, 0);
- }
- return BF_ST_UNDERFLOW | BF_ST_INEXACT;
- }
- bf_delete(log2);
- bf_delete(T);
- return 0;
-}
-
-int bf_exp(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = r->ctx;
- int ret;
- assert(r != a);
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- } else if (a->expn == BF_EXP_INF) {
- if (a->sign)
- bf_set_zero(r, 0);
- else
- bf_set_inf(r, 0);
- } else {
- bf_set_ui(r, 1);
- }
- return 0;
- }
-
- ret = check_exp_underflow_overflow(s, r, a, a, prec, flags);
- if (ret)
- return ret;
- if (a->expn < 0 && (-a->expn) >= (prec + 2)) {
- /* small argument case: result = 1 + epsilon * sign(x) */
- bf_set_ui(r, 1);
- return bf_add_epsilon(r, r, -(prec + 2), a->sign, prec, flags);
- }
-
- return bf_ziv_rounding(r, a, prec, flags, bf_exp_internal, NULL);
-}
-
-static int bf_log_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- bf_t U_s, *U = &U_s;
- bf_t V_s, *V = &V_s;
- slimb_t n, prec1, l, i, K;
-
- assert(r != a);
-
- bf_init(s, T);
- /* argument reduction 1 */
- /* T=a*2^n with 2/3 <= T <= 4/3 */
- {
- bf_t U_s, *U = &U_s;
- bf_set(T, a);
- n = T->expn;
- T->expn = 0;
- /* U= ~ 2/3 */
- bf_init(s, U);
- bf_set_ui(U, 0xaaaaaaaa);
- U->expn = 0;
- if (bf_cmp_lt(T, U)) {
- T->expn++;
- n--;
- }
- bf_delete(U);
- }
- // printf("n=%ld\n", n);
- // bf_print_str("T", T);
-
- /* XXX: precision analysis */
- /* number of iterations for argument reduction 2 */
- K = bf_isqrt((prec + 1) / 2);
- /* order of Taylor expansion */
- l = prec / (2 * K) + 1;
- /* precision of the intermediate computations */
- prec1 = prec + K + 2 * l + 32;
-
- bf_init(s, U);
- bf_init(s, V);
-
- /* Note: cancellation occurs here, so we use more precision (XXX:
- reduce the precision by computing the exact cancellation) */
- bf_add_si(T, T, -1, BF_PREC_INF, BF_RNDN);
-
- /* argument reduction 2 */
- for(i = 0; i < K; i++) {
- /* T = T / (1 + sqrt(1 + T)) */
- bf_add_si(U, T, 1, prec1, BF_RNDN);
- bf_sqrt(V, U, prec1, BF_RNDF);
- bf_add_si(U, V, 1, prec1, BF_RNDN);
- bf_div(T, T, U, prec1, BF_RNDN);
- }
-
- {
- bf_t Y_s, *Y = &Y_s;
- bf_t Y2_s, *Y2 = &Y2_s;
- bf_init(s, Y);
- bf_init(s, Y2);
-
- /* compute ln(1+x) = ln((1+y)/(1-y)) with y=x/(2+x)
- = y + y^3/3 + ... + y^(2*l + 1) / (2*l+1)
- with Y=Y^2
- = y*(1+Y/3+Y^2/5+...) = y*(1+Y*(1/3+Y*(1/5 + ...)))
- */
- bf_add_si(Y, T, 2, prec1, BF_RNDN);
- bf_div(Y, T, Y, prec1, BF_RNDN);
-
- bf_mul(Y2, Y, Y, prec1, BF_RNDN);
- bf_set_ui(r, 0);
- for(i = l; i >= 1; i--) {
- bf_set_ui(U, 1);
- bf_set_ui(V, 2 * i + 1);
- bf_div(U, U, V, prec1, BF_RNDN);
- bf_add(r, r, U, prec1, BF_RNDN);
- bf_mul(r, r, Y2, prec1, BF_RNDN);
- }
- bf_add_si(r, r, 1, prec1, BF_RNDN);
- bf_mul(r, r, Y, prec1, BF_RNDN);
- bf_delete(Y);
- bf_delete(Y2);
- }
- bf_delete(V);
- bf_delete(U);
-
- /* multiplication by 2 for the Taylor expansion and undo the
- argument reduction 2*/
- bf_mul_2exp(r, K + 1, BF_PREC_INF, BF_RNDZ);
-
- /* undo the argument reduction 1 */
- bf_const_log2(T, prec1, BF_RNDF);
- bf_mul_si(T, T, n, prec1, BF_RNDN);
- bf_add(r, r, T, prec1, BF_RNDN);
-
- bf_delete(T);
- return BF_ST_INEXACT;
-}
-
-int bf_log(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
-
- assert(r != a);
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF) {
- if (a->sign) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_set_inf(r, 0);
- return 0;
- }
- } else {
- bf_set_inf(r, 1);
- return 0;
- }
- }
- if (a->sign) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- }
- bf_init(s, T);
- bf_set_ui(T, 1);
- if (bf_cmp_eq(a, T)) {
- bf_set_zero(r, 0);
- bf_delete(T);
- return 0;
- }
- bf_delete(T);
-
- return bf_ziv_rounding(r, a, prec, flags, bf_log_internal, NULL);
-}
-
-/* x and y finite and x > 0 */
-static int bf_pow_generic(bf_t *r, const bf_t *x, limb_t prec, void *opaque)
-{
- bf_context_t *s = r->ctx;
- const bf_t *y = opaque;
- bf_t T_s, *T = &T_s;
- limb_t prec1;
-
- bf_init(s, T);
- /* XXX: proof for the added precision */
- prec1 = prec + 32;
- bf_log(T, x, prec1, BF_RNDF | BF_FLAG_EXT_EXP);
- bf_mul(T, T, y, prec1, BF_RNDF | BF_FLAG_EXT_EXP);
- if (bf_is_nan(T))
- bf_set_nan(r);
- else
- bf_exp_internal(r, T, prec1, NULL); /* no overflow/underlow test needed */
- bf_delete(T);
- return BF_ST_INEXACT;
-}
-
-/* x and y finite, x > 0, y integer and y fits on one limb */
-static int bf_pow_int(bf_t *r, const bf_t *x, limb_t prec, void *opaque)
-{
- bf_context_t *s = r->ctx;
- const bf_t *y = opaque;
- bf_t T_s, *T = &T_s;
- limb_t prec1;
- int ret;
- slimb_t y1;
-
- bf_get_limb(&y1, y, 0);
- if (y1 < 0)
- y1 = -y1;
- /* XXX: proof for the added precision */
- prec1 = prec + ceil_log2(y1) * 2 + 8;
- ret = bf_pow_ui(r, x, y1 < 0 ? -y1 : y1, prec1, BF_RNDN | BF_FLAG_EXT_EXP);
- if (y->sign) {
- bf_init(s, T);
- bf_set_ui(T, 1);
- ret |= bf_div(r, T, r, prec1, BF_RNDN | BF_FLAG_EXT_EXP);
- bf_delete(T);
- }
- return ret;
-}
-
-/* x must be a finite non zero float. Return TRUE if there is a
- floating point number r such as x=r^(2^n) and return this floating
- point number 'r'. Otherwise return FALSE and r is undefined. */
-static BOOL check_exact_power2n(bf_t *r, const bf_t *x, slimb_t n)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- slimb_t e, i, er;
- limb_t v;
-
- /* x = m*2^e with m odd integer */
- e = bf_get_exp_min(x);
- /* fast check on the exponent */
- if (n > (LIMB_BITS - 1)) {
- if (e != 0)
- return FALSE;
- er = 0;
- } else {
- if ((e & (((limb_t)1 << n) - 1)) != 0)
- return FALSE;
- er = e >> n;
- }
- /* every perfect odd square = 1 modulo 8 */
- v = get_bits(x->tab, x->len, x->len * LIMB_BITS - x->expn + e);
- if ((v & 7) != 1)
- return FALSE;
-
- bf_init(s, T);
- bf_set(T, x);
- T->expn -= e;
- for(i = 0; i < n; i++) {
- if (i != 0)
- bf_set(T, r);
- if (bf_sqrtrem(r, NULL, T) != 0)
- return FALSE;
- }
- r->expn += er;
- return TRUE;
-}
-
-/* prec = BF_PREC_INF is accepted for x and y integers and y >= 0 */
-int bf_pow(bf_t *r, const bf_t *x, const bf_t *y, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- bf_t ytmp_s;
- BOOL y_is_int, y_is_odd;
- int r_sign, ret, rnd_mode;
- slimb_t y_emin;
-
- if (x->len == 0 || y->len == 0) {
- if (y->expn == BF_EXP_ZERO) {
- /* pow(x, 0) = 1 */
- bf_set_ui(r, 1);
- } else if (x->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- } else {
- int cmp_x_abs_1;
- bf_set_ui(r, 1);
- cmp_x_abs_1 = bf_cmpu(x, r);
- if (cmp_x_abs_1 == 0 && (flags & BF_POW_JS_QUIRKS) &&
- (y->expn >= BF_EXP_INF)) {
- bf_set_nan(r);
- } else if (cmp_x_abs_1 == 0 &&
- (!x->sign || y->expn != BF_EXP_NAN)) {
- /* pow(1, y) = 1 even if y = NaN */
- /* pow(-1, +/-inf) = 1 */
- } else if (y->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- } else if (y->expn == BF_EXP_INF) {
- if (y->sign == (cmp_x_abs_1 > 0)) {
- bf_set_zero(r, 0);
- } else {
- bf_set_inf(r, 0);
- }
- } else {
- y_emin = bf_get_exp_min(y);
- y_is_odd = (y_emin == 0);
- if (y->sign == (x->expn == BF_EXP_ZERO)) {
- bf_set_inf(r, y_is_odd & x->sign);
- if (y->sign) {
- /* pow(0, y) with y < 0 */
- return BF_ST_DIVIDE_ZERO;
- }
- } else {
- bf_set_zero(r, y_is_odd & x->sign);
- }
- }
- }
- return 0;
- }
- bf_init(s, T);
- bf_set(T, x);
- y_emin = bf_get_exp_min(y);
- y_is_int = (y_emin >= 0);
- rnd_mode = flags & BF_RND_MASK;
- if (x->sign) {
- if (!y_is_int) {
- bf_set_nan(r);
- bf_delete(T);
- return BF_ST_INVALID_OP;
- }
- y_is_odd = (y_emin == 0);
- r_sign = y_is_odd;
- /* change the directed rounding mode if the sign of the result
- is changed */
- if (r_sign && (rnd_mode == BF_RNDD || rnd_mode == BF_RNDU))
- flags ^= 1;
- bf_neg(T);
- } else {
- r_sign = 0;
- }
-
- bf_set_ui(r, 1);
- if (bf_cmp_eq(T, r)) {
- /* abs(x) = 1: nothing more to do */
- ret = 0;
- } else {
- /* check the overflow/underflow cases */
- {
- bf_t al_s, *al = &al_s;
- bf_t ah_s, *ah = &ah_s;
- limb_t precl = LIMB_BITS;
-
- bf_init(s, al);
- bf_init(s, ah);
- /* compute bounds of log(abs(x)) * y with a low precision */
- /* XXX: compute bf_log() once */
- /* XXX: add a fast test before this slow test */
- bf_log(al, T, precl, BF_RNDD);
- bf_log(ah, T, precl, BF_RNDU);
- bf_mul(al, al, y, precl, BF_RNDD ^ y->sign);
- bf_mul(ah, ah, y, precl, BF_RNDU ^ y->sign);
- ret = check_exp_underflow_overflow(s, r, al, ah, prec, flags);
- bf_delete(al);
- bf_delete(ah);
- if (ret)
- goto done;
- }
-
- if (y_is_int) {
- slimb_t T_bits, e;
- int_pow:
- T_bits = T->expn - bf_get_exp_min(T);
- if (T_bits == 1) {
- /* pow(2^b, y) = 2^(b*y) */
- bf_mul_si(T, y, T->expn - 1, LIMB_BITS, BF_RNDZ);
- bf_get_limb(&e, T, 0);
- bf_set_ui(r, 1);
- ret = bf_mul_2exp(r, e, prec, flags);
- } else if (prec == BF_PREC_INF) {
- slimb_t y1;
- /* specific case for infinite precision (integer case) */
- bf_get_limb(&y1, y, 0);
- assert(!y->sign);
- /* x must be an integer, so abs(x) >= 2 */
- if (y1 >= ((slimb_t)1 << BF_EXP_BITS_MAX)) {
- bf_delete(T);
- return bf_set_overflow(r, 0, BF_PREC_INF, flags);
- }
- ret = bf_pow_ui(r, T, y1, BF_PREC_INF, BF_RNDZ);
- } else {
- if (y->expn <= 31) {
- /* small enough power: use exponentiation in all cases */
- } else if (y->sign) {
- /* cannot be exact */
- goto general_case;
- } else {
- if (rnd_mode == BF_RNDF)
- goto general_case; /* no need to track exact results */
- /* see if the result has a chance to be exact:
- if x=a*2^b (a odd), x^y=a^y*2^(b*y)
- x^y needs a precision of at least floor_log2(a)*y bits
- */
- bf_mul_si(r, y, T_bits - 1, LIMB_BITS, BF_RNDZ);
- bf_get_limb(&e, r, 0);
- if (prec < e)
- goto general_case;
- }
- ret = bf_ziv_rounding(r, T, prec, flags, bf_pow_int, (void *)y);
- }
- } else {
- if (rnd_mode != BF_RNDF) {
- bf_t *y1;
- if (y_emin < 0 && check_exact_power2n(r, T, -y_emin)) {
- /* the problem is reduced to a power to an integer */
-#if 0
- printf("\nn=%" PRId64 "\n", -(int64_t)y_emin);
- bf_print_str("T", T);
- bf_print_str("r", r);
-#endif
- bf_set(T, r);
- y1 = &ytmp_s;
- y1->tab = y->tab;
- y1->len = y->len;
- y1->sign = y->sign;
- y1->expn = y->expn - y_emin;
- y = y1;
- goto int_pow;
- }
- }
- general_case:
- ret = bf_ziv_rounding(r, T, prec, flags, bf_pow_generic, (void *)y);
- }
- }
- done:
- bf_delete(T);
- r->sign = r_sign;
- return ret;
-}
-
-/* compute sqrt(-2*x-x^2) to get |sin(x)| from cos(x) - 1. */
-static void bf_sqrt_sin(bf_t *r, const bf_t *x, limb_t prec1)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- bf_init(s, T);
- bf_set(T, x);
- bf_mul(r, T, T, prec1, BF_RNDN);
- bf_mul_2exp(T, 1, BF_PREC_INF, BF_RNDZ);
- bf_add(T, T, r, prec1, BF_RNDN);
- bf_neg(T);
- bf_sqrt(r, T, prec1, BF_RNDF);
- bf_delete(T);
-}
-
-static int bf_sincos(bf_t *s, bf_t *c, const bf_t *a, limb_t prec)
-{
- bf_context_t *s1 = a->ctx;
- bf_t T_s, *T = &T_s;
- bf_t U_s, *U = &U_s;
- bf_t r_s, *r = &r_s;
- slimb_t K, prec1, i, l, mod, prec2;
- int is_neg;
-
- assert(c != a && s != a);
-
- bf_init(s1, T);
- bf_init(s1, U);
- bf_init(s1, r);
-
- /* XXX: precision analysis */
- K = bf_isqrt(prec / 2);
- l = prec / (2 * K) + 1;
- prec1 = prec + 2 * K + l + 8;
-
- /* after the modulo reduction, -pi/4 <= T <= pi/4 */
- if (a->expn <= -1) {
- /* abs(a) <= 0.25: no modulo reduction needed */
- bf_set(T, a);
- mod = 0;
- } else {
- slimb_t cancel;
- cancel = 0;
- for(;;) {
- prec2 = prec1 + a->expn + cancel;
- bf_const_pi(U, prec2, BF_RNDF);
- bf_mul_2exp(U, -1, BF_PREC_INF, BF_RNDZ);
- bf_remquo(&mod, T, a, U, prec2, BF_RNDN, BF_RNDN);
- // printf("T.expn=%ld prec2=%ld\n", T->expn, prec2);
- if (mod == 0 || (T->expn != BF_EXP_ZERO &&
- (T->expn + prec2) >= (prec1 - 1)))
- break;
- /* increase the number of bits until the precision is good enough */
- cancel = bf_max(-T->expn, (cancel + 1) * 3 / 2);
- }
- mod &= 3;
- }
-
- is_neg = T->sign;
-
- /* compute cosm1(x) = cos(x) - 1 */
- bf_mul(T, T, T, prec1, BF_RNDN);
- bf_mul_2exp(T, -2 * K, BF_PREC_INF, BF_RNDZ);
-
- /* Taylor expansion:
- -x^2/2 + x^4/4! - x^6/6! + ...
- */
- bf_set_ui(r, 1);
- for(i = l ; i >= 1; i--) {
- bf_set_ui(U, 2 * i - 1);
- bf_mul_ui(U, U, 2 * i, BF_PREC_INF, BF_RNDZ);
- bf_div(U, T, U, prec1, BF_RNDN);
- bf_mul(r, r, U, prec1, BF_RNDN);
- bf_neg(r);
- if (i != 1)
- bf_add_si(r, r, 1, prec1, BF_RNDN);
- }
- bf_delete(U);
-
- /* undo argument reduction:
- cosm1(2*x)= 2*(2*cosm1(x)+cosm1(x)^2)
- */
- for(i = 0; i < K; i++) {
- bf_mul(T, r, r, prec1, BF_RNDN);
- bf_mul_2exp(r, 1, BF_PREC_INF, BF_RNDZ);
- bf_add(r, r, T, prec1, BF_RNDN);
- bf_mul_2exp(r, 1, BF_PREC_INF, BF_RNDZ);
- }
- bf_delete(T);
-
- if (c) {
- if ((mod & 1) == 0) {
- bf_add_si(c, r, 1, prec1, BF_RNDN);
- } else {
- bf_sqrt_sin(c, r, prec1);
- c->sign = is_neg ^ 1;
- }
- c->sign ^= mod >> 1;
- }
- if (s) {
- if ((mod & 1) == 0) {
- bf_sqrt_sin(s, r, prec1);
- s->sign = is_neg;
- } else {
- bf_add_si(s, r, 1, prec1, BF_RNDN);
- }
- s->sign ^= mod >> 1;
- }
- bf_delete(r);
- return BF_ST_INEXACT;
-}
-
-static int bf_cos_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
-{
- return bf_sincos(NULL, r, a, prec);
-}
-
-int bf_cos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_set_ui(r, 1);
- return 0;
- }
- }
-
- /* small argument case: result = 1+r(x) with r(x) = -x^2/2 +
- O(X^4). We assume r(x) < 2^(2*EXP(x) - 1). */
- if (a->expn < 0) {
- slimb_t e;
- e = 2 * a->expn - 1;
- if (e < -(prec + 2)) {
- bf_set_ui(r, 1);
- return bf_add_epsilon(r, r, e, 1, prec, flags);
- }
- }
-
- return bf_ziv_rounding(r, a, prec, flags, bf_cos_internal, NULL);
-}
-
-static int bf_sin_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
-{
- return bf_sincos(r, NULL, a, prec);
-}
-
-int bf_sin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_set_zero(r, a->sign);
- return 0;
- }
- }
-
- /* small argument case: result = x+r(x) with r(x) = -x^3/6 +
- O(X^5). We assume r(x) < 2^(3*EXP(x) - 2). */
- if (a->expn < 0) {
- slimb_t e;
- e = sat_add(2 * a->expn, a->expn - 2);
- if (e < a->expn - bf_max(prec + 2, a->len * LIMB_BITS + 2)) {
- bf_set(r, a);
- return bf_add_epsilon(r, r, e, 1 - a->sign, prec, flags);
- }
- }
-
- return bf_ziv_rounding(r, a, prec, flags, bf_sin_internal, NULL);
-}
-
-static int bf_tan_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- limb_t prec1;
-
- /* XXX: precision analysis */
- prec1 = prec + 8;
- bf_init(s, T);
- bf_sincos(r, T, a, prec1);
- bf_div(r, r, T, prec1, BF_RNDF);
- bf_delete(T);
- return BF_ST_INEXACT;
-}
-
-int bf_tan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- assert(r != a);
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_set_zero(r, a->sign);
- return 0;
- }
- }
-
- /* small argument case: result = x+r(x) with r(x) = x^3/3 +
- O(X^5). We assume r(x) < 2^(3*EXP(x) - 1). */
- if (a->expn < 0) {
- slimb_t e;
- e = sat_add(2 * a->expn, a->expn - 1);
- if (e < a->expn - bf_max(prec + 2, a->len * LIMB_BITS + 2)) {
- bf_set(r, a);
- return bf_add_epsilon(r, r, e, a->sign, prec, flags);
- }
- }
-
- return bf_ziv_rounding(r, a, prec, flags, bf_tan_internal, NULL);
-}
-
-/* if add_pi2 is true, add pi/2 to the result (used for acos(x) to
- avoid cancellation) */
-static int bf_atan_internal(bf_t *r, const bf_t *a, limb_t prec,
- void *opaque)
-{
- bf_context_t *s = r->ctx;
- BOOL add_pi2 = (BOOL)(intptr_t)opaque;
- bf_t T_s, *T = &T_s;
- bf_t U_s, *U = &U_s;
- bf_t V_s, *V = &V_s;
- bf_t X2_s, *X2 = &X2_s;
- int cmp_1;
- slimb_t prec1, i, K, l;
-
- /* XXX: precision analysis */
- K = bf_isqrt((prec + 1) / 2);
- l = prec / (2 * K) + 1;
- prec1 = prec + K + 2 * l + 32;
- // printf("prec=%d K=%d l=%d prec1=%d\n", (int)prec, (int)K, (int)l, (int)prec1);
-
- bf_init(s, T);
- cmp_1 = (a->expn >= 1); /* a >= 1 */
- if (cmp_1) {
- bf_set_ui(T, 1);
- bf_div(T, T, a, prec1, BF_RNDN);
- } else {
- bf_set(T, a);
- }
-
- /* abs(T) <= 1 */
-
- /* argument reduction */
-
- bf_init(s, U);
- bf_init(s, V);
- bf_init(s, X2);
- for(i = 0; i < K; i++) {
- /* T = T / (1 + sqrt(1 + T^2)) */
- bf_mul(U, T, T, prec1, BF_RNDN);
- bf_add_si(U, U, 1, prec1, BF_RNDN);
- bf_sqrt(V, U, prec1, BF_RNDN);
- bf_add_si(V, V, 1, prec1, BF_RNDN);
- bf_div(T, T, V, prec1, BF_RNDN);
- }
-
- /* Taylor series:
- x - x^3/3 + ... + (-1)^ l * y^(2*l + 1) / (2*l+1)
- */
- bf_mul(X2, T, T, prec1, BF_RNDN);
- bf_set_ui(r, 0);
- for(i = l; i >= 1; i--) {
- bf_set_si(U, 1);
- bf_set_ui(V, 2 * i + 1);
- bf_div(U, U, V, prec1, BF_RNDN);
- bf_neg(r);
- bf_add(r, r, U, prec1, BF_RNDN);
- bf_mul(r, r, X2, prec1, BF_RNDN);
- }
- bf_neg(r);
- bf_add_si(r, r, 1, prec1, BF_RNDN);
- bf_mul(r, r, T, prec1, BF_RNDN);
-
- /* undo the argument reduction */
- bf_mul_2exp(r, K, BF_PREC_INF, BF_RNDZ);
-
- bf_delete(U);
- bf_delete(V);
- bf_delete(X2);
-
- i = add_pi2;
- if (cmp_1 > 0) {
- /* undo the inversion : r = sign(a)*PI/2 - r */
- bf_neg(r);
- i += 1 - 2 * a->sign;
- }
- /* add i*(pi/2) with -1 <= i <= 2 */
- if (i != 0) {
- bf_const_pi(T, prec1, BF_RNDF);
- if (i != 2)
- bf_mul_2exp(T, -1, BF_PREC_INF, BF_RNDZ);
- T->sign = (i < 0);
- bf_add(r, T, r, prec1, BF_RNDN);
- }
-
- bf_delete(T);
- return BF_ST_INEXACT;
-}
-
-int bf_atan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- int res;
-
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF) {
- /* -PI/2 or PI/2 */
- bf_const_pi_signed(r, a->sign, prec, flags);
- bf_mul_2exp(r, -1, BF_PREC_INF, BF_RNDZ);
- return BF_ST_INEXACT;
- } else {
- bf_set_zero(r, a->sign);
- return 0;
- }
- }
-
- bf_init(s, T);
- bf_set_ui(T, 1);
- res = bf_cmpu(a, T);
- bf_delete(T);
- if (res == 0) {
- /* short cut: abs(a) == 1 -> +/-pi/4 */
- bf_const_pi_signed(r, a->sign, prec, flags);
- bf_mul_2exp(r, -2, BF_PREC_INF, BF_RNDZ);
- return BF_ST_INEXACT;
- }
-
- /* small argument case: result = x+r(x) with r(x) = -x^3/3 +
- O(X^5). We assume r(x) < 2^(3*EXP(x) - 1). */
- if (a->expn < 0) {
- slimb_t e;
- e = sat_add(2 * a->expn, a->expn - 1);
- if (e < a->expn - bf_max(prec + 2, a->len * LIMB_BITS + 2)) {
- bf_set(r, a);
- return bf_add_epsilon(r, r, e, 1 - a->sign, prec, flags);
- }
- }
-
- return bf_ziv_rounding(r, a, prec, flags, bf_atan_internal, (void *)FALSE);
-}
-
-static int bf_atan2_internal(bf_t *r, const bf_t *y, limb_t prec, void *opaque)
-{
- bf_context_t *s = r->ctx;
- const bf_t *x = opaque;
- bf_t T_s, *T = &T_s;
- limb_t prec1;
- int ret;
-
- if (y->expn == BF_EXP_NAN || x->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- }
-
- /* compute atan(y/x) assumming inf/inf = 1 and 0/0 = 0 */
- bf_init(s, T);
- prec1 = prec + 32;
- if (y->expn == BF_EXP_INF && x->expn == BF_EXP_INF) {
- bf_set_ui(T, 1);
- T->sign = y->sign ^ x->sign;
- } else if (y->expn == BF_EXP_ZERO && x->expn == BF_EXP_ZERO) {
- bf_set_zero(T, y->sign ^ x->sign);
- } else {
- bf_div(T, y, x, prec1, BF_RNDF);
- }
- ret = bf_atan(r, T, prec1, BF_RNDF);
-
- if (x->sign) {
- /* if x < 0 (it includes -0), return sign(y)*pi + atan(y/x) */
- bf_const_pi(T, prec1, BF_RNDF);
- T->sign = y->sign;
- bf_add(r, r, T, prec1, BF_RNDN);
- ret |= BF_ST_INEXACT;
- }
-
- bf_delete(T);
- return ret;
-}
-
-int bf_atan2(bf_t *r, const bf_t *y, const bf_t *x,
- limb_t prec, bf_flags_t flags)
-{
- return bf_ziv_rounding(r, y, prec, flags, bf_atan2_internal, (void *)x);
-}
-
-static int bf_asin_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
-{
- bf_context_t *s = r->ctx;
- BOOL is_acos = (BOOL)(intptr_t)opaque;
- bf_t T_s, *T = &T_s;
- limb_t prec1, prec2;
-
- /* asin(x) = atan(x/sqrt(1-x^2))
- acos(x) = pi/2 - asin(x) */
- prec1 = prec + 8;
- /* increase the precision in x^2 to compensate the cancellation in
- (1-x^2) if x is close to 1 */
- /* XXX: use less precision when possible */
- if (a->expn >= 0)
- prec2 = BF_PREC_INF;
- else
- prec2 = prec1;
- bf_init(s, T);
- bf_mul(T, a, a, prec2, BF_RNDN);
- bf_neg(T);
- bf_add_si(T, T, 1, prec2, BF_RNDN);
-
- bf_sqrt(r, T, prec1, BF_RNDN);
- bf_div(T, a, r, prec1, BF_RNDN);
- if (is_acos)
- bf_neg(T);
- bf_atan_internal(r, T, prec1, (void *)(intptr_t)is_acos);
- bf_delete(T);
- return BF_ST_INEXACT;
-}
-
-int bf_asin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- int res;
-
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_set_zero(r, a->sign);
- return 0;
- }
- }
- bf_init(s, T);
- bf_set_ui(T, 1);
- res = bf_cmpu(a, T);
- bf_delete(T);
- if (res > 0) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- }
-
- /* small argument case: result = x+r(x) with r(x) = x^3/6 +
- O(X^5). We assume r(x) < 2^(3*EXP(x) - 2). */
- if (a->expn < 0) {
- slimb_t e;
- e = sat_add(2 * a->expn, a->expn - 2);
- if (e < a->expn - bf_max(prec + 2, a->len * LIMB_BITS + 2)) {
- bf_set(r, a);
- return bf_add_epsilon(r, r, e, a->sign, prec, flags);
- }
- }
-
- return bf_ziv_rounding(r, a, prec, flags, bf_asin_internal, (void *)FALSE);
-}
-
-int bf_acos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = r->ctx;
- bf_t T_s, *T = &T_s;
- int res;
-
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bf_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bf_const_pi(r, prec, flags);
- bf_mul_2exp(r, -1, BF_PREC_INF, BF_RNDZ);
- return BF_ST_INEXACT;
- }
- }
- bf_init(s, T);
- bf_set_ui(T, 1);
- res = bf_cmpu(a, T);
- bf_delete(T);
- if (res > 0) {
- bf_set_nan(r);
- return BF_ST_INVALID_OP;
- } else if (res == 0 && a->sign == 0) {
- bf_set_zero(r, 0);
- return 0;
- }
-
- return bf_ziv_rounding(r, a, prec, flags, bf_asin_internal, (void *)TRUE);
-}
-
-/***************************************************************/
-/* decimal floating point numbers */
-
-#ifdef USE_BF_DEC
-
-#define adddq(r1, r0, a1, a0) \
- do { \
- limb_t __t = r0; \
- r0 += (a0); \
- r1 += (a1) + (r0 < __t); \
- } while (0)
-
-#define subdq(r1, r0, a1, a0) \
- do { \
- limb_t __t = r0; \
- r0 -= (a0); \
- r1 -= (a1) + (r0 > __t); \
- } while (0)
-
-#if LIMB_BITS == 64
-
-/* Note: we assume __int128 is available */
-#define muldq(r1, r0, a, b) \
- do { \
- unsigned __int128 __t; \
- __t = (unsigned __int128)(a) * (unsigned __int128)(b); \
- r0 = __t; \
- r1 = __t >> 64; \
- } while (0)
-
-#define divdq(q, r, a1, a0, b) \
- do { \
- unsigned __int128 __t; \
- limb_t __b = (b); \
- __t = ((unsigned __int128)(a1) << 64) | (a0); \
- q = __t / __b; \
- r = __t % __b; \
- } while (0)
-
-#else
-
-#define muldq(r1, r0, a, b) \
- do { \
- uint64_t __t; \
- __t = (uint64_t)(a) * (uint64_t)(b); \
- r0 = __t; \
- r1 = __t >> 32; \
- } while (0)
-
-#define divdq(q, r, a1, a0, b) \
- do { \
- uint64_t __t; \
- limb_t __b = (b); \
- __t = ((uint64_t)(a1) << 32) | (a0); \
- q = __t / __b; \
- r = __t % __b; \
- } while (0)
-
-#endif /* LIMB_BITS != 64 */
-
-#if LIMB_DIGITS == 19
-
-/* WARNING: hardcoded for b = 1e19. It is assumed that:
- 0 <= a1 < 2^63 */
-#define divdq_base(q, r, a1, a0)\
-do {\
- uint64_t __a0, __a1, __t0, __t1, __b = BF_DEC_BASE; \
- __a0 = a0;\
- __a1 = a1;\
- __t0 = __a1;\
- __t0 = shld(__t0, __a0, 1);\
- muldq(q, __t1, __t0, UINT64_C(17014118346046923173)); \
- muldq(__t1, __t0, q, __b);\
- subdq(__a1, __a0, __t1, __t0);\
- subdq(__a1, __a0, 1, __b * 2); \
- __t0 = (slimb_t)__a1 >> 1; \
- q += 2 + __t0;\
- adddq(__a1, __a0, 0, __b & __t0);\
- q += __a1; \
- __a0 += __b & __a1; \
- r = __a0;\
-} while(0)
-
-#elif LIMB_DIGITS == 9
-
-/* WARNING: hardcoded for b = 1e9. It is assumed that:
- 0 <= a1 < 2^29 */
-#define divdq_base(q, r, a1, a0)\
-do {\
- uint32_t __t0, __t1, __b = BF_DEC_BASE; \
- __t0 = a1;\
- __t1 = a0;\
- __t0 = (__t0 << 3) | (__t1 >> (32 - 3)); \
- muldq(q, __t1, __t0, 2305843009U);\
- r = a0 - q * __b;\
- __t1 = (r >= __b);\
- q += __t1;\
- if (__t1)\
- r -= __b;\
-} while(0)
-
-#endif
-
-/* fast integer division by a fixed constant */
-
-typedef struct FastDivData {
- limb_t m1; /* multiplier */
- int8_t shift1;
- int8_t shift2;
-} FastDivData;
-
-/* From "Division by Invariant Integers using Multiplication" by
- Torborn Granlund and Peter L. Montgomery */
-/* d must be != 0 */
-static inline __maybe_unused void fast_udiv_init(FastDivData *s, limb_t d)
-{
- int l;
- limb_t q, r, m1;
- if (d == 1)
- l = 0;
- else
- l = 64 - clz64(d - 1);
- divdq(q, r, ((limb_t)1 << l) - d, 0, d);
- (void)r;
- m1 = q + 1;
- // printf("d=%lu l=%d m1=0x%016lx\n", d, l, m1);
- s->m1 = m1;
- s->shift1 = l;
- if (s->shift1 > 1)
- s->shift1 = 1;
- s->shift2 = l - 1;
- if (s->shift2 < 0)
- s->shift2 = 0;
-}
-
-static inline limb_t fast_udiv(limb_t a, const FastDivData *s)
-{
- limb_t t0, t1;
- muldq(t1, t0, s->m1, a);
- t0 = (a - t1) >> s->shift1;
- return (t1 + t0) >> s->shift2;
-}
-
-/* contains 10^i */
-const limb_t mp_pow_dec[LIMB_DIGITS + 1] = {
- 1U,
- 10U,
- 100U,
- 1000U,
- 10000U,
- 100000U,
- 1000000U,
- 10000000U,
- 100000000U,
- 1000000000U,
-#if LIMB_BITS == 64
- 10000000000U,
- 100000000000U,
- 1000000000000U,
- 10000000000000U,
- 100000000000000U,
- 1000000000000000U,
- 10000000000000000U,
- 100000000000000000U,
- 1000000000000000000U,
- 10000000000000000000U,
-#endif
-};
-
-/* precomputed from fast_udiv_init(10^i) */
-static const FastDivData mp_pow_div[LIMB_DIGITS + 1] = {
-#if LIMB_BITS == 32
- { 0x00000001, 0, 0 },
- { 0x9999999a, 1, 3 },
- { 0x47ae147b, 1, 6 },
- { 0x0624dd30, 1, 9 },
- { 0xa36e2eb2, 1, 13 },
- { 0x4f8b588f, 1, 16 },
- { 0x0c6f7a0c, 1, 19 },
- { 0xad7f29ac, 1, 23 },
- { 0x5798ee24, 1, 26 },
- { 0x12e0be83, 1, 29 },
-#else
- { 0x0000000000000001, 0, 0 },
- { 0x999999999999999a, 1, 3 },
- { 0x47ae147ae147ae15, 1, 6 },
- { 0x0624dd2f1a9fbe77, 1, 9 },
- { 0xa36e2eb1c432ca58, 1, 13 },
- { 0x4f8b588e368f0847, 1, 16 },
- { 0x0c6f7a0b5ed8d36c, 1, 19 },
- { 0xad7f29abcaf48579, 1, 23 },
- { 0x5798ee2308c39dfa, 1, 26 },
- { 0x12e0be826d694b2f, 1, 29 },
- { 0xb7cdfd9d7bdbab7e, 1, 33 },
- { 0x5fd7fe17964955fe, 1, 36 },
- { 0x19799812dea11198, 1, 39 },
- { 0xc25c268497681c27, 1, 43 },
- { 0x6849b86a12b9b01f, 1, 46 },
- { 0x203af9ee756159b3, 1, 49 },
- { 0xcd2b297d889bc2b7, 1, 53 },
- { 0x70ef54646d496893, 1, 56 },
- { 0x2725dd1d243aba0f, 1, 59 },
- { 0xd83c94fb6d2ac34d, 1, 63 },
-#endif
-};
-
-/* divide by 10^shift with 0 <= shift <= LIMB_DIGITS */
-static inline limb_t fast_shr_dec(limb_t a, int shift)
-{
- return fast_udiv(a, &mp_pow_div[shift]);
-}
-
-/* division and remainder by 10^shift */
-#define fast_shr_rem_dec(q, r, a, shift) q = fast_shr_dec(a, shift), r = a - q * mp_pow_dec[shift]
-
-limb_t mp_add_dec(limb_t *res, const limb_t *op1, const limb_t *op2,
- mp_size_t n, limb_t carry)
-{
- limb_t base = BF_DEC_BASE;
- mp_size_t i;
- limb_t k, a, v;
-
- k=carry;
- for(i=0;i<n;i++) {
- /* XXX: reuse the trick in add_mod */
- v = op1[i];
- a = v + op2[i] + k - base;
- k = a <= v;
- if (!k)
- a += base;
- res[i]=a;
- }
- return k;
-}
-
-limb_t mp_add_ui_dec(limb_t *tab, limb_t b, mp_size_t n)
-{
- limb_t base = BF_DEC_BASE;
- mp_size_t i;
- limb_t k, a, v;
-
- k=b;
- for(i=0;i<n;i++) {
- v = tab[i];
- a = v + k - base;
- k = a <= v;
- if (!k)
- a += base;
- tab[i] = a;
- if (k == 0)
- break;
- }
- return k;
-}
-
-limb_t mp_sub_dec(limb_t *res, const limb_t *op1, const limb_t *op2,
- mp_size_t n, limb_t carry)
-{
- limb_t base = BF_DEC_BASE;
- mp_size_t i;
- limb_t k, v, a;
-
- k=carry;
- for(i=0;i<n;i++) {
- v = op1[i];
- a = v - op2[i] - k;
- k = a > v;
- if (k)
- a += base;
- res[i] = a;
- }
- return k;
-}
-
-limb_t mp_sub_ui_dec(limb_t *tab, limb_t b, mp_size_t n)
-{
- limb_t base = BF_DEC_BASE;
- mp_size_t i;
- limb_t k, v, a;
-
- k=b;
- for(i=0;i<n;i++) {
- v = tab[i];
- a = v - k;
- k = a > v;
- if (k)
- a += base;
- tab[i]=a;
- if (k == 0)
- break;
- }
- return k;
-}
-
-/* taba[] = taba[] * b + l. 0 <= b, l <= base - 1. Return the high carry */
-limb_t mp_mul1_dec(limb_t *tabr, const limb_t *taba, mp_size_t n,
- limb_t b, limb_t l)
-{
- mp_size_t i;
- limb_t t0, t1, r;
-
- for(i = 0; i < n; i++) {
- muldq(t1, t0, taba[i], b);
- adddq(t1, t0, 0, l);
- divdq_base(l, r, t1, t0);
- tabr[i] = r;
- }
- return l;
-}
-
-/* tabr[] += taba[] * b. 0 <= b <= base - 1. Return the value to add
- to the high word */
-limb_t mp_add_mul1_dec(limb_t *tabr, const limb_t *taba, mp_size_t n,
- limb_t b)
-{
- mp_size_t i;
- limb_t l, t0, t1, r;
-
- l = 0;
- for(i = 0; i < n; i++) {
- muldq(t1, t0, taba[i], b);
- adddq(t1, t0, 0, l);
- adddq(t1, t0, 0, tabr[i]);
- divdq_base(l, r, t1, t0);
- tabr[i] = r;
- }
- return l;
-}
-
-/* tabr[] -= taba[] * b. 0 <= b <= base - 1. Return the value to
- substract to the high word. */
-limb_t mp_sub_mul1_dec(limb_t *tabr, const limb_t *taba, mp_size_t n,
- limb_t b)
-{
- limb_t base = BF_DEC_BASE;
- mp_size_t i;
- limb_t l, t0, t1, r, a, v, c;
-
- /* XXX: optimize */
- l = 0;
- for(i = 0; i < n; i++) {
- muldq(t1, t0, taba[i], b);
- adddq(t1, t0, 0, l);
- divdq_base(l, r, t1, t0);
- v = tabr[i];
- a = v - r;
- c = a > v;
- if (c)
- a += base;
- /* never bigger than base because r = 0 when l = base - 1 */
- l += c;
- tabr[i] = a;
- }
- return l;
-}
-
-/* size of the result : op1_size + op2_size. */
-void mp_mul_basecase_dec(limb_t *result,
- const limb_t *op1, mp_size_t op1_size,
- const limb_t *op2, mp_size_t op2_size)
-{
- mp_size_t i;
- limb_t r;
-
- result[op1_size] = mp_mul1_dec(result, op1, op1_size, op2[0], 0);
-
- for(i=1;i<op2_size;i++) {
- r = mp_add_mul1_dec(result + i, op1, op1_size, op2[i]);
- result[i + op1_size] = r;
- }
-}
-
-/* taba[] = (taba[] + r*base^na) / b. 0 <= b < base. 0 <= r <
- b. Return the remainder. */
-limb_t mp_div1_dec(limb_t *tabr, const limb_t *taba, mp_size_t na,
- limb_t b, limb_t r)
-{
- limb_t base = BF_DEC_BASE;
- mp_size_t i;
- limb_t t0, t1, q;
- int shift;
-
-#if (BF_DEC_BASE % 2) == 0
- if (b == 2) {
- limb_t base_div2;
- /* Note: only works if base is even */
- base_div2 = base >> 1;
- if (r)
- r = base_div2;
- for(i = na - 1; i >= 0; i--) {
- t0 = taba[i];
- tabr[i] = (t0 >> 1) + r;
- r = 0;
- if (t0 & 1)
- r = base_div2;
- }
- if (r)
- r = 1;
- } else
-#endif
- if (na >= UDIV1NORM_THRESHOLD) {
- shift = clz(b);
- if (shift == 0) {
- /* normalized case: b >= 2^(LIMB_BITS-1) */
- limb_t b_inv;
- b_inv = udiv1norm_init(b);
- for(i = na - 1; i >= 0; i--) {
- muldq(t1, t0, r, base);
- adddq(t1, t0, 0, taba[i]);
- q = udiv1norm(&r, t1, t0, b, b_inv);
- tabr[i] = q;
- }
- } else {
- limb_t b_inv;
- b <<= shift;
- b_inv = udiv1norm_init(b);
- for(i = na - 1; i >= 0; i--) {
- muldq(t1, t0, r, base);
- adddq(t1, t0, 0, taba[i]);
- t1 = (t1 << shift) | (t0 >> (LIMB_BITS - shift));
- t0 <<= shift;
- q = udiv1norm(&r, t1, t0, b, b_inv);
- r >>= shift;
- tabr[i] = q;
- }
- }
- } else {
- for(i = na - 1; i >= 0; i--) {
- muldq(t1, t0, r, base);
- adddq(t1, t0, 0, taba[i]);
- divdq(q, r, t1, t0, b);
- tabr[i] = q;
- }
- }
- return r;
-}
-
-static __maybe_unused void mp_print_str_dec(const char *str,
- const limb_t *tab, slimb_t n)
-{
- slimb_t i;
- printf("%s=", str);
- for(i = n - 1; i >= 0; i--) {
- if (i != n - 1)
- printf("_");
- printf("%0*" PRIu_LIMB, LIMB_DIGITS, tab[i]);
- }
- printf("\n");
-}
-
-static __maybe_unused void mp_print_str_h_dec(const char *str,
- const limb_t *tab, slimb_t n,
- limb_t high)
-{
- slimb_t i;
- printf("%s=", str);
- printf("%0*" PRIu_LIMB, LIMB_DIGITS, high);
- for(i = n - 1; i >= 0; i--) {
- printf("_");
- printf("%0*" PRIu_LIMB, LIMB_DIGITS, tab[i]);
- }
- printf("\n");
-}
-
-//#define DEBUG_DIV_SLOW
-
-#define DIV_STATIC_ALLOC_LEN 16
-
-/* return q = a / b and r = a % b.
-
- taba[na] must be allocated if tabb1[nb - 1] < B / 2. tabb1[nb - 1]
- must be != zero. na must be >= nb. 's' can be NULL if tabb1[nb - 1]
- >= B / 2.
-
- The remainder is is returned in taba and contains nb libms. tabq
- contains na - nb + 1 limbs. No overlap is permitted.
-
- Running time of the standard method: (na - nb + 1) * nb
- Return 0 if OK, -1 if memory alloc error
-*/
-/* XXX: optimize */
-static int mp_div_dec(bf_context_t *s, limb_t *tabq,
- limb_t *taba, mp_size_t na,
- const limb_t *tabb1, mp_size_t nb)
-{
- limb_t base = BF_DEC_BASE;
- limb_t r, mult, t0, t1, a, c, q, v, *tabb;
- mp_size_t i, j;
- limb_t static_tabb[DIV_STATIC_ALLOC_LEN];
-
-#ifdef DEBUG_DIV_SLOW
- mp_print_str_dec("a", taba, na);
- mp_print_str_dec("b", tabb1, nb);
-#endif
-
- /* normalize tabb */
- r = tabb1[nb - 1];
- assert(r != 0);
- i = na - nb;
- if (r >= BF_DEC_BASE / 2) {
- mult = 1;
- tabb = (limb_t *)tabb1;
- q = 1;
- for(j = nb - 1; j >= 0; j--) {
- if (taba[i + j] != tabb[j]) {
- if (taba[i + j] < tabb[j])
- q = 0;
- break;
- }
- }
- tabq[i] = q;
- if (q) {
- mp_sub_dec(taba + i, taba + i, tabb, nb, 0);
- }
- i--;
- } else {
- mult = base / (r + 1);
- if (likely(nb <= DIV_STATIC_ALLOC_LEN)) {
- tabb = static_tabb;
- } else {
- tabb = bf_malloc(s, sizeof(limb_t) * nb);
- if (!tabb)
- return -1;
- }
- mp_mul1_dec(tabb, tabb1, nb, mult, 0);
- taba[na] = mp_mul1_dec(taba, taba, na, mult, 0);
- }
-
-#ifdef DEBUG_DIV_SLOW
- printf("mult=" FMT_LIMB "\n", mult);
- mp_print_str_dec("a_norm", taba, na + 1);
- mp_print_str_dec("b_norm", tabb, nb);
-#endif
-
- for(; i >= 0; i--) {
- if (unlikely(taba[i + nb] >= tabb[nb - 1])) {
- /* XXX: check if it is really possible */
- q = base - 1;
- } else {
- muldq(t1, t0, taba[i + nb], base);
- adddq(t1, t0, 0, taba[i + nb - 1]);
- divdq(q, r, t1, t0, tabb[nb - 1]);
- }
- // printf("i=%d q1=%ld\n", i, q);
-
- r = mp_sub_mul1_dec(taba + i, tabb, nb, q);
- // mp_dump("r1", taba + i, nb, bd);
- // printf("r2=%ld\n", r);
-
- v = taba[i + nb];
- a = v - r;
- c = a > v;
- if (c)
- a += base;
- taba[i + nb] = a;
-
- if (c != 0) {
- /* negative result */
- for(;;) {
- q--;
- c = mp_add_dec(taba + i, taba + i, tabb, nb, 0);
- /* propagate carry and test if positive result */
- if (c != 0) {
- if (++taba[i + nb] == base) {
- break;
- }
- }
- }
- }
- tabq[i] = q;
- }
-
-#ifdef DEBUG_DIV_SLOW
- mp_print_str_dec("q", tabq, na - nb + 1);
- mp_print_str_dec("r", taba, nb);
-#endif
-
- /* remove the normalization */
- if (mult != 1) {
- mp_div1_dec(taba, taba, nb, mult, 0);
- if (unlikely(tabb != static_tabb))
- bf_free(s, tabb);
- }
- return 0;
-}
-
-/* divide by 10^shift */
-static limb_t mp_shr_dec(limb_t *tab_r, const limb_t *tab, mp_size_t n,
- limb_t shift, limb_t high)
-{
- mp_size_t i;
- limb_t l, a, q, r;
-
- assert(shift >= 1 && shift < LIMB_DIGITS);
- l = high;
- for(i = n - 1; i >= 0; i--) {
- a = tab[i];
- fast_shr_rem_dec(q, r, a, shift);
- tab_r[i] = q + l * mp_pow_dec[LIMB_DIGITS - shift];
- l = r;
- }
- return l;
-}
-
-/* multiply by 10^shift */
-static limb_t mp_shl_dec(limb_t *tab_r, const limb_t *tab, mp_size_t n,
- limb_t shift, limb_t low)
-{
- mp_size_t i;
- limb_t l, a, q, r;
-
- assert(shift >= 1 && shift < LIMB_DIGITS);
- l = low;
- for(i = 0; i < n; i++) {
- a = tab[i];
- fast_shr_rem_dec(q, r, a, LIMB_DIGITS - shift);
- tab_r[i] = r * mp_pow_dec[shift] + l;
- l = q;
- }
- return l;
-}
-
-static limb_t mp_sqrtrem2_dec(limb_t *tabs, limb_t *taba)
-{
- int k;
- dlimb_t a, b, r;
- limb_t taba1[2], s, r0, r1;
-
- /* convert to binary and normalize */
- a = (dlimb_t)taba[1] * BF_DEC_BASE + taba[0];
- k = clz(a >> LIMB_BITS) & ~1;
- b = a << k;
- taba1[0] = b;
- taba1[1] = b >> LIMB_BITS;
- mp_sqrtrem2(&s, taba1);
- s >>= (k >> 1);
- /* convert the remainder back to decimal */
- r = a - (dlimb_t)s * (dlimb_t)s;
- divdq_base(r1, r0, r >> LIMB_BITS, r);
- taba[0] = r0;
- tabs[0] = s;
- return r1;
-}
-
-//#define DEBUG_SQRTREM_DEC
-
-/* tmp_buf must contain (n / 2 + 1 limbs) */
-static limb_t mp_sqrtrem_rec_dec(limb_t *tabs, limb_t *taba, limb_t n,
- limb_t *tmp_buf)
-{
- limb_t l, h, rh, ql, qh, c, i;
-
- if (n == 1)
- return mp_sqrtrem2_dec(tabs, taba);
-#ifdef DEBUG_SQRTREM_DEC
- mp_print_str_dec("a", taba, 2 * n);
-#endif
- l = n / 2;
- h = n - l;
- qh = mp_sqrtrem_rec_dec(tabs + l, taba + 2 * l, h, tmp_buf);
-#ifdef DEBUG_SQRTREM_DEC
- mp_print_str_dec("s1", tabs + l, h);
- mp_print_str_h_dec("r1", taba + 2 * l, h, qh);
- mp_print_str_h_dec("r2", taba + l, n, qh);
-#endif
-
- /* the remainder is in taba + 2 * l. Its high bit is in qh */
- if (qh) {
- mp_sub_dec(taba + 2 * l, taba + 2 * l, tabs + l, h, 0);
- }
- /* instead of dividing by 2*s, divide by s (which is normalized)
- and update q and r */
- mp_div_dec(NULL, tmp_buf, taba + l, n, tabs + l, h);
- qh += tmp_buf[l];
- for(i = 0; i < l; i++)
- tabs[i] = tmp_buf[i];
- ql = mp_div1_dec(tabs, tabs, l, 2, qh & 1);
- qh = qh >> 1; /* 0 or 1 */
- if (ql)
- rh = mp_add_dec(taba + l, taba + l, tabs + l, h, 0);
- else
- rh = 0;
-#ifdef DEBUG_SQRTREM_DEC
- mp_print_str_h_dec("q", tabs, l, qh);
- mp_print_str_h_dec("u", taba + l, h, rh);
-#endif
-
- mp_add_ui_dec(tabs + l, qh, h);
-#ifdef DEBUG_SQRTREM_DEC
- mp_print_str_dec("s2", tabs, n);
-#endif
-
- /* q = qh, tabs[l - 1 ... 0], r = taba[n - 1 ... l] */
- /* subtract q^2. if qh = 1 then q = B^l, so we can take shortcuts */
- if (qh) {
- c = qh;
- } else {
- mp_mul_basecase_dec(taba + n, tabs, l, tabs, l);
- c = mp_sub_dec(taba, taba, taba + n, 2 * l, 0);
- }
- rh -= mp_sub_ui_dec(taba + 2 * l, c, n - 2 * l);
- if ((slimb_t)rh < 0) {
- mp_sub_ui_dec(tabs, 1, n);
- rh += mp_add_mul1_dec(taba, tabs, n, 2);
- rh += mp_add_ui_dec(taba, 1, n);
- }
- return rh;
-}
-
-/* 'taba' has 2*n limbs with n >= 1 and taba[2*n-1] >= B/4. Return (s,
- r) with s=floor(sqrt(a)) and r=a-s^2. 0 <= r <= 2 * s. tabs has n
- limbs. r is returned in the lower n limbs of taba. Its r[n] is the
- returned value of the function. */
-int mp_sqrtrem_dec(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n)
-{
- limb_t tmp_buf1[8];
- limb_t *tmp_buf;
- mp_size_t n2;
- n2 = n / 2 + 1;
- if (n2 <= countof(tmp_buf1)) {
- tmp_buf = tmp_buf1;
- } else {
- tmp_buf = bf_malloc(s, sizeof(limb_t) * n2);
- if (!tmp_buf)
- return -1;
- }
- taba[n] = mp_sqrtrem_rec_dec(tabs, taba, n, tmp_buf);
- if (tmp_buf != tmp_buf1)
- bf_free(s, tmp_buf);
- return 0;
-}
-
-/* return the number of leading zero digits, from 0 to LIMB_DIGITS */
-static int clz_dec(limb_t a)
-{
- if (a == 0)
- return LIMB_DIGITS;
- switch(LIMB_BITS - 1 - clz(a)) {
- case 0: /* 1-1 */
- return LIMB_DIGITS - 1;
- case 1: /* 2-3 */
- return LIMB_DIGITS - 1;
- case 2: /* 4-7 */
- return LIMB_DIGITS - 1;
- case 3: /* 8-15 */
- if (a < 10)
- return LIMB_DIGITS - 1;
- else
- return LIMB_DIGITS - 2;
- case 4: /* 16-31 */
- return LIMB_DIGITS - 2;
- case 5: /* 32-63 */
- return LIMB_DIGITS - 2;
- case 6: /* 64-127 */
- if (a < 100)
- return LIMB_DIGITS - 2;
- else
- return LIMB_DIGITS - 3;
- case 7: /* 128-255 */
- return LIMB_DIGITS - 3;
- case 8: /* 256-511 */
- return LIMB_DIGITS - 3;
- case 9: /* 512-1023 */
- if (a < 1000)
- return LIMB_DIGITS - 3;
- else
- return LIMB_DIGITS - 4;
- case 10: /* 1024-2047 */
- return LIMB_DIGITS - 4;
- case 11: /* 2048-4095 */
- return LIMB_DIGITS - 4;
- case 12: /* 4096-8191 */
- return LIMB_DIGITS - 4;
- case 13: /* 8192-16383 */
- if (a < 10000)
- return LIMB_DIGITS - 4;
- else
- return LIMB_DIGITS - 5;
- case 14: /* 16384-32767 */
- return LIMB_DIGITS - 5;
- case 15: /* 32768-65535 */
- return LIMB_DIGITS - 5;
- case 16: /* 65536-131071 */
- if (a < 100000)
- return LIMB_DIGITS - 5;
- else
- return LIMB_DIGITS - 6;
- case 17: /* 131072-262143 */
- return LIMB_DIGITS - 6;
- case 18: /* 262144-524287 */
- return LIMB_DIGITS - 6;
- case 19: /* 524288-1048575 */
- if (a < 1000000)
- return LIMB_DIGITS - 6;
- else
- return LIMB_DIGITS - 7;
- case 20: /* 1048576-2097151 */
- return LIMB_DIGITS - 7;
- case 21: /* 2097152-4194303 */
- return LIMB_DIGITS - 7;
- case 22: /* 4194304-8388607 */
- return LIMB_DIGITS - 7;
- case 23: /* 8388608-16777215 */
- if (a < 10000000)
- return LIMB_DIGITS - 7;
- else
- return LIMB_DIGITS - 8;
- case 24: /* 16777216-33554431 */
- return LIMB_DIGITS - 8;
- case 25: /* 33554432-67108863 */
- return LIMB_DIGITS - 8;
- case 26: /* 67108864-134217727 */
- if (a < 100000000)
- return LIMB_DIGITS - 8;
- else
- return LIMB_DIGITS - 9;
-#if LIMB_BITS == 64
- case 27: /* 134217728-268435455 */
- return LIMB_DIGITS - 9;
- case 28: /* 268435456-536870911 */
- return LIMB_DIGITS - 9;
- case 29: /* 536870912-1073741823 */
- if (a < 1000000000)
- return LIMB_DIGITS - 9;
- else
- return LIMB_DIGITS - 10;
- case 30: /* 1073741824-2147483647 */
- return LIMB_DIGITS - 10;
- case 31: /* 2147483648-4294967295 */
- return LIMB_DIGITS - 10;
- case 32: /* 4294967296-8589934591 */
- return LIMB_DIGITS - 10;
- case 33: /* 8589934592-17179869183 */
- if (a < 10000000000)
- return LIMB_DIGITS - 10;
- else
- return LIMB_DIGITS - 11;
- case 34: /* 17179869184-34359738367 */
- return LIMB_DIGITS - 11;
- case 35: /* 34359738368-68719476735 */
- return LIMB_DIGITS - 11;
- case 36: /* 68719476736-137438953471 */
- if (a < 100000000000)
- return LIMB_DIGITS - 11;
- else
- return LIMB_DIGITS - 12;
- case 37: /* 137438953472-274877906943 */
- return LIMB_DIGITS - 12;
- case 38: /* 274877906944-549755813887 */
- return LIMB_DIGITS - 12;
- case 39: /* 549755813888-1099511627775 */
- if (a < 1000000000000)
- return LIMB_DIGITS - 12;
- else
- return LIMB_DIGITS - 13;
- case 40: /* 1099511627776-2199023255551 */
- return LIMB_DIGITS - 13;
- case 41: /* 2199023255552-4398046511103 */
- return LIMB_DIGITS - 13;
- case 42: /* 4398046511104-8796093022207 */
- return LIMB_DIGITS - 13;
- case 43: /* 8796093022208-17592186044415 */
- if (a < 10000000000000)
- return LIMB_DIGITS - 13;
- else
- return LIMB_DIGITS - 14;
- case 44: /* 17592186044416-35184372088831 */
- return LIMB_DIGITS - 14;
- case 45: /* 35184372088832-70368744177663 */
- return LIMB_DIGITS - 14;
- case 46: /* 70368744177664-140737488355327 */
- if (a < 100000000000000)
- return LIMB_DIGITS - 14;
- else
- return LIMB_DIGITS - 15;
- case 47: /* 140737488355328-281474976710655 */
- return LIMB_DIGITS - 15;
- case 48: /* 281474976710656-562949953421311 */
- return LIMB_DIGITS - 15;
- case 49: /* 562949953421312-1125899906842623 */
- if (a < 1000000000000000)
- return LIMB_DIGITS - 15;
- else
- return LIMB_DIGITS - 16;
- case 50: /* 1125899906842624-2251799813685247 */
- return LIMB_DIGITS - 16;
- case 51: /* 2251799813685248-4503599627370495 */
- return LIMB_DIGITS - 16;
- case 52: /* 4503599627370496-9007199254740991 */
- return LIMB_DIGITS - 16;
- case 53: /* 9007199254740992-18014398509481983 */
- if (a < 10000000000000000)
- return LIMB_DIGITS - 16;
- else
- return LIMB_DIGITS - 17;
- case 54: /* 18014398509481984-36028797018963967 */
- return LIMB_DIGITS - 17;
- case 55: /* 36028797018963968-72057594037927935 */
- return LIMB_DIGITS - 17;
- case 56: /* 72057594037927936-144115188075855871 */
- if (a < 100000000000000000)
- return LIMB_DIGITS - 17;
- else
- return LIMB_DIGITS - 18;
- case 57: /* 144115188075855872-288230376151711743 */
- return LIMB_DIGITS - 18;
- case 58: /* 288230376151711744-576460752303423487 */
- return LIMB_DIGITS - 18;
- case 59: /* 576460752303423488-1152921504606846975 */
- if (a < 1000000000000000000)
- return LIMB_DIGITS - 18;
- else
- return LIMB_DIGITS - 19;
-#endif
- default:
- return 0;
- }
-}
-
-/* for debugging */
-void bfdec_print_str(const char *str, const bfdec_t *a)
-{
- slimb_t i;
- printf("%s=", str);
-
- if (a->expn == BF_EXP_NAN) {
- printf("NaN");
- } else {
- if (a->sign)
- putchar('-');
- if (a->expn == BF_EXP_ZERO) {
- putchar('0');
- } else if (a->expn == BF_EXP_INF) {
- printf("Inf");
- } else {
- printf("0.");
- for(i = a->len - 1; i >= 0; i--)
- printf("%0*" PRIu_LIMB, LIMB_DIGITS, a->tab[i]);
- printf("e%" PRId_LIMB, a->expn);
- }
- }
- printf("\n");
-}
-
-/* return != 0 if one digit between 0 and bit_pos inclusive is not zero. */
-static inline limb_t scan_digit_nz(const bfdec_t *r, slimb_t bit_pos)
-{
- slimb_t pos;
- limb_t v, q;
- int shift;
-
- if (bit_pos < 0)
- return 0;
- pos = (limb_t)bit_pos / LIMB_DIGITS;
- shift = (limb_t)bit_pos % LIMB_DIGITS;
- fast_shr_rem_dec(q, v, r->tab[pos], shift + 1);
- (void)q;
- if (v != 0)
- return 1;
- pos--;
- while (pos >= 0) {
- if (r->tab[pos] != 0)
- return 1;
- pos--;
- }
- return 0;
-}
-
-static limb_t get_digit(const limb_t *tab, limb_t len, slimb_t pos)
-{
- slimb_t i;
- int shift;
- i = floor_div(pos, LIMB_DIGITS);
- if (i < 0 || i >= len)
- return 0;
- shift = pos - i * LIMB_DIGITS;
- return fast_shr_dec(tab[i], shift) % 10;
-}
-
-#if 0
-static limb_t get_digits(const limb_t *tab, limb_t len, slimb_t pos)
-{
- limb_t a0, a1;
- int shift;
- slimb_t i;
-
- i = floor_div(pos, LIMB_DIGITS);
- shift = pos - i * LIMB_DIGITS;
- if (i >= 0 && i < len)
- a0 = tab[i];
- else
- a0 = 0;
- if (shift == 0) {
- return a0;
- } else {
- i++;
- if (i >= 0 && i < len)
- a1 = tab[i];
- else
- a1 = 0;
- return fast_shr_dec(a0, shift) +
- fast_urem(a1, &mp_pow_div[LIMB_DIGITS - shift]) *
- mp_pow_dec[shift];
- }
-}
-#endif
-
-/* return the addend for rounding. Note that prec can be <= 0 for bf_rint() */
-static int bfdec_get_rnd_add(int *pret, const bfdec_t *r, limb_t l,
- slimb_t prec, int rnd_mode)
-{
- int add_one, inexact;
- limb_t digit1, digit0;
-
- // bfdec_print_str("get_rnd_add", r);
- if (rnd_mode == BF_RNDF) {
- digit0 = 1; /* faithful rounding does not honor the INEXACT flag */
- } else {
- /* starting limb for bit 'prec + 1' */
- digit0 = scan_digit_nz(r, l * LIMB_DIGITS - 1 - bf_max(0, prec + 1));
- }
-
- /* get the digit at 'prec' */
- digit1 = get_digit(r->tab, l, l * LIMB_DIGITS - 1 - prec);
- inexact = (digit1 | digit0) != 0;
-
- add_one = 0;
- switch(rnd_mode) {
- case BF_RNDZ:
- break;
- case BF_RNDN:
- if (digit1 == 5) {
- if (digit0) {
- add_one = 1;
- } else {
- /* round to even */
- add_one =
- get_digit(r->tab, l, l * LIMB_DIGITS - 1 - (prec - 1)) & 1;
- }
- } else if (digit1 > 5) {
- add_one = 1;
- }
- break;
- case BF_RNDD:
- case BF_RNDU:
- if (r->sign == (rnd_mode == BF_RNDD))
- add_one = inexact;
- break;
- case BF_RNDNA:
- case BF_RNDF:
- add_one = (digit1 >= 5);
- break;
- case BF_RNDA:
- add_one = inexact;
- break;
- default:
- abort();
- }
-
- if (inexact)
- *pret |= BF_ST_INEXACT;
- return add_one;
-}
-
-/* round to prec1 bits assuming 'r' is non zero and finite. 'r' is
- assumed to have length 'l' (1 <= l <= r->len). prec1 can be
- BF_PREC_INF. BF_FLAG_SUBNORMAL is not supported. Cannot fail with
- BF_ST_MEM_ERROR.
- */
-static int __bfdec_round(bfdec_t *r, limb_t prec1, bf_flags_t flags, limb_t l)
-{
- int shift, add_one, rnd_mode, ret;
- slimb_t i, bit_pos, pos, e_min, e_max, e_range, prec;
-
- /* XXX: align to IEEE 754 2008 for decimal numbers ? */
- e_range = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
- e_min = -e_range + 3;
- e_max = e_range;
-
- if (flags & BF_FLAG_RADPNT_PREC) {
- /* 'prec' is the precision after the decimal point */
- if (prec1 != BF_PREC_INF)
- prec = r->expn + prec1;
- else
- prec = prec1;
- } else if (unlikely(r->expn < e_min) && (flags & BF_FLAG_SUBNORMAL)) {
- /* restrict the precision in case of potentially subnormal
- result */
- assert(prec1 != BF_PREC_INF);
- prec = prec1 - (e_min - r->expn);
- } else {
- prec = prec1;
- }
-
- /* round to prec bits */
- rnd_mode = flags & BF_RND_MASK;
- ret = 0;
- add_one = bfdec_get_rnd_add(&ret, r, l, prec, rnd_mode);
-
- if (prec <= 0) {
- if (add_one) {
- bfdec_resize(r, 1); /* cannot fail because r is non zero */
- r->tab[0] = BF_DEC_BASE / 10;
- r->expn += 1 - prec;
- ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
- return ret;
- } else {
- goto underflow;
- }
- } else if (add_one) {
- limb_t carry;
-
- /* add one starting at digit 'prec - 1' */
- bit_pos = l * LIMB_DIGITS - 1 - (prec - 1);
- pos = bit_pos / LIMB_DIGITS;
- carry = mp_pow_dec[bit_pos % LIMB_DIGITS];
- carry = mp_add_ui_dec(r->tab + pos, carry, l - pos);
- if (carry) {
- /* shift right by one digit */
- mp_shr_dec(r->tab + pos, r->tab + pos, l - pos, 1, 1);
- r->expn++;
- }
- }
-
- /* check underflow */
- if (unlikely(r->expn < e_min)) {
- if (flags & BF_FLAG_SUBNORMAL) {
- /* if inexact, also set the underflow flag */
- if (ret & BF_ST_INEXACT)
- ret |= BF_ST_UNDERFLOW;
- } else {
- underflow:
- bfdec_set_zero(r, r->sign);
- ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
- return ret;
- }
- }
-
- /* check overflow */
- if (unlikely(r->expn > e_max)) {
- bfdec_set_inf(r, r->sign);
- ret |= BF_ST_OVERFLOW | BF_ST_INEXACT;
- return ret;
- }
-
- /* keep the bits starting at 'prec - 1' */
- bit_pos = l * LIMB_DIGITS - 1 - (prec - 1);
- i = floor_div(bit_pos, LIMB_DIGITS);
- if (i >= 0) {
- shift = smod(bit_pos, LIMB_DIGITS);
- if (shift != 0) {
- r->tab[i] = fast_shr_dec(r->tab[i], shift) *
- mp_pow_dec[shift];
- }
- } else {
- i = 0;
- }
- /* remove trailing zeros */
- while (r->tab[i] == 0)
- i++;
- if (i > 0) {
- l -= i;
- memmove(r->tab, r->tab + i, l * sizeof(limb_t));
- }
- bfdec_resize(r, l); /* cannot fail */
- return ret;
-}
-
-/* Cannot fail with BF_ST_MEM_ERROR. */
-int bfdec_round(bfdec_t *r, limb_t prec, bf_flags_t flags)
-{
- if (r->len == 0)
- return 0;
- return __bfdec_round(r, prec, flags, r->len);
-}
-
-/* 'r' must be a finite number. Cannot fail with BF_ST_MEM_ERROR. */
-int bfdec_normalize_and_round(bfdec_t *r, limb_t prec1, bf_flags_t flags)
-{
- limb_t l, v;
- int shift, ret;
-
- // bfdec_print_str("bf_renorm", r);
- l = r->len;
- while (l > 0 && r->tab[l - 1] == 0)
- l--;
- if (l == 0) {
- /* zero */
- r->expn = BF_EXP_ZERO;
- bfdec_resize(r, 0); /* cannot fail */
- ret = 0;
- } else {
- r->expn -= (r->len - l) * LIMB_DIGITS;
- /* shift to have the MSB set to '1' */
- v = r->tab[l - 1];
- shift = clz_dec(v);
- if (shift != 0) {
- mp_shl_dec(r->tab, r->tab, l, shift, 0);
- r->expn -= shift;
- }
- ret = __bfdec_round(r, prec1, flags, l);
- }
- // bf_print_str("r_final", r);
- return ret;
-}
-
-int bfdec_set_ui(bfdec_t *r, uint64_t v)
-{
-#if LIMB_BITS == 32
- if (v >= BF_DEC_BASE * BF_DEC_BASE) {
- if (bfdec_resize(r, 3))
- goto fail;
- r->tab[0] = v % BF_DEC_BASE;
- v /= BF_DEC_BASE;
- r->tab[1] = v % BF_DEC_BASE;
- r->tab[2] = v / BF_DEC_BASE;
- r->expn = 3 * LIMB_DIGITS;
- } else
-#endif
- if (v >= BF_DEC_BASE) {
- if (bfdec_resize(r, 2))
- goto fail;
- r->tab[0] = v % BF_DEC_BASE;
- r->tab[1] = v / BF_DEC_BASE;
- r->expn = 2 * LIMB_DIGITS;
- } else {
- if (bfdec_resize(r, 1))
- goto fail;
- r->tab[0] = v;
- r->expn = LIMB_DIGITS;
- }
- r->sign = 0;
- return bfdec_normalize_and_round(r, BF_PREC_INF, 0);
- fail:
- bfdec_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-int bfdec_set_si(bfdec_t *r, int64_t v)
-{
- int ret;
- if (v < 0) {
- ret = bfdec_set_ui(r, -v);
- r->sign = 1;
- } else {
- ret = bfdec_set_ui(r, v);
- }
- return ret;
-}
-
-static int bfdec_add_internal(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec, bf_flags_t flags, int b_neg)
-{
- bf_context_t *s = r->ctx;
- int is_sub, cmp_res, a_sign, b_sign, ret;
-
- a_sign = a->sign;
- b_sign = b->sign ^ b_neg;
- is_sub = a_sign ^ b_sign;
- cmp_res = bfdec_cmpu(a, b);
- if (cmp_res < 0) {
- const bfdec_t *tmp;
- tmp = a;
- a = b;
- b = tmp;
- a_sign = b_sign; /* b_sign is never used later */
- }
- /* abs(a) >= abs(b) */
- if (cmp_res == 0 && is_sub && a->expn < BF_EXP_INF) {
- /* zero result */
- bfdec_set_zero(r, (flags & BF_RND_MASK) == BF_RNDD);
- ret = 0;
- } else if (a->len == 0 || b->len == 0) {
- ret = 0;
- if (a->expn >= BF_EXP_INF) {
- if (a->expn == BF_EXP_NAN) {
- /* at least one operand is NaN */
- bfdec_set_nan(r);
- ret = 0;
- } else if (b->expn == BF_EXP_INF && is_sub) {
- /* infinities with different signs */
- bfdec_set_nan(r);
- ret = BF_ST_INVALID_OP;
- } else {
- bfdec_set_inf(r, a_sign);
- }
- } else {
- /* at least one zero and not subtract */
- if (bfdec_set(r, a))
- return BF_ST_MEM_ERROR;
- r->sign = a_sign;
- goto renorm;
- }
- } else {
- slimb_t d, a_offset, b_offset, i, r_len;
- limb_t carry;
- limb_t *b1_tab;
- int b_shift;
- mp_size_t b1_len;
-
- d = a->expn - b->expn;
-
- /* XXX: not efficient in time and memory if the precision is
- not infinite */
- r_len = bf_max(a->len, b->len + (d + LIMB_DIGITS - 1) / LIMB_DIGITS);
- if (bfdec_resize(r, r_len))
- goto fail;
- r->sign = a_sign;
- r->expn = a->expn;
-
- a_offset = r_len - a->len;
- for(i = 0; i < a_offset; i++)
- r->tab[i] = 0;
- for(i = 0; i < a->len; i++)
- r->tab[a_offset + i] = a->tab[i];
-
- b_shift = d % LIMB_DIGITS;
- if (b_shift == 0) {
- b1_len = b->len;
- b1_tab = (limb_t *)b->tab;
- } else {
- b1_len = b->len + 1;
- b1_tab = bf_malloc(s, sizeof(limb_t) * b1_len);
- if (!b1_tab)
- goto fail;
- b1_tab[0] = mp_shr_dec(b1_tab + 1, b->tab, b->len, b_shift, 0) *
- mp_pow_dec[LIMB_DIGITS - b_shift];
- }
- b_offset = r_len - (b->len + (d + LIMB_DIGITS - 1) / LIMB_DIGITS);
-
- if (is_sub) {
- carry = mp_sub_dec(r->tab + b_offset, r->tab + b_offset,
- b1_tab, b1_len, 0);
- if (carry != 0) {
- carry = mp_sub_ui_dec(r->tab + b_offset + b1_len, carry,
- r_len - (b_offset + b1_len));
- assert(carry == 0);
- }
- } else {
- carry = mp_add_dec(r->tab + b_offset, r->tab + b_offset,
- b1_tab, b1_len, 0);
- if (carry != 0) {
- carry = mp_add_ui_dec(r->tab + b_offset + b1_len, carry,
- r_len - (b_offset + b1_len));
- }
- if (carry != 0) {
- if (bfdec_resize(r, r_len + 1)) {
- if (b_shift != 0)
- bf_free(s, b1_tab);
- goto fail;
- }
- r->tab[r_len] = 1;
- r->expn += LIMB_DIGITS;
- }
- }
- if (b_shift != 0)
- bf_free(s, b1_tab);
- renorm:
- ret = bfdec_normalize_and_round(r, prec, flags);
- }
- return ret;
- fail:
- bfdec_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-static int __bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bfdec_add_internal(r, a, b, prec, flags, 0);
-}
-
-static int __bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bfdec_add_internal(r, a, b, prec, flags, 1);
-}
-
-int bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_op2((bf_t *)r, (bf_t *)a, (bf_t *)b, prec, flags,
- (bf_op2_func_t *)__bfdec_add);
-}
-
-int bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_op2((bf_t *)r, (bf_t *)a, (bf_t *)b, prec, flags,
- (bf_op2_func_t *)__bfdec_sub);
-}
-
-int bfdec_mul(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags)
-{
- int ret, r_sign;
-
- if (a->len < b->len) {
- const bfdec_t *tmp = a;
- a = b;
- b = tmp;
- }
- r_sign = a->sign ^ b->sign;
- /* here b->len <= a->len */
- if (b->len == 0) {
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- bfdec_set_nan(r);
- ret = 0;
- } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_INF) {
- if ((a->expn == BF_EXP_INF && b->expn == BF_EXP_ZERO) ||
- (a->expn == BF_EXP_ZERO && b->expn == BF_EXP_INF)) {
- bfdec_set_nan(r);
- ret = BF_ST_INVALID_OP;
- } else {
- bfdec_set_inf(r, r_sign);
- ret = 0;
- }
- } else {
- bfdec_set_zero(r, r_sign);
- ret = 0;
- }
- } else {
- bfdec_t tmp, *r1 = NULL;
- limb_t a_len, b_len;
- limb_t *a_tab, *b_tab;
-
- a_len = a->len;
- b_len = b->len;
- a_tab = a->tab;
- b_tab = b->tab;
-
- if (r == a || r == b) {
- bfdec_init(r->ctx, &tmp);
- r1 = r;
- r = &tmp;
- }
- if (bfdec_resize(r, a_len + b_len)) {
- bfdec_set_nan(r);
- ret = BF_ST_MEM_ERROR;
- goto done;
- }
- mp_mul_basecase_dec(r->tab, a_tab, a_len, b_tab, b_len);
- r->sign = r_sign;
- r->expn = a->expn + b->expn;
- ret = bfdec_normalize_and_round(r, prec, flags);
- done:
- if (r == &tmp)
- bfdec_move(r1, &tmp);
- }
- return ret;
-}
-
-int bfdec_mul_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
- bf_flags_t flags)
-{
- bfdec_t b;
- int ret;
- bfdec_init(r->ctx, &b);
- ret = bfdec_set_si(&b, b1);
- ret |= bfdec_mul(r, a, &b, prec, flags);
- bfdec_delete(&b);
- return ret;
-}
-
-int bfdec_add_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
- bf_flags_t flags)
-{
- bfdec_t b;
- int ret;
-
- bfdec_init(r->ctx, &b);
- ret = bfdec_set_si(&b, b1);
- ret |= bfdec_add(r, a, &b, prec, flags);
- bfdec_delete(&b);
- return ret;
-}
-
-static int __bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
- limb_t prec, bf_flags_t flags)
-{
- int ret, r_sign;
- limb_t n, nb, precl;
-
- r_sign = a->sign ^ b->sign;
- if (a->expn >= BF_EXP_INF || b->expn >= BF_EXP_INF) {
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- bfdec_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF && b->expn == BF_EXP_INF) {
- bfdec_set_nan(r);
- return BF_ST_INVALID_OP;
- } else if (a->expn == BF_EXP_INF) {
- bfdec_set_inf(r, r_sign);
- return 0;
- } else {
- bfdec_set_zero(r, r_sign);
- return 0;
- }
- } else if (a->expn == BF_EXP_ZERO) {
- if (b->expn == BF_EXP_ZERO) {
- bfdec_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bfdec_set_zero(r, r_sign);
- return 0;
- }
- } else if (b->expn == BF_EXP_ZERO) {
- bfdec_set_inf(r, r_sign);
- return BF_ST_DIVIDE_ZERO;
- }
-
- nb = b->len;
- if (prec == BF_PREC_INF) {
- /* infinite precision: return BF_ST_INVALID_OP if not an exact
- result */
- /* XXX: check */
- precl = nb + 1;
- } else if (flags & BF_FLAG_RADPNT_PREC) {
- /* number of digits after the decimal point */
- /* XXX: check (2 extra digits for rounding + 2 digits) */
- precl = (bf_max(a->expn - b->expn, 0) + 2 +
- prec + 2 + LIMB_DIGITS - 1) / LIMB_DIGITS;
- } else {
- /* number of limbs of the quotient (2 extra digits for rounding) */
- precl = (prec + 2 + LIMB_DIGITS - 1) / LIMB_DIGITS;
- }
- n = bf_max(a->len, precl);
-
- {
- limb_t *taba, na, i;
- slimb_t d;
-
- na = n + nb;
- taba = bf_malloc(r->ctx, (na + 1) * sizeof(limb_t));
- if (!taba)
- goto fail;
- d = na - a->len;
- memset(taba, 0, d * sizeof(limb_t));
- memcpy(taba + d, a->tab, a->len * sizeof(limb_t));
- if (bfdec_resize(r, n + 1))
- goto fail1;
- if (mp_div_dec(r->ctx, r->tab, taba, na, b->tab, nb)) {
- fail1:
- bf_free(r->ctx, taba);
- goto fail;
- }
- /* see if non zero remainder */
- for(i = 0; i < nb; i++) {
- if (taba[i] != 0)
- break;
- }
- bf_free(r->ctx, taba);
- if (i != nb) {
- if (prec == BF_PREC_INF) {
- bfdec_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- r->tab[0] |= 1;
- }
- }
- r->expn = a->expn - b->expn + LIMB_DIGITS;
- r->sign = r_sign;
- ret = bfdec_normalize_and_round(r, prec, flags);
- }
- return ret;
- fail:
- bfdec_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-int bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags)
-{
- return bf_op2((bf_t *)r, (bf_t *)a, (bf_t *)b, prec, flags,
- (bf_op2_func_t *)__bfdec_div);
-}
-
-/* a and b must be finite numbers with a >= 0 and b > 0. 'q' is the
- integer defined as floor(a/b) and r = a - q * b. */
-static void bfdec_tdivremu(bf_context_t *s, bfdec_t *q, bfdec_t *r,
- const bfdec_t *a, const bfdec_t *b)
-{
- if (bfdec_cmpu(a, b) < 0) {
- bfdec_set_ui(q, 0);
- bfdec_set(r, a);
- } else {
- bfdec_div(q, a, b, 0, BF_RNDZ | BF_FLAG_RADPNT_PREC);
- bfdec_mul(r, q, b, BF_PREC_INF, BF_RNDZ);
- bfdec_sub(r, a, r, BF_PREC_INF, BF_RNDZ);
- }
-}
-
-/* division and remainder.
-
- rnd_mode is the rounding mode for the quotient. The additional
- rounding mode BF_RND_EUCLIDIAN is supported.
-
- 'q' is an integer. 'r' is rounded with prec and flags (prec can be
- BF_PREC_INF).
-*/
-int bfdec_divrem(bfdec_t *q, bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
- limb_t prec, bf_flags_t flags, int rnd_mode)
-{
- bf_context_t *s = q->ctx;
- bfdec_t a1_s, *a1 = &a1_s;
- bfdec_t b1_s, *b1 = &b1_s;
- bfdec_t r1_s, *r1 = &r1_s;
- int q_sign, res;
- BOOL is_ceil, is_rndn;
-
- assert(q != a && q != b);
- assert(r != a && r != b);
- assert(q != r);
-
- if (a->len == 0 || b->len == 0) {
- bfdec_set_zero(q, 0);
- if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
- bfdec_set_nan(r);
- return 0;
- } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_ZERO) {
- bfdec_set_nan(r);
- return BF_ST_INVALID_OP;
- } else {
- bfdec_set(r, a);
- return bfdec_round(r, prec, flags);
- }
- }
-
- q_sign = a->sign ^ b->sign;
- is_rndn = (rnd_mode == BF_RNDN || rnd_mode == BF_RNDNA);
- switch(rnd_mode) {
- default:
- case BF_RNDZ:
- case BF_RNDN:
- case BF_RNDNA:
- is_ceil = FALSE;
- break;
- case BF_RNDD:
- is_ceil = q_sign;
- break;
- case BF_RNDU:
- is_ceil = q_sign ^ 1;
- break;
- case BF_RNDA:
- is_ceil = TRUE;
- break;
- case BF_DIVREM_EUCLIDIAN:
- is_ceil = a->sign;
- break;
- }
-
- a1->expn = a->expn;
- a1->tab = a->tab;
- a1->len = a->len;
- a1->sign = 0;
-
- b1->expn = b->expn;
- b1->tab = b->tab;
- b1->len = b->len;
- b1->sign = 0;
-
- // bfdec_print_str("a1", a1);
- // bfdec_print_str("b1", b1);
- /* XXX: could improve to avoid having a large 'q' */
- bfdec_tdivremu(s, q, r, a1, b1);
- if (bfdec_is_nan(q) || bfdec_is_nan(r))
- goto fail;
- // bfdec_print_str("q", q);
- // bfdec_print_str("r", r);
-
- if (r->len != 0) {
- if (is_rndn) {
- bfdec_init(s, r1);
- if (bfdec_set(r1, r))
- goto fail;
- if (bfdec_mul_si(r1, r1, 2, BF_PREC_INF, BF_RNDZ)) {
- bfdec_delete(r1);
- goto fail;
- }
- res = bfdec_cmpu(r1, b);
- bfdec_delete(r1);
- if (res > 0 ||
- (res == 0 &&
- (rnd_mode == BF_RNDNA ||
- (get_digit(q->tab, q->len, q->len * LIMB_DIGITS - q->expn) & 1) != 0))) {
- goto do_sub_r;
- }
- } else if (is_ceil) {
- do_sub_r:
- res = bfdec_add_si(q, q, 1, BF_PREC_INF, BF_RNDZ);
- res |= bfdec_sub(r, r, b1, BF_PREC_INF, BF_RNDZ);
- if (res & BF_ST_MEM_ERROR)
- goto fail;
- }
- }
-
- r->sign ^= a->sign;
- q->sign = q_sign;
- return bfdec_round(r, prec, flags);
- fail:
- bfdec_set_nan(q);
- bfdec_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-int bfdec_rem(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags, int rnd_mode)
-{
- bfdec_t q_s, *q = &q_s;
- int ret;
-
- bfdec_init(r->ctx, q);
- ret = bfdec_divrem(q, r, a, b, prec, flags, rnd_mode);
- bfdec_delete(q);
- return ret;
-}
-
-/* convert to integer (infinite precision) */
-int bfdec_rint(bfdec_t *r, int rnd_mode)
-{
- return bfdec_round(r, 0, rnd_mode | BF_FLAG_RADPNT_PREC);
-}
-
-int bfdec_sqrt(bfdec_t *r, const bfdec_t *a, limb_t prec, bf_flags_t flags)
-{
- bf_context_t *s = a->ctx;
- int ret, k;
- limb_t *a1, v;
- slimb_t n, n1, prec1;
- limb_t res;
-
- assert(r != a);
-
- if (a->len == 0) {
- if (a->expn == BF_EXP_NAN) {
- bfdec_set_nan(r);
- } else if (a->expn == BF_EXP_INF && a->sign) {
- goto invalid_op;
- } else {
- bfdec_set(r, a);
- }
- ret = 0;
- } else if (a->sign || prec == BF_PREC_INF) {
- invalid_op:
- bfdec_set_nan(r);
- ret = BF_ST_INVALID_OP;
- } else {
- if (flags & BF_FLAG_RADPNT_PREC) {
- prec1 = bf_max(floor_div(a->expn + 1, 2) + prec, 1);
- } else {
- prec1 = prec;
- }
- /* convert the mantissa to an integer with at least 2 *
- prec + 4 digits */
- n = (2 * (prec1 + 2) + 2 * LIMB_DIGITS - 1) / (2 * LIMB_DIGITS);
- if (bfdec_resize(r, n))
- goto fail;
- a1 = bf_malloc(s, sizeof(limb_t) * 2 * n);
- if (!a1)
- goto fail;
- n1 = bf_min(2 * n, a->len);
- memset(a1, 0, (2 * n - n1) * sizeof(limb_t));
- memcpy(a1 + 2 * n - n1, a->tab + a->len - n1, n1 * sizeof(limb_t));
- if (a->expn & 1) {
- res = mp_shr_dec(a1, a1, 2 * n, 1, 0);
- } else {
- res = 0;
- }
- /* normalize so that a1 >= B^(2*n)/4. Not need for n = 1
- because mp_sqrtrem2_dec already does it */
- k = 0;
- if (n > 1) {
- v = a1[2 * n - 1];
- while (v < BF_DEC_BASE / 4) {
- k++;
- v *= 4;
- }
- if (k != 0)
- mp_mul1_dec(a1, a1, 2 * n, 1 << (2 * k), 0);
- }
- if (mp_sqrtrem_dec(s, r->tab, a1, n)) {
- bf_free(s, a1);
- goto fail;
- }
- if (k != 0)
- mp_div1_dec(r->tab, r->tab, n, 1 << k, 0);
- if (!res) {
- res = mp_scan_nz(a1, n + 1);
- }
- bf_free(s, a1);
- if (!res) {
- res = mp_scan_nz(a->tab, a->len - n1);
- }
- if (res != 0)
- r->tab[0] |= 1;
- r->sign = 0;
- r->expn = (a->expn + 1) >> 1;
- ret = bfdec_round(r, prec, flags);
- }
- return ret;
- fail:
- bfdec_set_nan(r);
- return BF_ST_MEM_ERROR;
-}
-
-/* The rounding mode is always BF_RNDZ. Return BF_ST_OVERFLOW if there
- is an overflow and 0 otherwise. No memory error is possible. */
-int bfdec_get_int32(int *pres, const bfdec_t *a)
-{
- uint32_t v;
- int ret;
- if (a->expn >= BF_EXP_INF) {
- ret = 0;
- if (a->expn == BF_EXP_INF) {
- v = (uint32_t)INT32_MAX + a->sign;
- /* XXX: return overflow ? */
- } else {
- v = INT32_MAX;
- }
- } else if (a->expn <= 0) {
- v = 0;
- ret = 0;
- } else if (a->expn <= 9) {
- v = fast_shr_dec(a->tab[a->len - 1], LIMB_DIGITS - a->expn);
- if (a->sign)
- v = -v;
- ret = 0;
- } else if (a->expn == 10) {
- uint64_t v1;
- uint32_t v_max;
-#if LIMB_BITS == 64
- v1 = fast_shr_dec(a->tab[a->len - 1], LIMB_DIGITS - a->expn);
-#else
- v1 = (uint64_t)a->tab[a->len - 1] * 10 +
- get_digit(a->tab, a->len, (a->len - 1) * LIMB_DIGITS - 1);
-#endif
- v_max = (uint32_t)INT32_MAX + a->sign;
- if (v1 > v_max) {
- v = v_max;
- ret = BF_ST_OVERFLOW;
- } else {
- v = v1;
- if (a->sign)
- v = -v;
- ret = 0;
- }
- } else {
- v = (uint32_t)INT32_MAX + a->sign;
- ret = BF_ST_OVERFLOW;
- }
- *pres = v;
- return ret;
-}
-
-/* power to an integer with infinite precision */
-int bfdec_pow_ui(bfdec_t *r, const bfdec_t *a, limb_t b)
-{
- int ret, n_bits, i;
-
- assert(r != a);
- if (b == 0)
- return bfdec_set_ui(r, 1);
- ret = bfdec_set(r, a);
- n_bits = LIMB_BITS - clz(b);
- for(i = n_bits - 2; i >= 0; i--) {
- ret |= bfdec_mul(r, r, r, BF_PREC_INF, BF_RNDZ);
- if ((b >> i) & 1)
- ret |= bfdec_mul(r, r, a, BF_PREC_INF, BF_RNDZ);
- }
- return ret;
-}
-
-char *bfdec_ftoa(size_t *plen, const bfdec_t *a, limb_t prec, bf_flags_t flags)
-{
- return bf_ftoa_internal(plen, (const bf_t *)a, 10, prec, flags, TRUE);
-}
-
-int bfdec_atof(bfdec_t *r, const char *str, const char **pnext,
- limb_t prec, bf_flags_t flags)
-{
- slimb_t dummy_exp;
- return bf_atof_internal((bf_t *)r, &dummy_exp, str, pnext, 10, prec,
- flags, TRUE);
-}
-
-#endif /* USE_BF_DEC */
-
-#ifdef USE_FFT_MUL
-/***************************************************************/
-/* Integer multiplication with FFT */
-
-/* or LIMB_BITS at bit position 'pos' in tab */
-static inline void put_bits(limb_t *tab, limb_t len, slimb_t pos, limb_t val)
-{
- limb_t i;
- int p;
-
- i = pos >> LIMB_LOG2_BITS;
- p = pos & (LIMB_BITS - 1);
- if (i < len)
- tab[i] |= val << p;
- if (p != 0) {
- i++;
- if (i < len) {
- tab[i] |= val >> (LIMB_BITS - p);
- }
- }
-}
-
-#if defined(__AVX2__)
-
-typedef double NTTLimb;
-
-/* we must have: modulo >= 1 << NTT_MOD_LOG2_MIN */
-#define NTT_MOD_LOG2_MIN 50
-#define NTT_MOD_LOG2_MAX 51
-#define NB_MODS 5
-#define NTT_PROOT_2EXP 39
-static const int ntt_int_bits[NB_MODS] = { 254, 203, 152, 101, 50, };
-
-static const limb_t ntt_mods[NB_MODS] = { 0x00073a8000000001, 0x0007858000000001, 0x0007a38000000001, 0x0007a68000000001, 0x0007fd8000000001,
-};
-
-static const limb_t ntt_proot[2][NB_MODS] = {
- { 0x00056198d44332c8, 0x0002eb5d640aad39, 0x00047e31eaa35fd0, 0x0005271ac118a150, 0x00075e0ce8442bd5, },
- { 0x000461169761bcc5, 0x0002dac3cb2da688, 0x0004abc97751e3bf, 0x000656778fc8c485, 0x0000dc6469c269fa, },
-};
-
-static const limb_t ntt_mods_cr[NB_MODS * (NB_MODS - 1) / 2] = {
- 0x00020e4da740da8e, 0x0004c3dc09c09c1d, 0x000063bd097b4271, 0x000799d8f18f18fd,
- 0x0005384222222264, 0x000572b07c1f07fe, 0x00035cd08888889a,
- 0x00066015555557e3, 0x000725960b60b623,
- 0x0002fc1fa1d6ce12,
-};
-
-#else
-
-typedef limb_t NTTLimb;
-
-#if LIMB_BITS == 64
-
-#define NTT_MOD_LOG2_MIN 61
-#define NTT_MOD_LOG2_MAX 62
-#define NB_MODS 5
-#define NTT_PROOT_2EXP 51
-static const int ntt_int_bits[NB_MODS] = { 307, 246, 185, 123, 61, };
-
-static const limb_t ntt_mods[NB_MODS] = { 0x28d8000000000001, 0x2a88000000000001, 0x2ed8000000000001, 0x3508000000000001, 0x3aa8000000000001,
-};
-
-static const limb_t ntt_proot[2][NB_MODS] = {
- { 0x1b8ea61034a2bea7, 0x21a9762de58206fb, 0x02ca782f0756a8ea, 0x278384537a3e50a1, 0x106e13fee74ce0ab, },
- { 0x233513af133e13b8, 0x1d13140d1c6f75f1, 0x12cde57f97e3eeda, 0x0d6149e23cbe654f, 0x36cd204f522a1379, },
-};
-
-static const limb_t ntt_mods_cr[NB_MODS * (NB_MODS - 1) / 2] = {
- 0x08a9ed097b425eea, 0x18a44aaaaaaaaab3, 0x2493f57f57f57f5d, 0x126b8d0649a7f8d4,
- 0x09d80ed7303b5ccc, 0x25b8bcf3cf3cf3d5, 0x2ce6ce63398ce638,
- 0x0e31fad40a57eb59, 0x02a3529fd4a7f52f,
- 0x3a5493e93e93e94a,
-};
-
-#elif LIMB_BITS == 32
-
-/* we must have: modulo >= 1 << NTT_MOD_LOG2_MIN */
-#define NTT_MOD_LOG2_MIN 29
-#define NTT_MOD_LOG2_MAX 30
-#define NB_MODS 5
-#define NTT_PROOT_2EXP 20
-static const int ntt_int_bits[NB_MODS] = { 148, 119, 89, 59, 29, };
-
-static const limb_t ntt_mods[NB_MODS] = { 0x0000000032b00001, 0x0000000033700001, 0x0000000036d00001, 0x0000000037300001, 0x000000003e500001,
-};
-
-static const limb_t ntt_proot[2][NB_MODS] = {
- { 0x0000000032525f31, 0x0000000005eb3b37, 0x00000000246eda9f, 0x0000000035f25901, 0x00000000022f5768, },
- { 0x00000000051eba1a, 0x00000000107be10e, 0x000000001cd574e0, 0x00000000053806e6, 0x000000002cd6bf98, },
-};
-
-static const limb_t ntt_mods_cr[NB_MODS * (NB_MODS - 1) / 2] = {
- 0x000000000449559a, 0x000000001eba6ca9, 0x000000002ec18e46, 0x000000000860160b,
- 0x000000000d321307, 0x000000000bf51120, 0x000000000f662938,
- 0x000000000932ab3e, 0x000000002f40eef8,
- 0x000000002e760905,
-};
-
-#endif /* LIMB_BITS */
-
-#endif /* !AVX2 */
-
-#if defined(__AVX2__)
-#define NTT_TRIG_K_MAX 18
-#else
-#define NTT_TRIG_K_MAX 19
-#endif
-
-typedef struct BFNTTState {
- bf_context_t *ctx;
-
- /* used for mul_mod_fast() */
- limb_t ntt_mods_div[NB_MODS];
-
- limb_t ntt_proot_pow[NB_MODS][2][NTT_PROOT_2EXP + 1];
- limb_t ntt_proot_pow_inv[NB_MODS][2][NTT_PROOT_2EXP + 1];
- NTTLimb *ntt_trig[NB_MODS][2][NTT_TRIG_K_MAX + 1];
- /* 1/2^n mod m */
- limb_t ntt_len_inv[NB_MODS][NTT_PROOT_2EXP + 1][2];
-#if defined(__AVX2__)
- __m256d ntt_mods_cr_vec[NB_MODS * (NB_MODS - 1) / 2];
- __m256d ntt_mods_vec[NB_MODS];
- __m256d ntt_mods_inv_vec[NB_MODS];
-#else
- limb_t ntt_mods_cr_inv[NB_MODS * (NB_MODS - 1) / 2];
-#endif
-} BFNTTState;
-
-static NTTLimb *get_trig(BFNTTState *s, int k, int inverse, int m_idx);
-
-/* add modulo with up to (LIMB_BITS-1) bit modulo */
-static inline limb_t add_mod(limb_t a, limb_t b, limb_t m)
-{
- limb_t r;
- r = a + b;
- if (r >= m)
- r -= m;
- return r;
-}
-
-/* sub modulo with up to LIMB_BITS bit modulo */
-static inline limb_t sub_mod(limb_t a, limb_t b, limb_t m)
-{
- limb_t r;
- r = a - b;
- if (r > a)
- r += m;
- return r;
-}
-
-/* return (r0+r1*B) mod m
- precondition: 0 <= r0+r1*B < 2^(64+NTT_MOD_LOG2_MIN)
-*/
-static inline limb_t mod_fast(dlimb_t r,
- limb_t m, limb_t m_inv)
-{
- limb_t a1, q, t0, r1, r0;
-
- a1 = r >> NTT_MOD_LOG2_MIN;
-
- q = ((dlimb_t)a1 * m_inv) >> LIMB_BITS;
- r = r - (dlimb_t)q * m - m * 2;
- r1 = r >> LIMB_BITS;
- t0 = (slimb_t)r1 >> 1;
- r += m & t0;
- r0 = r;
- r1 = r >> LIMB_BITS;
- r0 += m & r1;
- return r0;
-}
-
-/* faster version using precomputed modulo inverse.
- precondition: 0 <= a * b < 2^(64+NTT_MOD_LOG2_MIN) */
-static inline limb_t mul_mod_fast(limb_t a, limb_t b,
- limb_t m, limb_t m_inv)
-{
- dlimb_t r;
- r = (dlimb_t)a * (dlimb_t)b;
- return mod_fast(r, m, m_inv);
-}
-
-static inline limb_t init_mul_mod_fast(limb_t m)
-{
- dlimb_t t;
- assert(m < (limb_t)1 << NTT_MOD_LOG2_MAX);
- assert(m >= (limb_t)1 << NTT_MOD_LOG2_MIN);
- t = (dlimb_t)1 << (LIMB_BITS + NTT_MOD_LOG2_MIN);
- return t / m;
-}
-
-/* Faster version used when the multiplier is constant. 0 <= a < 2^64,
- 0 <= b < m. */
-static inline limb_t mul_mod_fast2(limb_t a, limb_t b,
- limb_t m, limb_t b_inv)
-{
- limb_t r, q;
-
- q = ((dlimb_t)a * (dlimb_t)b_inv) >> LIMB_BITS;
- r = a * b - q * m;
- if (r >= m)
- r -= m;
- return r;
-}
-
-/* Faster version used when the multiplier is constant. 0 <= a < 2^64,
- 0 <= b < m. Let r = a * b mod m. The return value is 'r' or 'r +
- m'. */
-static inline limb_t mul_mod_fast3(limb_t a, limb_t b,
- limb_t m, limb_t b_inv)
-{
- limb_t r, q;
-
- q = ((dlimb_t)a * (dlimb_t)b_inv) >> LIMB_BITS;
- r = a * b - q * m;
- return r;
-}
-
-static inline limb_t init_mul_mod_fast2(limb_t b, limb_t m)
-{
- return ((dlimb_t)b << LIMB_BITS) / m;
-}
-
-#ifdef __AVX2__
-
-static inline limb_t ntt_limb_to_int(NTTLimb a, limb_t m)
-{
- slimb_t v;
- v = a;
- if (v < 0)
- v += m;
- if (v >= m)
- v -= m;
- return v;
-}
-
-static inline NTTLimb int_to_ntt_limb(limb_t a, limb_t m)
-{
- return (slimb_t)a;
-}
-
-static inline NTTLimb int_to_ntt_limb2(limb_t a, limb_t m)
-{
- if (a >= (m / 2))
- a -= m;
- return (slimb_t)a;
-}
-
-/* return r + m if r < 0 otherwise r. */
-static inline __m256d ntt_mod1(__m256d r, __m256d m)
-{
- return _mm256_blendv_pd(r, r + m, r);
-}
-
-/* input: abs(r) < 2 * m. Output: abs(r) < m */
-static inline __m256d ntt_mod(__m256d r, __m256d mf, __m256d m2f)
-{
- return _mm256_blendv_pd(r, r + m2f, r) - mf;
-}
-
-/* input: abs(a*b) < 2 * m^2, output: abs(r) < m */
-static inline __m256d ntt_mul_mod(__m256d a, __m256d b, __m256d mf,
- __m256d m_inv)
-{
- __m256d r, q, ab1, ab0, qm0, qm1;
- ab1 = a * b;
- q = _mm256_round_pd(ab1 * m_inv, 0); /* round to nearest */
- qm1 = q * mf;
- qm0 = _mm256_fmsub_pd(q, mf, qm1); /* low part */
- ab0 = _mm256_fmsub_pd(a, b, ab1); /* low part */
- r = (ab1 - qm1) + (ab0 - qm0);
- return r;
-}
-
-static void *bf_aligned_malloc(bf_context_t *s, size_t size, size_t align)
-{
- void *ptr;
- void **ptr1;
- ptr = bf_malloc(s, size + sizeof(void *) + align - 1);
- if (!ptr)
- return NULL;
- ptr1 = (void **)(((uintptr_t)ptr + sizeof(void *) + align - 1) &
- ~(align - 1));
- ptr1[-1] = ptr;
- return ptr1;
-}
-
-static void bf_aligned_free(bf_context_t *s, void *ptr)
-{
- if (!ptr)
- return;
- bf_free(s, ((void **)ptr)[-1]);
-}
-
-static void *ntt_malloc(BFNTTState *s, size_t size)
-{
- return bf_aligned_malloc(s->ctx, size, 64);
-}
-
-static void ntt_free(BFNTTState *s, void *ptr)
-{
- bf_aligned_free(s->ctx, ptr);
-}
-
-static no_inline int ntt_fft(BFNTTState *s,
- NTTLimb *out_buf, NTTLimb *in_buf,
- NTTLimb *tmp_buf, int fft_len_log2,
- int inverse, int m_idx)
-{
- limb_t nb_blocks, fft_per_block, p, k, n, stride_in, i, j;
- NTTLimb *tab_in, *tab_out, *tmp, *trig;
- __m256d m_inv, mf, m2f, c, a0, a1, b0, b1;
- limb_t m;
- int l;
-
- m = ntt_mods[m_idx];
-
- m_inv = _mm256_set1_pd(1.0 / (double)m);
- mf = _mm256_set1_pd(m);
- m2f = _mm256_set1_pd(m * 2);
-
- n = (limb_t)1 << fft_len_log2;
- assert(n >= 8);
- stride_in = n / 2;
-
- tab_in = in_buf;
- tab_out = tmp_buf;
- trig = get_trig(s, fft_len_log2, inverse, m_idx);
- if (!trig)
- return -1;
- p = 0;
- for(k = 0; k < stride_in; k += 4) {
- a0 = _mm256_load_pd(&tab_in[k]);
- a1 = _mm256_load_pd(&tab_in[k + stride_in]);
- c = _mm256_load_pd(trig);
- trig += 4;
- b0 = ntt_mod(a0 + a1, mf, m2f);
- b1 = ntt_mul_mod(a0 - a1, c, mf, m_inv);
- a0 = _mm256_permute2f128_pd(b0, b1, 0x20);
- a1 = _mm256_permute2f128_pd(b0, b1, 0x31);
- a0 = _mm256_permute4x64_pd(a0, 0xd8);
- a1 = _mm256_permute4x64_pd(a1, 0xd8);
- _mm256_store_pd(&tab_out[p], a0);
- _mm256_store_pd(&tab_out[p + 4], a1);
- p += 2 * 4;
- }
- tmp = tab_in;
- tab_in = tab_out;
- tab_out = tmp;
-
- trig = get_trig(s, fft_len_log2 - 1, inverse, m_idx);
- if (!trig)
- return -1;
- p = 0;
- for(k = 0; k < stride_in; k += 4) {
- a0 = _mm256_load_pd(&tab_in[k]);
- a1 = _mm256_load_pd(&tab_in[k + stride_in]);
- c = _mm256_setr_pd(trig[0], trig[0], trig[1], trig[1]);
- trig += 2;
- b0 = ntt_mod(a0 + a1, mf, m2f);
- b1 = ntt_mul_mod(a0 - a1, c, mf, m_inv);
- a0 = _mm256_permute2f128_pd(b0, b1, 0x20);
- a1 = _mm256_permute2f128_pd(b0, b1, 0x31);
- _mm256_store_pd(&tab_out[p], a0);
- _mm256_store_pd(&tab_out[p + 4], a1);
- p += 2 * 4;
- }
- tmp = tab_in;
- tab_in = tab_out;
- tab_out = tmp;
-
- nb_blocks = n / 4;
- fft_per_block = 4;
-
- l = fft_len_log2 - 2;
- while (nb_blocks != 2) {
- nb_blocks >>= 1;
- p = 0;
- k = 0;
- trig = get_trig(s, l, inverse, m_idx);
- if (!trig)
- return -1;
- for(i = 0; i < nb_blocks; i++) {
- c = _mm256_set1_pd(trig[0]);
- trig++;
- for(j = 0; j < fft_per_block; j += 4) {
- a0 = _mm256_load_pd(&tab_in[k + j]);
- a1 = _mm256_load_pd(&tab_in[k + j + stride_in]);
- b0 = ntt_mod(a0 + a1, mf, m2f);
- b1 = ntt_mul_mod(a0 - a1, c, mf, m_inv);
- _mm256_store_pd(&tab_out[p + j], b0);
- _mm256_store_pd(&tab_out[p + j + fft_per_block], b1);
- }
- k += fft_per_block;
- p += 2 * fft_per_block;
- }
- fft_per_block <<= 1;
- l--;
- tmp = tab_in;
- tab_in = tab_out;
- tab_out = tmp;
- }
-
- tab_out = out_buf;
- for(k = 0; k < stride_in; k += 4) {
- a0 = _mm256_load_pd(&tab_in[k]);
- a1 = _mm256_load_pd(&tab_in[k + stride_in]);
- b0 = ntt_mod(a0 + a1, mf, m2f);
- b1 = ntt_mod(a0 - a1, mf, m2f);
- _mm256_store_pd(&tab_out[k], b0);
- _mm256_store_pd(&tab_out[k + stride_in], b1);
- }
- return 0;
-}
-
-static void ntt_vec_mul(BFNTTState *s,
- NTTLimb *tab1, NTTLimb *tab2, limb_t fft_len_log2,
- int k_tot, int m_idx)
-{
- limb_t i, c_inv, n, m;
- __m256d m_inv, mf, a, b, c;
-
- m = ntt_mods[m_idx];
- c_inv = s->ntt_len_inv[m_idx][k_tot][0];
- m_inv = _mm256_set1_pd(1.0 / (double)m);
- mf = _mm256_set1_pd(m);
- c = _mm256_set1_pd(int_to_ntt_limb(c_inv, m));
- n = (limb_t)1 << fft_len_log2;
- for(i = 0; i < n; i += 4) {
- a = _mm256_load_pd(&tab1[i]);
- b = _mm256_load_pd(&tab2[i]);
- a = ntt_mul_mod(a, b, mf, m_inv);
- a = ntt_mul_mod(a, c, mf, m_inv);
- _mm256_store_pd(&tab1[i], a);
- }
-}
-
-static no_inline void mul_trig(NTTLimb *buf,
- limb_t n, limb_t c1, limb_t m, limb_t m_inv1)
-{
- limb_t i, c2, c3, c4;
- __m256d c, c_mul, a0, mf, m_inv;
- assert(n >= 2);
-
- mf = _mm256_set1_pd(m);
- m_inv = _mm256_set1_pd(1.0 / (double)m);
-
- c2 = mul_mod_fast(c1, c1, m, m_inv1);
- c3 = mul_mod_fast(c2, c1, m, m_inv1);
- c4 = mul_mod_fast(c2, c2, m, m_inv1);
- c = _mm256_setr_pd(1, int_to_ntt_limb(c1, m),
- int_to_ntt_limb(c2, m), int_to_ntt_limb(c3, m));
- c_mul = _mm256_set1_pd(int_to_ntt_limb(c4, m));
- for(i = 0; i < n; i += 4) {
- a0 = _mm256_load_pd(&buf[i]);
- a0 = ntt_mul_mod(a0, c, mf, m_inv);
- _mm256_store_pd(&buf[i], a0);
- c = ntt_mul_mod(c, c_mul, mf, m_inv);
- }
-}
-
-#else
-
-static void *ntt_malloc(BFNTTState *s, size_t size)
-{
- return bf_malloc(s->ctx, size);
-}
-
-static void ntt_free(BFNTTState *s, void *ptr)
-{
- bf_free(s->ctx, ptr);
-}
-
-static inline limb_t ntt_limb_to_int(NTTLimb a, limb_t m)
-{
- if (a >= m)
- a -= m;
- return a;
-}
-
-static inline NTTLimb int_to_ntt_limb(slimb_t a, limb_t m)
-{
- return a;
-}
-
-static no_inline int ntt_fft(BFNTTState *s, NTTLimb *out_buf, NTTLimb *in_buf,
- NTTLimb *tmp_buf, int fft_len_log2,
- int inverse, int m_idx)
-{
- limb_t nb_blocks, fft_per_block, p, k, n, stride_in, i, j, m, m2;
- NTTLimb *tab_in, *tab_out, *tmp, a0, a1, b0, b1, c, *trig, c_inv;
- int l;
-
- m = ntt_mods[m_idx];
- m2 = 2 * m;
- n = (limb_t)1 << fft_len_log2;
- nb_blocks = n;
- fft_per_block = 1;
- stride_in = n / 2;
- tab_in = in_buf;
- tab_out = tmp_buf;
- l = fft_len_log2;
- while (nb_blocks != 2) {
- nb_blocks >>= 1;
- p = 0;
- k = 0;
- trig = get_trig(s, l, inverse, m_idx);
- if (!trig)
- return -1;
- for(i = 0; i < nb_blocks; i++) {
- c = trig[0];
- c_inv = trig[1];
- trig += 2;
- for(j = 0; j < fft_per_block; j++) {
- a0 = tab_in[k + j];
- a1 = tab_in[k + j + stride_in];
- b0 = add_mod(a0, a1, m2);
- b1 = a0 - a1 + m2;
- b1 = mul_mod_fast3(b1, c, m, c_inv);
- tab_out[p + j] = b0;
- tab_out[p + j + fft_per_block] = b1;
- }
- k += fft_per_block;
- p += 2 * fft_per_block;
- }
- fft_per_block <<= 1;
- l--;
- tmp = tab_in;
- tab_in = tab_out;
- tab_out = tmp;
- }
- /* no twiddle in last step */
- tab_out = out_buf;
- for(k = 0; k < stride_in; k++) {
- a0 = tab_in[k];
- a1 = tab_in[k + stride_in];
- b0 = add_mod(a0, a1, m2);
- b1 = sub_mod(a0, a1, m2);
- tab_out[k] = b0;
- tab_out[k + stride_in] = b1;
- }
- return 0;
-}
-
-static void ntt_vec_mul(BFNTTState *s,
- NTTLimb *tab1, NTTLimb *tab2, int fft_len_log2,
- int k_tot, int m_idx)
-{
- limb_t i, norm, norm_inv, a, n, m, m_inv;
-
- m = ntt_mods[m_idx];
- m_inv = s->ntt_mods_div[m_idx];
- norm = s->ntt_len_inv[m_idx][k_tot][0];
- norm_inv = s->ntt_len_inv[m_idx][k_tot][1];
- n = (limb_t)1 << fft_len_log2;
- for(i = 0; i < n; i++) {
- a = tab1[i];
- /* need to reduce the range so that the product is <
- 2^(LIMB_BITS+NTT_MOD_LOG2_MIN) */
- if (a >= m)
- a -= m;
- a = mul_mod_fast(a, tab2[i], m, m_inv);
- a = mul_mod_fast3(a, norm, m, norm_inv);
- tab1[i] = a;
- }
-}
-
-static no_inline void mul_trig(NTTLimb *buf,
- limb_t n, limb_t c_mul, limb_t m, limb_t m_inv)
-{
- limb_t i, c0, c_mul_inv;
-
- c0 = 1;
- c_mul_inv = init_mul_mod_fast2(c_mul, m);
- for(i = 0; i < n; i++) {
- buf[i] = mul_mod_fast(buf[i], c0, m, m_inv);
- c0 = mul_mod_fast2(c0, c_mul, m, c_mul_inv);
- }
-}
-
-#endif /* !AVX2 */
-
-static no_inline NTTLimb *get_trig(BFNTTState *s,
- int k, int inverse, int m_idx)
-{
- NTTLimb *tab;
- limb_t i, n2, c, c_mul, m, c_mul_inv;
-
- if (k > NTT_TRIG_K_MAX)
- return NULL;
-
- tab = s->ntt_trig[m_idx][inverse][k];
- if (tab)
- return tab;
- n2 = (limb_t)1 << (k - 1);
- m = ntt_mods[m_idx];
-#ifdef __AVX2__
- tab = ntt_malloc(s, sizeof(NTTLimb) * n2);
-#else
- tab = ntt_malloc(s, sizeof(NTTLimb) * n2 * 2);
-#endif
- if (!tab)
- return NULL;
- c = 1;
- c_mul = s->ntt_proot_pow[m_idx][inverse][k];
- c_mul_inv = s->ntt_proot_pow_inv[m_idx][inverse][k];
- for(i = 0; i < n2; i++) {
-#ifdef __AVX2__
- tab[i] = int_to_ntt_limb2(c, m);
-#else
- tab[2 * i] = int_to_ntt_limb(c, m);
- tab[2 * i + 1] = init_mul_mod_fast2(c, m);
-#endif
- c = mul_mod_fast2(c, c_mul, m, c_mul_inv);
- }
- s->ntt_trig[m_idx][inverse][k] = tab;
- return tab;
-}
-
-void fft_clear_cache(bf_context_t *s1)
-{
- int m_idx, inverse, k;
- BFNTTState *s = s1->ntt_state;
- if (s) {
- for(m_idx = 0; m_idx < NB_MODS; m_idx++) {
- for(inverse = 0; inverse < 2; inverse++) {
- for(k = 0; k < NTT_TRIG_K_MAX + 1; k++) {
- if (s->ntt_trig[m_idx][inverse][k]) {
- ntt_free(s, s->ntt_trig[m_idx][inverse][k]);
- s->ntt_trig[m_idx][inverse][k] = NULL;
- }
- }
- }
- }
-#if defined(__AVX2__)
- bf_aligned_free(s1, s);
-#else
- bf_free(s1, s);
-#endif
- s1->ntt_state = NULL;
- }
-}
-
-#define STRIP_LEN 16
-
-/* dst = buf1, src = buf2 */
-static int ntt_fft_partial(BFNTTState *s, NTTLimb *buf1,
- int k1, int k2, limb_t n1, limb_t n2, int inverse,
- limb_t m_idx)
-{
- limb_t i, j, c_mul, c0, m, m_inv, strip_len, l;
- NTTLimb *buf2, *buf3;
-
- buf2 = NULL;
- buf3 = ntt_malloc(s, sizeof(NTTLimb) * n1);
- if (!buf3)
- goto fail;
- if (k2 == 0) {
- if (ntt_fft(s, buf1, buf1, buf3, k1, inverse, m_idx))
- goto fail;
- } else {
- strip_len = STRIP_LEN;
- buf2 = ntt_malloc(s, sizeof(NTTLimb) * n1 * strip_len);
- if (!buf2)
- goto fail;
- m = ntt_mods[m_idx];
- m_inv = s->ntt_mods_div[m_idx];
- c0 = s->ntt_proot_pow[m_idx][inverse][k1 + k2];
- c_mul = 1;
- assert((n2 % strip_len) == 0);
- for(j = 0; j < n2; j += strip_len) {
- for(i = 0; i < n1; i++) {
- for(l = 0; l < strip_len; l++) {
- buf2[i + l * n1] = buf1[i * n2 + (j + l)];
- }
- }
- for(l = 0; l < strip_len; l++) {
- if (inverse)
- mul_trig(buf2 + l * n1, n1, c_mul, m, m_inv);
- if (ntt_fft(s, buf2 + l * n1, buf2 + l * n1, buf3, k1, inverse, m_idx))
- goto fail;
- if (!inverse)
- mul_trig(buf2 + l * n1, n1, c_mul, m, m_inv);
- c_mul = mul_mod_fast(c_mul, c0, m, m_inv);
- }
-
- for(i = 0; i < n1; i++) {
- for(l = 0; l < strip_len; l++) {
- buf1[i * n2 + (j + l)] = buf2[i + l *n1];
- }
- }
- }
- ntt_free(s, buf2);
- }
- ntt_free(s, buf3);
- return 0;
- fail:
- ntt_free(s, buf2);
- ntt_free(s, buf3);
- return -1;
-}
-
-
-/* dst = buf1, src = buf2, tmp = buf3 */
-static int ntt_conv(BFNTTState *s, NTTLimb *buf1, NTTLimb *buf2,
- int k, int k_tot, limb_t m_idx)
-{
- limb_t n1, n2, i;
- int k1, k2;
-
- if (k <= NTT_TRIG_K_MAX) {
- k1 = k;
- } else {
- /* recursive split of the FFT */
- k1 = bf_min(k / 2, NTT_TRIG_K_MAX);
- }
- k2 = k - k1;
- n1 = (limb_t)1 << k1;
- n2 = (limb_t)1 << k2;
-
- if (ntt_fft_partial(s, buf1, k1, k2, n1, n2, 0, m_idx))
- return -1;
- if (ntt_fft_partial(s, buf2, k1, k2, n1, n2, 0, m_idx))
- return -1;
- if (k2 == 0) {
- ntt_vec_mul(s, buf1, buf2, k, k_tot, m_idx);
- } else {
- for(i = 0; i < n1; i++) {
- ntt_conv(s, buf1 + i * n2, buf2 + i * n2, k2, k_tot, m_idx);
- }
- }
- if (ntt_fft_partial(s, buf1, k1, k2, n1, n2, 1, m_idx))
- return -1;
- return 0;
-}
-
-
-static no_inline void limb_to_ntt(BFNTTState *s,
- NTTLimb *tabr, limb_t fft_len,
- const limb_t *taba, limb_t a_len, int dpl,
- int first_m_idx, int nb_mods)
-{
- slimb_t i, n;
- dlimb_t a, b;
- int j, shift;
- limb_t base_mask1, a0, a1, a2, r, m, m_inv;
-
-#if 0
- for(i = 0; i < a_len; i++) {
- printf("%" PRId64 ": " FMT_LIMB "\n",
- (int64_t)i, taba[i]);
- }
-#endif
- memset(tabr, 0, sizeof(NTTLimb) * fft_len * nb_mods);
- shift = dpl & (LIMB_BITS - 1);
- if (shift == 0)
- base_mask1 = -1;
- else
- base_mask1 = ((limb_t)1 << shift) - 1;
- n = bf_min(fft_len, (a_len * LIMB_BITS + dpl - 1) / dpl);
- for(i = 0; i < n; i++) {
- a0 = get_bits(taba, a_len, i * dpl);
- if (dpl <= LIMB_BITS) {
- a0 &= base_mask1;
- a = a0;
- } else {
- a1 = get_bits(taba, a_len, i * dpl + LIMB_BITS);
- if (dpl <= (LIMB_BITS + NTT_MOD_LOG2_MIN)) {
- a = a0 | ((dlimb_t)(a1 & base_mask1) << LIMB_BITS);
- } else {
- if (dpl > 2 * LIMB_BITS) {
- a2 = get_bits(taba, a_len, i * dpl + LIMB_BITS * 2) &
- base_mask1;
- } else {
- a1 &= base_mask1;
- a2 = 0;
- }
- // printf("a=0x%016lx%016lx%016lx\n", a2, a1, a0);
- a = (a0 >> (LIMB_BITS - NTT_MOD_LOG2_MAX + NTT_MOD_LOG2_MIN)) |
- ((dlimb_t)a1 << (NTT_MOD_LOG2_MAX - NTT_MOD_LOG2_MIN)) |
- ((dlimb_t)a2 << (LIMB_BITS + NTT_MOD_LOG2_MAX - NTT_MOD_LOG2_MIN));
- a0 &= ((limb_t)1 << (LIMB_BITS - NTT_MOD_LOG2_MAX + NTT_MOD_LOG2_MIN)) - 1;
- }
- }
- for(j = 0; j < nb_mods; j++) {
- m = ntt_mods[first_m_idx + j];
- m_inv = s->ntt_mods_div[first_m_idx + j];
- r = mod_fast(a, m, m_inv);
- if (dpl > (LIMB_BITS + NTT_MOD_LOG2_MIN)) {
- b = ((dlimb_t)r << (LIMB_BITS - NTT_MOD_LOG2_MAX + NTT_MOD_LOG2_MIN)) | a0;
- r = mod_fast(b, m, m_inv);
- }
- tabr[i + j * fft_len] = int_to_ntt_limb(r, m);
- }
- }
-}
-
-#if defined(__AVX2__)
-
-#define VEC_LEN 4
-
-typedef union {
- __m256d v;
- double d[4];
-} VecUnion;
-
-static no_inline void ntt_to_limb(BFNTTState *s, limb_t *tabr, limb_t r_len,
- const NTTLimb *buf, int fft_len_log2, int dpl,
- int nb_mods)
-{
- const limb_t *mods = ntt_mods + NB_MODS - nb_mods;
- const __m256d *mods_cr_vec, *mf, *m_inv;
- VecUnion y[NB_MODS];
- limb_t u[NB_MODS], carry[NB_MODS], fft_len, base_mask1, r;
- slimb_t i, len, pos;
- int j, k, l, shift, n_limb1, p;
- dlimb_t t;
-
- j = NB_MODS * (NB_MODS - 1) / 2 - nb_mods * (nb_mods - 1) / 2;
- mods_cr_vec = s->ntt_mods_cr_vec + j;
- mf = s->ntt_mods_vec + NB_MODS - nb_mods;
- m_inv = s->ntt_mods_inv_vec + NB_MODS - nb_mods;
-
- shift = dpl & (LIMB_BITS - 1);
- if (shift == 0)
- base_mask1 = -1;
- else
- base_mask1 = ((limb_t)1 << shift) - 1;
- n_limb1 = ((unsigned)dpl - 1) / LIMB_BITS;
- for(j = 0; j < NB_MODS; j++)
- carry[j] = 0;
- for(j = 0; j < NB_MODS; j++)
- u[j] = 0; /* avoid warnings */
- memset(tabr, 0, sizeof(limb_t) * r_len);
- fft_len = (limb_t)1 << fft_len_log2;
- len = bf_min(fft_len, (r_len * LIMB_BITS + dpl - 1) / dpl);
- len = (len + VEC_LEN - 1) & ~(VEC_LEN - 1);
- i = 0;
- while (i < len) {
- for(j = 0; j < nb_mods; j++)
- y[j].v = *(__m256d *)&buf[i + fft_len * j];
-
- /* Chinese remainder to get mixed radix representation */
- l = 0;
- for(j = 0; j < nb_mods - 1; j++) {
- y[j].v = ntt_mod1(y[j].v, mf[j]);
- for(k = j + 1; k < nb_mods; k++) {
- y[k].v = ntt_mul_mod(y[k].v - y[j].v,
- mods_cr_vec[l], mf[k], m_inv[k]);
- l++;
- }
- }
- y[j].v = ntt_mod1(y[j].v, mf[j]);
-
- for(p = 0; p < VEC_LEN; p++) {
- /* back to normal representation */
- u[0] = (int64_t)y[nb_mods - 1].d[p];
- l = 1;
- for(j = nb_mods - 2; j >= 1; j--) {
- r = (int64_t)y[j].d[p];
- for(k = 0; k < l; k++) {
- t = (dlimb_t)u[k] * mods[j] + r;
- r = t >> LIMB_BITS;
- u[k] = t;
- }
- u[l] = r;
- l++;
- }
- /* XXX: for nb_mods = 5, l should be 4 */
-
- /* last step adds the carry */
- r = (int64_t)y[0].d[p];
- for(k = 0; k < l; k++) {
- t = (dlimb_t)u[k] * mods[j] + r + carry[k];
- r = t >> LIMB_BITS;
- u[k] = t;
- }
- u[l] = r + carry[l];
-
-#if 0
- printf("%" PRId64 ": ", i);
- for(j = nb_mods - 1; j >= 0; j--) {
- printf(" %019" PRIu64, u[j]);
- }
- printf("\n");
-#endif
-
- /* write the digits */
- pos = i * dpl;
- for(j = 0; j < n_limb1; j++) {
- put_bits(tabr, r_len, pos, u[j]);
- pos += LIMB_BITS;
- }
- put_bits(tabr, r_len, pos, u[n_limb1] & base_mask1);
- /* shift by dpl digits and set the carry */
- if (shift == 0) {
- for(j = n_limb1 + 1; j < nb_mods; j++)
- carry[j - (n_limb1 + 1)] = u[j];
- } else {
- for(j = n_limb1; j < nb_mods - 1; j++) {
- carry[j - n_limb1] = (u[j] >> shift) |
- (u[j + 1] << (LIMB_BITS - shift));
- }
- carry[nb_mods - 1 - n_limb1] = u[nb_mods - 1] >> shift;
- }
- i++;
- }
- }
-}
-#else
-static no_inline void ntt_to_limb(BFNTTState *s, limb_t *tabr, limb_t r_len,
- const NTTLimb *buf, int fft_len_log2, int dpl,
- int nb_mods)
-{
- const limb_t *mods = ntt_mods + NB_MODS - nb_mods;
- const limb_t *mods_cr, *mods_cr_inv;
- limb_t y[NB_MODS], u[NB_MODS], carry[NB_MODS], fft_len, base_mask1, r;
- slimb_t i, len, pos;
- int j, k, l, shift, n_limb1;
- dlimb_t t;
-
- j = NB_MODS * (NB_MODS - 1) / 2 - nb_mods * (nb_mods - 1) / 2;
- mods_cr = ntt_mods_cr + j;
- mods_cr_inv = s->ntt_mods_cr_inv + j;
-
- shift = dpl & (LIMB_BITS - 1);
- if (shift == 0)
- base_mask1 = -1;
- else
- base_mask1 = ((limb_t)1 << shift) - 1;
- n_limb1 = ((unsigned)dpl - 1) / LIMB_BITS;
- for(j = 0; j < NB_MODS; j++)
- carry[j] = 0;
- for(j = 0; j < NB_MODS; j++)
- u[j] = 0; /* avoid warnings */
- memset(tabr, 0, sizeof(limb_t) * r_len);
- fft_len = (limb_t)1 << fft_len_log2;
- len = bf_min(fft_len, (r_len * LIMB_BITS + dpl - 1) / dpl);
- for(i = 0; i < len; i++) {
- for(j = 0; j < nb_mods; j++) {
- y[j] = ntt_limb_to_int(buf[i + fft_len * j], mods[j]);
- }
-
- /* Chinese remainder to get mixed radix representation */
- l = 0;
- for(j = 0; j < nb_mods - 1; j++) {
- for(k = j + 1; k < nb_mods; k++) {
- limb_t m;
- m = mods[k];
- /* Note: there is no overflow in the sub_mod() because
- the modulos are sorted by increasing order */
- y[k] = mul_mod_fast2(y[k] - y[j] + m,
- mods_cr[l], m, mods_cr_inv[l]);
- l++;
- }
- }
-
- /* back to normal representation */
- u[0] = y[nb_mods - 1];
- l = 1;
- for(j = nb_mods - 2; j >= 1; j--) {
- r = y[j];
- for(k = 0; k < l; k++) {
- t = (dlimb_t)u[k] * mods[j] + r;
- r = t >> LIMB_BITS;
- u[k] = t;
- }
- u[l] = r;
- l++;
- }
-
- /* last step adds the carry */
- r = y[0];
- for(k = 0; k < l; k++) {
- t = (dlimb_t)u[k] * mods[j] + r + carry[k];
- r = t >> LIMB_BITS;
- u[k] = t;
- }
- u[l] = r + carry[l];
-
-#if 0
- printf("%" PRId64 ": ", (int64_t)i);
- for(j = nb_mods - 1; j >= 0; j--) {
- printf(" " FMT_LIMB, u[j]);
- }
- printf("\n");
-#endif
-
- /* write the digits */
- pos = i * dpl;
- for(j = 0; j < n_limb1; j++) {
- put_bits(tabr, r_len, pos, u[j]);
- pos += LIMB_BITS;
- }
- put_bits(tabr, r_len, pos, u[n_limb1] & base_mask1);
- /* shift by dpl digits and set the carry */
- if (shift == 0) {
- for(j = n_limb1 + 1; j < nb_mods; j++)
- carry[j - (n_limb1 + 1)] = u[j];
- } else {
- for(j = n_limb1; j < nb_mods - 1; j++) {
- carry[j - n_limb1] = (u[j] >> shift) |
- (u[j + 1] << (LIMB_BITS - shift));
- }
- carry[nb_mods - 1 - n_limb1] = u[nb_mods - 1] >> shift;
- }
- }
-}
-#endif
-
-static int ntt_static_init(bf_context_t *s1)
-{
- BFNTTState *s;
- int inverse, i, j, k, l;
- limb_t c, c_inv, c_inv2, m, m_inv;
-
- if (s1->ntt_state)
- return 0;
-#if defined(__AVX2__)
- s = bf_aligned_malloc(s1, sizeof(*s), 64);
-#else
- s = bf_malloc(s1, sizeof(*s));
-#endif
- if (!s)
- return -1;
- memset(s, 0, sizeof(*s));
- s1->ntt_state = s;
- s->ctx = s1;
-
- for(j = 0; j < NB_MODS; j++) {
- m = ntt_mods[j];
- m_inv = init_mul_mod_fast(m);
- s->ntt_mods_div[j] = m_inv;
-#if defined(__AVX2__)
- s->ntt_mods_vec[j] = _mm256_set1_pd(m);
- s->ntt_mods_inv_vec[j] = _mm256_set1_pd(1.0 / (double)m);
-#endif
- c_inv2 = (m + 1) / 2; /* 1/2 */
- c_inv = 1;
- for(i = 0; i <= NTT_PROOT_2EXP; i++) {
- s->ntt_len_inv[j][i][0] = c_inv;
- s->ntt_len_inv[j][i][1] = init_mul_mod_fast2(c_inv, m);
- c_inv = mul_mod_fast(c_inv, c_inv2, m, m_inv);
- }
-
- for(inverse = 0; inverse < 2; inverse++) {
- c = ntt_proot[inverse][j];
- for(i = 0; i < NTT_PROOT_2EXP; i++) {
- s->ntt_proot_pow[j][inverse][NTT_PROOT_2EXP - i] = c;
- s->ntt_proot_pow_inv[j][inverse][NTT_PROOT_2EXP - i] =
- init_mul_mod_fast2(c, m);
- c = mul_mod_fast(c, c, m, m_inv);
- }
- }
- }
-
- l = 0;
- for(j = 0; j < NB_MODS - 1; j++) {
- for(k = j + 1; k < NB_MODS; k++) {
-#if defined(__AVX2__)
- s->ntt_mods_cr_vec[l] = _mm256_set1_pd(int_to_ntt_limb2(ntt_mods_cr[l],
- ntt_mods[k]));
-#else
- s->ntt_mods_cr_inv[l] = init_mul_mod_fast2(ntt_mods_cr[l],
- ntt_mods[k]);
-#endif
- l++;
- }
- }
- return 0;
-}
-
-int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len)
-{
- int dpl, fft_len_log2, n_bits, nb_mods, dpl_found, fft_len_log2_found;
- int int_bits, nb_mods_found;
- limb_t cost, min_cost;
-
- min_cost = -1;
- dpl_found = 0;
- nb_mods_found = 4;
- fft_len_log2_found = 0;
- for(nb_mods = 3; nb_mods <= NB_MODS; nb_mods++) {
- int_bits = ntt_int_bits[NB_MODS - nb_mods];
- dpl = bf_min((int_bits - 4) / 2,
- 2 * LIMB_BITS + 2 * NTT_MOD_LOG2_MIN - NTT_MOD_LOG2_MAX);
- for(;;) {
- fft_len_log2 = ceil_log2((len * LIMB_BITS + dpl - 1) / dpl);
- if (fft_len_log2 > NTT_PROOT_2EXP)
- goto next;
- n_bits = fft_len_log2 + 2 * dpl;
- if (n_bits <= int_bits) {
- cost = ((limb_t)(fft_len_log2 + 1) << fft_len_log2) * nb_mods;
- // printf("n=%d dpl=%d: cost=%" PRId64 "\n", nb_mods, dpl, (int64_t)cost);
- if (cost < min_cost) {
- min_cost = cost;
- dpl_found = dpl;
- nb_mods_found = nb_mods;
- fft_len_log2_found = fft_len_log2;
- }
- break;
- }
- dpl--;
- if (dpl == 0)
- break;
- }
- next: ;
- }
- if (!dpl_found)
- abort();
- /* limit dpl if possible to reduce fixed cost of limb/NTT conversion */
- if (dpl_found > (LIMB_BITS + NTT_MOD_LOG2_MIN) &&
- ((limb_t)(LIMB_BITS + NTT_MOD_LOG2_MIN) << fft_len_log2_found) >=
- len * LIMB_BITS) {
- dpl_found = LIMB_BITS + NTT_MOD_LOG2_MIN;
- }
- *pnb_mods = nb_mods_found;
- *pdpl = dpl_found;
- return fft_len_log2_found;
-}
-
-/* return 0 if OK, -1 if memory error */
-static no_inline int fft_mul(bf_context_t *s1,
- bf_t *res, limb_t *a_tab, limb_t a_len,
- limb_t *b_tab, limb_t b_len, int mul_flags)
-{
- BFNTTState *s;
- int dpl, fft_len_log2, j, nb_mods, reduced_mem;
- slimb_t len, fft_len;
- NTTLimb *buf1, *buf2, *ptr;
-#if defined(USE_MUL_CHECK)
- limb_t ha, hb, hr, h_ref;
-#endif
-
- if (ntt_static_init(s1))
- return -1;
- s = s1->ntt_state;
-
- /* find the optimal number of digits per limb (dpl) */
- len = a_len + b_len;
- fft_len_log2 = bf_get_fft_size(&dpl, &nb_mods, len);
- fft_len = (uint64_t)1 << fft_len_log2;
- // printf("len=%" PRId64 " fft_len_log2=%d dpl=%d\n", len, fft_len_log2, dpl);
-#if defined(USE_MUL_CHECK)
- ha = mp_mod1(a_tab, a_len, BF_CHKSUM_MOD, 0);
- hb = mp_mod1(b_tab, b_len, BF_CHKSUM_MOD, 0);
-#endif
- if ((mul_flags & (FFT_MUL_R_OVERLAP_A | FFT_MUL_R_OVERLAP_B)) == 0) {
- if (!(mul_flags & FFT_MUL_R_NORESIZE))
- bf_resize(res, 0);
- } else if (mul_flags & FFT_MUL_R_OVERLAP_B) {
- limb_t *tmp_tab, tmp_len;
- /* it is better to free 'b' first */
- tmp_tab = a_tab;
- a_tab = b_tab;
- b_tab = tmp_tab;
- tmp_len = a_len;
- a_len = b_len;
- b_len = tmp_len;
- }
- buf1 = ntt_malloc(s, sizeof(NTTLimb) * fft_len * nb_mods);
- if (!buf1)
- return -1;
- limb_to_ntt(s, buf1, fft_len, a_tab, a_len, dpl,
- NB_MODS - nb_mods, nb_mods);
- if ((mul_flags & (FFT_MUL_R_OVERLAP_A | FFT_MUL_R_OVERLAP_B)) ==
- FFT_MUL_R_OVERLAP_A) {
- if (!(mul_flags & FFT_MUL_R_NORESIZE))
- bf_resize(res, 0);
- }
- reduced_mem = (fft_len_log2 >= 14);
- if (!reduced_mem) {
- buf2 = ntt_malloc(s, sizeof(NTTLimb) * fft_len * nb_mods);
- if (!buf2)
- goto fail;
- limb_to_ntt(s, buf2, fft_len, b_tab, b_len, dpl,
- NB_MODS - nb_mods, nb_mods);
- if (!(mul_flags & FFT_MUL_R_NORESIZE))
- bf_resize(res, 0); /* in case res == b */
- } else {
- buf2 = ntt_malloc(s, sizeof(NTTLimb) * fft_len);
- if (!buf2)
- goto fail;
- }
- for(j = 0; j < nb_mods; j++) {
- if (reduced_mem) {
- limb_to_ntt(s, buf2, fft_len, b_tab, b_len, dpl,
- NB_MODS - nb_mods + j, 1);
- ptr = buf2;
- } else {
- ptr = buf2 + fft_len * j;
- }
- if (ntt_conv(s, buf1 + fft_len * j, ptr,
- fft_len_log2, fft_len_log2, j + NB_MODS - nb_mods))
- goto fail;
- }
- if (!(mul_flags & FFT_MUL_R_NORESIZE))
- bf_resize(res, 0); /* in case res == b and reduced mem */
- ntt_free(s, buf2);
- buf2 = NULL;
- if (!(mul_flags & FFT_MUL_R_NORESIZE)) {
- if (bf_resize(res, len))
- goto fail;
- }
- ntt_to_limb(s, res->tab, len, buf1, fft_len_log2, dpl, nb_mods);
- ntt_free(s, buf1);
-#if defined(USE_MUL_CHECK)
- hr = mp_mod1(res->tab, len, BF_CHKSUM_MOD, 0);
- h_ref = mul_mod(ha, hb, BF_CHKSUM_MOD);
- if (hr != h_ref) {
- printf("ntt_mul_error: len=%" PRId_LIMB " fft_len_log2=%d dpl=%d nb_mods=%d\n",
- len, fft_len_log2, dpl, nb_mods);
- // printf("ha=0x" FMT_LIMB" hb=0x" FMT_LIMB " hr=0x" FMT_LIMB " expected=0x" FMT_LIMB "\n", ha, hb, hr, h_ref);
- exit(1);
- }
-#endif
- return 0;
- fail:
- ntt_free(s, buf1);
- ntt_free(s, buf2);
- return -1;
-}
-
-#else /* USE_FFT_MUL */
-
-int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len)
-{
- return 0;
-}
-
-#endif /* !USE_FFT_MUL */
diff --git a/libbf.h b/libbf.h
deleted file mode 100644
index a1436ab..0000000
--- a/libbf.h
+++ /dev/null
@@ -1,535 +0,0 @@
-/*
- * Tiny arbitrary precision floating point library
- *
- * Copyright (c) 2017-2021 Fabrice Bellard
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-#ifndef LIBBF_H
-#define LIBBF_H
-
-#include <stddef.h>
-#include <stdint.h>
-
-#if defined(__SIZEOF_INT128__) && (INTPTR_MAX >= INT64_MAX)
-#define LIMB_LOG2_BITS 6
-#else
-#define LIMB_LOG2_BITS 5
-#endif
-
-#define LIMB_BITS (1 << LIMB_LOG2_BITS)
-
-#if LIMB_BITS == 64
-typedef __int128 int128_t;
-typedef unsigned __int128 uint128_t;
-typedef int64_t slimb_t;
-typedef uint64_t limb_t;
-typedef uint128_t dlimb_t;
-#define BF_RAW_EXP_MIN INT64_MIN
-#define BF_RAW_EXP_MAX INT64_MAX
-
-#define LIMB_DIGITS 19
-#define BF_DEC_BASE UINT64_C(10000000000000000000)
-
-#else
-
-typedef int32_t slimb_t;
-typedef uint32_t limb_t;
-typedef uint64_t dlimb_t;
-#define BF_RAW_EXP_MIN INT32_MIN
-#define BF_RAW_EXP_MAX INT32_MAX
-
-#define LIMB_DIGITS 9
-#define BF_DEC_BASE 1000000000U
-
-#endif
-
-/* in bits */
-/* minimum number of bits for the exponent */
-#define BF_EXP_BITS_MIN 3
-/* maximum number of bits for the exponent */
-#define BF_EXP_BITS_MAX (LIMB_BITS - 3)
-/* extended range for exponent, used internally */
-#define BF_EXT_EXP_BITS_MAX (BF_EXP_BITS_MAX + 1)
-/* minimum possible precision */
-#define BF_PREC_MIN 2
-/* minimum possible precision */
-#define BF_PREC_MAX (((limb_t)1 << (LIMB_BITS - 2)) - 2)
-/* some operations support infinite precision */
-#define BF_PREC_INF (BF_PREC_MAX + 1) /* infinite precision */
-
-#if LIMB_BITS == 64
-#define BF_CHKSUM_MOD (UINT64_C(975620677) * UINT64_C(9795002197))
-#else
-#define BF_CHKSUM_MOD 975620677U
-#endif
-
-#define BF_EXP_ZERO BF_RAW_EXP_MIN
-#define BF_EXP_INF (BF_RAW_EXP_MAX - 1)
-#define BF_EXP_NAN BF_RAW_EXP_MAX
-
-/* +/-zero is represented with expn = BF_EXP_ZERO and len = 0,
- +/-infinity is represented with expn = BF_EXP_INF and len = 0,
- NaN is represented with expn = BF_EXP_NAN and len = 0 (sign is ignored)
- */
-typedef struct {
- struct bf_context_t *ctx;
- int sign;
- slimb_t expn;
- limb_t len;
- limb_t *tab;
-} bf_t;
-
-typedef struct {
- /* must be kept identical to bf_t */
- struct bf_context_t *ctx;
- int sign;
- slimb_t expn;
- limb_t len;
- limb_t *tab;
-} bfdec_t;
-
-typedef enum {
- BF_RNDN, /* round to nearest, ties to even */
- BF_RNDZ, /* round to zero */
- BF_RNDD, /* round to -inf (the code relies on (BF_RNDD xor BF_RNDU) = 1) */
- BF_RNDU, /* round to +inf */
- BF_RNDNA, /* round to nearest, ties away from zero */
- BF_RNDA, /* round away from zero */
- BF_RNDF, /* faithful rounding (nondeterministic, either RNDD or RNDU,
- inexact flag is always set) */
-} bf_rnd_t;
-
-/* allow subnormal numbers. Only available if the number of exponent
- bits is <= BF_EXP_BITS_USER_MAX and prec != BF_PREC_INF. */
-#define BF_FLAG_SUBNORMAL (1 << 3)
-/* 'prec' is the precision after the radix point instead of the whole
- mantissa. Can only be used with bf_round() and
- bfdec_[add|sub|mul|div|sqrt|round](). */
-#define BF_FLAG_RADPNT_PREC (1 << 4)
-
-#define BF_RND_MASK 0x7
-#define BF_EXP_BITS_SHIFT 5
-#define BF_EXP_BITS_MASK 0x3f
-
-/* shortcut for bf_set_exp_bits(BF_EXT_EXP_BITS_MAX) */
-#define BF_FLAG_EXT_EXP (BF_EXP_BITS_MASK << BF_EXP_BITS_SHIFT)
-
-/* contains the rounding mode and number of exponents bits */
-typedef uint32_t bf_flags_t;
-
-typedef void *bf_realloc_func_t(void *opaque, void *ptr, size_t size);
-
-typedef struct {
- bf_t val;
- limb_t prec;
-} BFConstCache;
-
-typedef struct bf_context_t {
- void *realloc_opaque;
- bf_realloc_func_t *realloc_func;
- BFConstCache log2_cache;
- BFConstCache pi_cache;
- struct BFNTTState *ntt_state;
-} bf_context_t;
-
-static inline int bf_get_exp_bits(bf_flags_t flags)
-{
- int e;
- e = (flags >> BF_EXP_BITS_SHIFT) & BF_EXP_BITS_MASK;
- if (e == BF_EXP_BITS_MASK)
- return BF_EXP_BITS_MAX + 1;
- else
- return BF_EXP_BITS_MAX - e;
-}
-
-static inline bf_flags_t bf_set_exp_bits(int n)
-{
- return ((BF_EXP_BITS_MAX - n) & BF_EXP_BITS_MASK) << BF_EXP_BITS_SHIFT;
-}
-
-/* returned status */
-#define BF_ST_INVALID_OP (1 << 0)
-#define BF_ST_DIVIDE_ZERO (1 << 1)
-#define BF_ST_OVERFLOW (1 << 2)
-#define BF_ST_UNDERFLOW (1 << 3)
-#define BF_ST_INEXACT (1 << 4)
-/* indicate that a memory allocation error occured. NaN is returned */
-#define BF_ST_MEM_ERROR (1 << 5)
-
-#define BF_RADIX_MAX 36 /* maximum radix for bf_atof() and bf_ftoa() */
-
-static inline slimb_t bf_max(slimb_t a, slimb_t b)
-{
- if (a > b)
- return a;
- else
- return b;
-}
-
-static inline slimb_t bf_min(slimb_t a, slimb_t b)
-{
- if (a < b)
- return a;
- else
- return b;
-}
-
-void bf_context_init(bf_context_t *s, bf_realloc_func_t *realloc_func,
- void *realloc_opaque);
-void bf_context_end(bf_context_t *s);
-/* free memory allocated for the bf cache data */
-void bf_clear_cache(bf_context_t *s);
-
-static inline void *bf_realloc(bf_context_t *s, void *ptr, size_t size)
-{
- return s->realloc_func(s->realloc_opaque, ptr, size);
-}
-
-/* 'size' must be != 0 */
-static inline void *bf_malloc(bf_context_t *s, size_t size)
-{
- return bf_realloc(s, NULL, size);
-}
-
-static inline void bf_free(bf_context_t *s, void *ptr)
-{
- /* must test ptr otherwise equivalent to malloc(0) */
- if (ptr)
- bf_realloc(s, ptr, 0);
-}
-
-void bf_init(bf_context_t *s, bf_t *r);
-
-static inline void bf_delete(bf_t *r)
-{
- bf_context_t *s = r->ctx;
- /* we accept to delete a zeroed bf_t structure */
- if (s && r->tab) {
- bf_realloc(s, r->tab, 0);
- }
-}
-
-static inline void bf_neg(bf_t *r)
-{
- r->sign ^= 1;
-}
-
-static inline int bf_is_finite(const bf_t *a)
-{
- return (a->expn < BF_EXP_INF);
-}
-
-static inline int bf_is_nan(const bf_t *a)
-{
- return (a->expn == BF_EXP_NAN);
-}
-
-static inline int bf_is_zero(const bf_t *a)
-{
- return (a->expn == BF_EXP_ZERO);
-}
-
-static inline void bf_memcpy(bf_t *r, const bf_t *a)
-{
- *r = *a;
-}
-
-int bf_set_ui(bf_t *r, uint64_t a);
-int bf_set_si(bf_t *r, int64_t a);
-void bf_set_nan(bf_t *r);
-void bf_set_zero(bf_t *r, int is_neg);
-void bf_set_inf(bf_t *r, int is_neg);
-int bf_set(bf_t *r, const bf_t *a);
-void bf_move(bf_t *r, bf_t *a);
-int bf_get_float64(const bf_t *a, double *pres, bf_rnd_t rnd_mode);
-int bf_set_float64(bf_t *a, double d);
-
-int bf_cmpu(const bf_t *a, const bf_t *b);
-int bf_cmp_full(const bf_t *a, const bf_t *b);
-int bf_cmp(const bf_t *a, const bf_t *b);
-static inline int bf_cmp_eq(const bf_t *a, const bf_t *b)
-{
- return bf_cmp(a, b) == 0;
-}
-
-static inline int bf_cmp_le(const bf_t *a, const bf_t *b)
-{
- return bf_cmp(a, b) <= 0;
-}
-
-static inline int bf_cmp_lt(const bf_t *a, const bf_t *b)
-{
- return bf_cmp(a, b) < 0;
-}
-
-int bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
-int bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
-int bf_add_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec, bf_flags_t flags);
-int bf_mul(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
-int bf_mul_ui(bf_t *r, const bf_t *a, uint64_t b1, limb_t prec, bf_flags_t flags);
-int bf_mul_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
- bf_flags_t flags);
-int bf_mul_2exp(bf_t *r, slimb_t e, limb_t prec, bf_flags_t flags);
-int bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec, bf_flags_t flags);
-#define BF_DIVREM_EUCLIDIAN BF_RNDF
-int bf_divrem(bf_t *q, bf_t *r, const bf_t *a, const bf_t *b,
- limb_t prec, bf_flags_t flags, int rnd_mode);
-int bf_rem(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags, int rnd_mode);
-int bf_remquo(slimb_t *pq, bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
- bf_flags_t flags, int rnd_mode);
-/* round to integer with infinite precision */
-int bf_rint(bf_t *r, int rnd_mode);
-int bf_round(bf_t *r, limb_t prec, bf_flags_t flags);
-int bf_sqrtrem(bf_t *r, bf_t *rem1, const bf_t *a);
-int bf_sqrt(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-slimb_t bf_get_exp_min(const bf_t *a);
-int bf_logic_or(bf_t *r, const bf_t *a, const bf_t *b);
-int bf_logic_xor(bf_t *r, const bf_t *a, const bf_t *b);
-int bf_logic_and(bf_t *r, const bf_t *a, const bf_t *b);
-
-/* additional flags for bf_atof */
-/* do not accept hex radix prefix (0x or 0X) if radix = 0 or radix = 16 */
-#define BF_ATOF_NO_HEX (1 << 16)
-/* accept binary (0b or 0B) or octal (0o or 0O) radix prefix if radix = 0 */
-#define BF_ATOF_BIN_OCT (1 << 17)
-/* Do not parse NaN or Inf */
-#define BF_ATOF_NO_NAN_INF (1 << 18)
-/* return the exponent separately */
-#define BF_ATOF_EXPONENT (1 << 19)
-
-int bf_atof(bf_t *a, const char *str, const char **pnext, int radix,
- limb_t prec, bf_flags_t flags);
-/* this version accepts prec = BF_PREC_INF and returns the radix
- exponent */
-int bf_atof2(bf_t *r, slimb_t *pexponent,
- const char *str, const char **pnext, int radix,
- limb_t prec, bf_flags_t flags);
-int bf_mul_pow_radix(bf_t *r, const bf_t *T, limb_t radix,
- slimb_t expn, limb_t prec, bf_flags_t flags);
-
-
-/* Conversion of floating point number to string. Return a null
- terminated string or NULL if memory error. *plen contains its
- length if plen != NULL. The exponent letter is "e" for base 10,
- "p" for bases 2, 8, 16 with a binary exponent and "@" for the other
- bases. */
-
-#define BF_FTOA_FORMAT_MASK (3 << 16)
-
-/* fixed format: prec significant digits rounded with (flags &
- BF_RND_MASK). Exponential notation is used if too many zeros are
- needed.*/
-#define BF_FTOA_FORMAT_FIXED (0 << 16)
-/* fractional format: prec digits after the decimal point rounded with
- (flags & BF_RND_MASK) */
-#define BF_FTOA_FORMAT_FRAC (1 << 16)
-/* free format:
-
- For binary radices with bf_ftoa() and for bfdec_ftoa(): use the minimum
- number of digits to represent 'a'. The precision and the rounding
- mode are ignored.
-
- For the non binary radices with bf_ftoa(): use as many digits as
- necessary so that bf_atof() return the same number when using
- precision 'prec', rounding to nearest and the subnormal
- configuration of 'flags'. The result is meaningful only if 'a' is
- already rounded to 'prec' bits. If the subnormal flag is set, the
- exponent in 'flags' must also be set to the desired exponent range.
-*/
-#define BF_FTOA_FORMAT_FREE (2 << 16)
-/* same as BF_FTOA_FORMAT_FREE but uses the minimum number of digits
- (takes more computation time). Identical to BF_FTOA_FORMAT_FREE for
- binary radices with bf_ftoa() and for bfdec_ftoa(). */
-#define BF_FTOA_FORMAT_FREE_MIN (3 << 16)
-
-/* force exponential notation for fixed or free format */
-#define BF_FTOA_FORCE_EXP (1 << 20)
-/* add 0x prefix for base 16, 0o prefix for base 8 or 0b prefix for
- base 2 if non zero value */
-#define BF_FTOA_ADD_PREFIX (1 << 21)
-/* return "Infinity" instead of "Inf" and add a "+" for positive
- exponents */
-#define BF_FTOA_JS_QUIRKS (1 << 22)
-
-char *bf_ftoa(size_t *plen, const bf_t *a, int radix, limb_t prec,
- bf_flags_t flags);
-
-/* modulo 2^n instead of saturation. NaN and infinity return 0 */
-#define BF_GET_INT_MOD (1 << 0)
-int bf_get_int32(int *pres, const bf_t *a, int flags);
-int bf_get_int64(int64_t *pres, const bf_t *a, int flags);
-int bf_get_uint64(uint64_t *pres, const bf_t *a);
-
-/* the following functions are exported for testing only. */
-void mp_print_str(const char *str, const limb_t *tab, limb_t n);
-void bf_print_str(const char *str, const bf_t *a);
-int bf_resize(bf_t *r, limb_t len);
-int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len);
-int bf_normalize_and_round(bf_t *r, limb_t prec1, bf_flags_t flags);
-int bf_can_round(const bf_t *a, slimb_t prec, bf_rnd_t rnd_mode, slimb_t k);
-slimb_t bf_mul_log2_radix(slimb_t a1, unsigned int radix, int is_inv,
- int is_ceil1);
-int mp_mul(bf_context_t *s, limb_t *result,
- const limb_t *op1, limb_t op1_size,
- const limb_t *op2, limb_t op2_size);
-limb_t mp_add(limb_t *res, const limb_t *op1, const limb_t *op2,
- limb_t n, limb_t carry);
-limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n);
-int mp_sqrtrem(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n);
-int mp_recip(bf_context_t *s, limb_t *tabr, const limb_t *taba, limb_t n);
-limb_t bf_isqrt(limb_t a);
-
-/* transcendental functions */
-int bf_const_log2(bf_t *T, limb_t prec, bf_flags_t flags);
-int bf_const_pi(bf_t *T, limb_t prec, bf_flags_t flags);
-int bf_exp(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-int bf_log(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-#define BF_POW_JS_QUIRKS (1 << 16) /* (+/-1)^(+/-Inf) = NaN, 1^NaN = NaN */
-int bf_pow(bf_t *r, const bf_t *x, const bf_t *y, limb_t prec, bf_flags_t flags);
-int bf_cos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-int bf_sin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-int bf_tan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-int bf_atan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-int bf_atan2(bf_t *r, const bf_t *y, const bf_t *x,
- limb_t prec, bf_flags_t flags);
-int bf_asin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-int bf_acos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags);
-
-/* decimal floating point */
-
-static inline void bfdec_init(bf_context_t *s, bfdec_t *r)
-{
- bf_init(s, (bf_t *)r);
-}
-static inline void bfdec_delete(bfdec_t *r)
-{
- bf_delete((bf_t *)r);
-}
-
-static inline void bfdec_neg(bfdec_t *r)
-{
- r->sign ^= 1;
-}
-
-static inline int bfdec_is_finite(const bfdec_t *a)
-{
- return (a->expn < BF_EXP_INF);
-}
-
-static inline int bfdec_is_nan(const bfdec_t *a)
-{
- return (a->expn == BF_EXP_NAN);
-}
-
-static inline int bfdec_is_zero(const bfdec_t *a)
-{
- return (a->expn == BF_EXP_ZERO);
-}
-
-static inline void bfdec_memcpy(bfdec_t *r, const bfdec_t *a)
-{
- bf_memcpy((bf_t *)r, (const bf_t *)a);
-}
-
-int bfdec_set_ui(bfdec_t *r, uint64_t a);
-int bfdec_set_si(bfdec_t *r, int64_t a);
-
-static inline void bfdec_set_nan(bfdec_t *r)
-{
- bf_set_nan((bf_t *)r);
-}
-static inline void bfdec_set_zero(bfdec_t *r, int is_neg)
-{
- bf_set_zero((bf_t *)r, is_neg);
-}
-static inline void bfdec_set_inf(bfdec_t *r, int is_neg)
-{
- bf_set_inf((bf_t *)r, is_neg);
-}
-static inline int bfdec_set(bfdec_t *r, const bfdec_t *a)
-{
- return bf_set((bf_t *)r, (bf_t *)a);
-}
-static inline void bfdec_move(bfdec_t *r, bfdec_t *a)
-{
- bf_move((bf_t *)r, (bf_t *)a);
-}
-static inline int bfdec_cmpu(const bfdec_t *a, const bfdec_t *b)
-{
- return bf_cmpu((const bf_t *)a, (const bf_t *)b);
-}
-static inline int bfdec_cmp_full(const bfdec_t *a, const bfdec_t *b)
-{
- return bf_cmp_full((const bf_t *)a, (const bf_t *)b);
-}
-static inline int bfdec_cmp(const bfdec_t *a, const bfdec_t *b)
-{
- return bf_cmp((const bf_t *)a, (const bf_t *)b);
-}
-static inline int bfdec_cmp_eq(const bfdec_t *a, const bfdec_t *b)
-{
- return bfdec_cmp(a, b) == 0;
-}
-static inline int bfdec_cmp_le(const bfdec_t *a, const bfdec_t *b)
-{
- return bfdec_cmp(a, b) <= 0;
-}
-static inline int bfdec_cmp_lt(const bfdec_t *a, const bfdec_t *b)
-{
- return bfdec_cmp(a, b) < 0;
-}
-
-int bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags);
-int bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags);
-int bfdec_add_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
- bf_flags_t flags);
-int bfdec_mul(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags);
-int bfdec_mul_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
- bf_flags_t flags);
-int bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags);
-int bfdec_divrem(bfdec_t *q, bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
- limb_t prec, bf_flags_t flags, int rnd_mode);
-int bfdec_rem(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
- bf_flags_t flags, int rnd_mode);
-int bfdec_rint(bfdec_t *r, int rnd_mode);
-int bfdec_sqrt(bfdec_t *r, const bfdec_t *a, limb_t prec, bf_flags_t flags);
-int bfdec_round(bfdec_t *r, limb_t prec, bf_flags_t flags);
-int bfdec_get_int32(int *pres, const bfdec_t *a);
-int bfdec_pow_ui(bfdec_t *r, const bfdec_t *a, limb_t b);
-
-char *bfdec_ftoa(size_t *plen, const bfdec_t *a, limb_t prec, bf_flags_t flags);
-int bfdec_atof(bfdec_t *r, const char *str, const char **pnext,
- limb_t prec, bf_flags_t flags);
-
-/* the following functions are exported for testing only. */
-extern const limb_t mp_pow_dec[LIMB_DIGITS + 1];
-void bfdec_print_str(const char *str, const bfdec_t *a);
-static inline int bfdec_resize(bfdec_t *r, limb_t len)
-{
- return bf_resize((bf_t *)r, len);
-}
-int bfdec_normalize_and_round(bfdec_t *r, limb_t prec1, bf_flags_t flags);
-
-#endif /* LIBBF_H */
diff --git a/qjs.c b/qjs.c
index 7103e11..f4efebe 100644
--- a/qjs.c
+++ b/qjs.c
@@ -45,11 +45,6 @@
extern const uint8_t qjsc_repl[];
extern const uint32_t qjsc_repl_size;
-#ifdef CONFIG_BIGNUM
-extern const uint8_t qjsc_qjscalc[];
-extern const uint32_t qjsc_qjscalc_size;
-static int bignum_ext;
-#endif
static int eval_buf(JSContext *ctx, const void *buf, int buf_len,
const char *filename, int eval_flags)
@@ -112,14 +107,6 @@ static JSContext *JS_NewCustomContext(JSRuntime *rt)
ctx = JS_NewContext(rt);
if (!ctx)
return NULL;
-#ifdef CONFIG_BIGNUM
- if (bignum_ext) {
- JS_AddIntrinsicBigFloat(ctx);
- JS_AddIntrinsicBigDecimal(ctx);
- JS_AddIntrinsicOperators(ctx);
- JS_EnableBignumExt(ctx, TRUE);
- }
-#endif
/* system modules */
js_init_module_std(ctx, "std");
js_init_module_os(ctx, "os");
@@ -283,10 +270,6 @@ void help(void)
" --script load as ES6 script (default=autodetect)\n"
"-I --include file include an additional file\n"
" --std make 'std' and 'os' available to the loaded script\n"
-#ifdef CONFIG_BIGNUM
- " --bignum enable the bignum extensions (BigFloat, BigDecimal)\n"
- " --qjscalc load the QJSCalc runtime (default if invoked as qjscalc)\n"
-#endif
"-T --trace trace memory allocation\n"
"-d --dump dump the memory usage stats\n"
" --memory-limit n limit the memory usage to 'n' bytes\n"
@@ -313,23 +296,8 @@ int main(int argc, char **argv)
size_t memory_limit = 0;
char *include_list[32];
int i, include_count = 0;
-#ifdef CONFIG_BIGNUM
- int load_jscalc;
-#endif
size_t stack_size = 0;
-#ifdef CONFIG_BIGNUM
- /* load jscalc runtime if invoked as 'qjscalc' */
- {
- const char *p, *exename;
- exename = argv[0];
- p = strrchr(exename, '/');
- if (p)
- exename = p + 1;
- load_jscalc = !strcmp(exename, "qjscalc");
- }
-#endif
-
/* cannot use getopt because we want to pass the command line to
the script */
optind = 1;
@@ -407,16 +375,6 @@ int main(int argc, char **argv)
dump_unhandled_promise_rejection = 1;
continue;
}
-#ifdef CONFIG_BIGNUM
- if (!strcmp(longopt, "bignum")) {
- bignum_ext = 1;
- continue;
- }
- if (!strcmp(longopt, "qjscalc")) {
- load_jscalc = 1;
- continue;
- }
-#endif
if (opt == 'q' || !strcmp(longopt, "quit")) {
empty_run++;
continue;
@@ -446,11 +404,6 @@ int main(int argc, char **argv)
}
}
-#ifdef CONFIG_BIGNUM
- if (load_jscalc)
- bignum_ext = 1;
-#endif
-
if (trace_memory) {
js_trace_malloc_init(&trace_data);
rt = JS_NewRuntime2(&trace_mf, &trace_data);
@@ -482,11 +435,6 @@ int main(int argc, char **argv)
}
if (!empty_run) {
-#ifdef CONFIG_BIGNUM
- if (load_jscalc) {
- js_std_eval_binary(ctx, qjsc_qjscalc, qjsc_qjscalc_size, 0);
- }
-#endif
js_std_add_helpers(ctx, argc - optind, argv + optind);
/* make 'std' and 'os' visible to non module code */
diff --git a/qjsc.c b/qjsc.c
index 46f52a6..7a56a3b 100644
--- a/qjsc.c
+++ b/qjsc.c
@@ -492,9 +492,6 @@ int main(int argc, char **argv)
int module;
OutputTypeEnum output_type;
size_t stack_size;
-#ifdef CONFIG_BIGNUM
- BOOL bignum_ext = FALSE;
-#endif
namelist_t dynamic_module_list;
out_filename = NULL;
@@ -547,13 +544,7 @@ int main(int argc, char **argv)
}
if (i == countof(feature_list))
goto bad_feature;
- } else
-#ifdef CONFIG_BIGNUM
- if (!strcmp(optarg, "bignum")) {
- bignum_ext = TRUE;
- } else
-#endif
- {
+ } else {
bad_feature:
fprintf(stderr, "unsupported feature: %s\n", optarg);
exit(1);
@@ -630,14 +621,6 @@ int main(int argc, char **argv)
rt = JS_NewRuntime();
ctx = JS_NewContext(rt);
-#ifdef CONFIG_BIGNUM
- if (bignum_ext) {
- JS_AddIntrinsicBigFloat(ctx);
- JS_AddIntrinsicBigDecimal(ctx);
- JS_AddIntrinsicOperators(ctx);
- JS_EnableBignumExt(ctx, TRUE);
- }
-#endif
/* loader for ES6 modules */
JS_SetModuleLoaderFunc(rt, NULL, jsc_module_loader, NULL);
@@ -686,15 +669,6 @@ int main(int argc, char **argv)
feature_list[i].init_name);
}
}
-#ifdef CONFIG_BIGNUM
- if (bignum_ext) {
- fprintf(fo,
- " JS_AddIntrinsicBigFloat(ctx);\n"
- " JS_AddIntrinsicBigDecimal(ctx);\n"
- " JS_AddIntrinsicOperators(ctx);\n"
- " JS_EnableBignumExt(ctx, 1);\n");
- }
-#endif
/* add the precompiled modules (XXX: could modify the module
loader instead) */
for(i = 0; i < init_module_list.count; i++) {
diff --git a/qjscalc.js b/qjscalc.js
deleted file mode 100644
index 1400dc0..0000000
--- a/qjscalc.js
+++ /dev/null
@@ -1,2657 +0,0 @@
-/*
- * QuickJS Javascript Calculator
- *
- * Copyright (c) 2017-2020 Fabrice Bellard
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-"use strict";
-"use math";
-
-var Integer, Float, Fraction, Complex, Mod, Polynomial, PolyMod, RationalFunction, Series, Matrix;
-
-(function(global) {
- global.Integer = global.BigInt;
- global.Float = global.BigFloat;
- global.algebraicMode = true;
-
- /* add non enumerable properties */
- function add_props(obj, props) {
- var i, val, prop, tab, desc;
- tab = Reflect.ownKeys(props);
- for(i = 0; i < tab.length; i++) {
- prop = tab[i];
- desc = Object.getOwnPropertyDescriptor(props, prop);
- desc.enumerable = false;
- if ("value" in desc) {
- if (typeof desc.value !== "function") {
- desc.writable = false;
- desc.configurable = false;
- }
- } else {
- /* getter/setter */
- desc.configurable = false;
- }
- Object.defineProperty(obj, prop, desc);
- }
- }
-
- /* same as proto[Symbol.operatorSet] = Operators.create(..op_list)
- but allow shortcuts: left: [], right: [] or both
- */
- function operators_set(proto, ...op_list)
- {
- var new_op_list, i, a, j, b, k, obj, tab;
- var fields = [ "left", "right" ];
- new_op_list = [];
- for(i = 0; i < op_list.length; i++) {
- a = op_list[i];
- if (a.left || a.right) {
- tab = [ a.left, a.right ];
- delete a.left;
- delete a.right;
- for(k = 0; k < 2; k++) {
- obj = tab[k];
- if (obj) {
- if (!Array.isArray(obj)) {
- obj = [ obj ];
- }
- for(j = 0; j < obj.length; j++) {
- b = {};
- Object.assign(b, a);
- b[fields[k]] = obj[j];
- new_op_list.push(b);
- }
- }
- }
- } else {
- new_op_list.push(a);
- }
- }
- proto[Symbol.operatorSet] =
- Operators.create.call(null, ...new_op_list);
- }
-
- /* Integer */
-
- function generic_pow(a, b) {
- var r, is_neg, i;
- if (!Integer.isInteger(b)) {
- return exp(log(a) * b);
- }
- if (Array.isArray(a) && !(a instanceof Polynomial ||
- a instanceof Series)) {
- r = idn(Matrix.check_square(a));
- } else {
- r = 1;
- }
- if (b == 0)
- return r;
- is_neg = false;
- if (b < 0) {
- is_neg = true;
- b = -b;
- }
- r = a;
- for(i = Integer.floorLog2(b) - 1; i >= 0; i--) {
- r *= r;
- if ((b >> i) & 1)
- r *= a;
- }
- if (is_neg) {
- if (typeof r.inverse != "function")
- throw "negative powers are not supported for this type";
- r = r.inverse();
- }
- return r;
- }
-
- var small_primes = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499 ];
-
- function miller_rabin_test(n, t) {
- var d, r, s, i, j, a;
- d = n - 1;
- s = 0;
- while ((d & 1) == 0) {
- d >>= 1;
- s++;
- }
- if (small_primes.length < t)
- t = small_primes.length;
- loop: for(j = 0; j < t; j++) {
- a = small_primes[j];
- r = Integer.pmod(a, d, n);
- if (r == 1 || r == (n - 1))
- continue;
- for(i = 1; i < s; i++) {
- r = (r * r) % n;
- if (r == 1)
- return false;
- if (r == (n - 1))
- continue loop;
- }
- return false; /* n is composite */
- }
- return true; /* n is probably prime with probability (1-0.5^t) */
- }
-
- function fact_rec(a, b) { /* assumes a <= b */
- var i, r;
- if ((b - a) <= 5) {
- r = a;
- for(i = a + 1; i <= b; i++)
- r *= i;
- return r;
- } else {
- /* to avoid a quadratic running time it is better to
- multiply numbers of similar size */
- i = (a + b) >> 1;
- return fact_rec(a, i) * fact_rec(i + 1, b);
- }
- }
-
- /* math mode specific quirk to overload the integer division and power */
- Operators.updateBigIntOperators(
- {
- "/"(a, b) {
- if (algebraicMode) {
- return Fraction.toFraction(a, b);
- } else {
- return Float(a) / Float(b);
- }
- },
- "**"(a, b) {
- if (algebraicMode) {
- return generic_pow(a, b);
- } else {
- return Float(a) ** Float(b);
- }
- }
- });
-
- add_props(Integer, {
- isInteger(a) {
- /* integers are represented either as bigint or as number */
- return typeof a === "bigint" ||
- (typeof a === "number" && Number.isSafeInteger(a));
- },
- gcd(a, b) {
- var r;
- while (b != 0) {
- r = a % b;
- a = b;
- b = r;
- }
- return a;
- },
- fact(n) {
- return n <= 0 ? 1 : fact_rec(1, n);
- },
- /* binomial coefficient */
- comb(n, k) {
- if (k < 0 || k > n)
- return 0;
- if (k > n - k)
- k = n - k;
- if (k == 0)
- return 1;
- return Integer.tdiv(fact_rec(n - k + 1, n), fact_rec(1, k));
- },
- /* inverse of x modulo y */
- invmod(x, y) {
- var q, u, v, a, c, t;
- u = x;
- v = y;
- c = 1;
- a = 0;
- while (u != 0) {
- t = Integer.fdivrem(v, u);
- q = t[0];
- v = u;
- u = t[1];
- t = c;
- c = a - q * c;
- a = t;
- }
- /* v = gcd(x, y) */
- if (v != 1)
- throw RangeError("not invertible");
- return a % y;
- },
- /* return a ^ b modulo m */
- pmod(a, b, m) {
- var r;
- if (b == 0)
- return 1;
- if (b < 0) {
- a = Integer.invmod(a, m);
- b = -b;
- }
- r = 1;
- for(;;) {
- if (b & 1) {
- r = (r * a) % m;
- }
- b >>= 1;
- if (b == 0)
- break;
- a = (a * a) % m;
- }
- return r;
- },
-
- /* return true if n is prime (or probably prime with
- probability 1-0.5^t) */
- isPrime(n, t) {
- var i, d, n1;
- if (!Integer.isInteger(n))
- throw TypeError("invalid type");
- if (n <= 1)
- return false;
- n1 = small_primes.length;
- /* XXX: need Integer.sqrt() */
- for(i = 0; i < n1; i++) {
- d = small_primes[i];
- if (d == n)
- return true;
- if (d > n)
- return false;
- if ((n % d) == 0)
- return false;
- }
- if (n < d * d)
- return true;
- if (typeof t == "undefined")
- t = 64;
- return miller_rabin_test(n, t);
- },
- nextPrime(n) {
- if (!Integer.isInteger(n))
- throw TypeError("invalid type");
- if (n < 1)
- n = 1;
- for(;;) {
- n++;
- if (Integer.isPrime(n))
- return n;
- }
- },
- factor(n) {
- var r, d;
- if (!Integer.isInteger(n))
- throw TypeError("invalid type");
- r = [];
- if (abs(n) <= 1) {
- r.push(n);
- return r;
- }
- if (n < 0) {
- r.push(-1);
- n = -n;
- }
-
- while ((n % 2) == 0) {
- n >>= 1;
- r.push(2);
- }
-
- d = 3;
- while (n != 1) {
- if (Integer.isPrime(n)) {
- r.push(n);
- break;
- }
- /* we are sure there is at least one divisor, so one test */
- for(;;) {
- if ((n % d) == 0)
- break;
- d += 2;
- }
- for(;;) {
- r.push(d);
- n = Integer.tdiv(n, d);
- if ((n % d) != 0)
- break;
- }
- }
- return r;
- },
- });
-
- add_props(Integer.prototype, {
- inverse() {
- return 1 / this;
- },
- norm2() {
- return this * this;
- },
- abs() {
- var v = this;
- if (v < 0)
- v = -v;
- return v;
- },
- conj() {
- return this;
- },
- arg() {
- if (this >= 0)
- return 0;
- else
- return Float.PI;
- },
- exp() {
- if (this == 0)
- return 1;
- else
- return Float.exp(this);
- },
- log() {
- if (this == 1)
- return 0;
- else
- return Float(this).log();
- },
- });
-
- /* Fraction */
-
- Fraction = function Fraction(a, b)
- {
- var d, r, obj;
-
- if (new.target)
- throw TypeError("not a constructor");
- if (a instanceof Fraction)
- return a;
- if (!Integer.isInteger(a))
- throw TypeError("integer expected");
- if (typeof b === "undefined") {
- b = 1;
- } else {
- if (!Integer.isInteger(b))
- throw TypeError("integer expected");
- if (b == 0)
- throw RangeError("division by zero");
- d = Integer.gcd(a, b);
- if (d != 1) {
- a = Integer.tdiv(a, d);
- b = Integer.tdiv(b, d);
- }
-
- /* the fractions are normalized with den > 0 */
- if (b < 0) {
- a = -a;
- b = -b;
- }
- }
- obj = Object.create(Fraction.prototype);
- obj.num = a;
- obj.den = b;
- return obj;
- }
-
- function fraction_add(a, b) {
- a = Fraction(a);
- b = Fraction(b);
- return Fraction.toFraction(a.num * b.den + a.den * b.num, a.den * b.den);
- }
- function fraction_sub(a, b) {
- a = Fraction(a);
- b = Fraction(b);
- return Fraction.toFraction(a.num * b.den - a.den * b.num, a.den * b.den);
- }
- function fraction_mul(a, b) {
- a = Fraction(a);
- b = Fraction(b);
- return Fraction.toFraction(a.num * b.num, a.den * b.den);
- }
- function fraction_div(a, b) {
- a = Fraction(a);
- b = Fraction(b);
- return Fraction.toFraction(a.num * b.den, a.den * b.num);
- }
- function fraction_mod(a, b) {
- var a1 = Fraction(a);
- var b1 = Fraction(b);
- return a - Integer.ediv(a1.num * b1.den, a1.den * b1.num) * b;
- }
- function fraction_eq(a, b) {
- a = Fraction(a);
- b = Fraction(b);
- /* we assume the fractions are normalized */
- return (a.num == b.num && a.den == b.den);
- }
- function fraction_lt(a, b) {
- a = Fraction(a);
- b = Fraction(b);
- return (a.num * b.den < b.num * a.den);
- }
-
- /* operators are needed for fractions */
- function float_add(a, b) {
- return Float(a) + Float(b);
- }
- function float_sub(a, b) {
- return Float(a) - Float(b);
- }
- function float_mul(a, b) {
- return Float(a) * Float(b);
- }
- function float_div(a, b) {
- return Float(a) / Float(b);
- }
- function float_mod(a, b) {
- return Float(a) % Float(b);
- }
- function float_pow(a, b) {
- return Float(a) ** Float(b);
- }
- function float_eq(a, b) {
- /* XXX: may be better to use infinite precision for the comparison */
- return Float(a) === Float(b);
- }
- function float_lt(a, b) {
- a = Float(a);
- b = Float(b);
- /* XXX: may be better to use infinite precision for the comparison */
- if (Float.isNaN(a) || Float.isNaN(b))
- return undefined;
- else
- return a < b;
- }
-
- operators_set(Fraction.prototype,
- {
- "+": fraction_add,
- "-": fraction_sub,
- "*": fraction_mul,
- "/": fraction_div,
- "%": fraction_mod,
- "**": generic_pow,
- "==": fraction_eq,
- "<": fraction_lt,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- return Fraction(-a.num, a.den);
- },
- },
- {
- left: [Number, BigInt],
- right: [Number, BigInt],
- "+": fraction_add,
- "-": fraction_sub,
- "*": fraction_mul,
- "/": fraction_div,
- "%": fraction_mod,
- "**": generic_pow,
- "==": fraction_eq,
- "<": fraction_lt,
- },
- {
- left: Float,
- right: Float,
- "+": float_add,
- "-": float_sub,
- "*": float_mul,
- "/": float_div,
- "%": float_mod,
- "**": float_pow,
- "==": float_eq,
- "<": float_lt,
- });
-
- add_props(Fraction, {
- /* (internal use) simplify 'a' to an integer when possible */
- toFraction(a, b) {
- var r = Fraction(a, b);
- if (algebraicMode && r.den == 1)
- return r.num;
- else
- return r;
- },
- });
-
- add_props(Fraction.prototype, {
- [Symbol.toPrimitive](hint) {
- if (hint === "string") {
- return this.toString();
- } else {
- return Float(this.num) / this.den;
- }
- },
- inverse() {
- return Fraction(this.den, this.num);
- },
- toString() {
- return this.num + "/" + this.den;
- },
- norm2() {
- return this * this;
- },
- abs() {
- if (this.num < 0)
- return -this;
- else
- return this;
- },
- conj() {
- return this;
- },
- arg() {
- if (this.num >= 0)
- return 0;
- else
- return Float.PI;
- },
- exp() {
- return Float.exp(Float(this));
- },
- log() {
- return Float(this).log();
- },
- });
-
- /* Number (Float64) */
-
- add_props(Number.prototype, {
- inverse() {
- return 1 / this;
- },
- norm2() {
- return this * this;
- },
- abs() {
- return Math.abs(this);
- },
- conj() {
- return this;
- },
- arg() {
- if (this >= 0)
- return 0;
- else
- return Float.PI;
- },
- exp() {
- return Float.exp(this);
- },
- log() {
- if (this < 0) {
- return Complex(this).log();
- } else {
- return Float.log(this);
- }
- },
- });
-
- /* Float */
-
- var const_tab = [];
-
- /* we cache the constants for small precisions */
- function get_const(n) {
- var t, c, p;
- t = const_tab[n];
- p = BigFloatEnv.prec;
- if (t && t.prec == p) {
- return t.val;
- } else {
- switch(n) {
- case 0: c = Float.exp(1); break;
- case 1: c = Float.log(10); break;
-// case 2: c = Float.log(2); break;
- case 3: c = 1/Float.log(2); break;
- case 4: c = 1/Float.log(10); break;
-// case 5: c = Float.atan(1) * 4; break;
- case 6: c = Float.sqrt(0.5); break;
- case 7: c = Float.sqrt(2); break;
- }
- if (p <= 1024) {
- const_tab[n] = { prec: p, val: c };
- }
- return c;
- }
- }
-
- add_props(Float, {
- isFloat(a) {
- return typeof a === "number" || typeof a === "bigfloat";
- },
- bestappr(u, b) {
- var num1, num0, den1, den0, u, num, den, n;
-
- if (typeof b === "undefined")
- throw TypeError("second argument expected");
- num1 = 1;
- num0 = 0;
- den1 = 0;
- den0 = 1;
- for(;;) {
- n = Integer(Float.floor(u));
- num = n * num1 + num0;
- den = n * den1 + den0;
- if (den > b)
- break;
- u = 1.0 / (u - n);
- num0 = num1;
- num1 = num;
- den0 = den1;
- den1 = den;
- }
- return Fraction(num1, den1);
- },
- /* similar constants as Math.x */
- get E() { return get_const(0); },
- get LN10() { return get_const(1); },
-// get LN2() { return get_const(2); },
- get LOG2E() { return get_const(3); },
- get LOG10E() { return get_const(4); },
-// get PI() { return get_const(5); },
- get SQRT1_2() { return get_const(6); },
- get SQRT2() { return get_const(7); },
- });
-
- add_props(Float.prototype, {
- inverse() {
- return 1.0 / this;
- },
- norm2() {
- return this * this;
- },
- abs() {
- return Float.abs(this);
- },
- conj() {
- return this;
- },
- arg() {
- if (this >= 0)
- return 0;
- else
- return Float.PI;
- },
- exp() {
- return Float.exp(this);
- },
- log() {
- if (this < 0) {
- return Complex(this).log();
- } else {
- return Float.log(this);
- }
- },
- });
-
- /* Complex */
-
- Complex = function Complex(re, im)
- {
- var obj;
- if (new.target)
- throw TypeError("not a constructor");
- if (re instanceof Complex)
- return re;
- if (typeof im === "undefined") {
- im = 0;
- }
- obj = Object.create(Complex.prototype);
- obj.re = re;
- obj.im = im;
- return obj;
- }
-
-
- function complex_add(a, b) {
- a = Complex(a);
- b = Complex(b);
- return Complex.toComplex(a.re + b.re, a.im + b.im);
- }
- function complex_sub(a, b) {
- a = Complex(a);
- b = Complex(b);
- return Complex.toComplex(a.re - b.re, a.im - b.im);
- }
- function complex_mul(a, b) {
- a = Complex(a);
- b = Complex(b);
- return Complex.toComplex(a.re * b.re - a.im * b.im,
- a.re * b.im + a.im * b.re);
- }
- function complex_div(a, b) {
- a = Complex(a);
- b = Complex(b);
- return a * b.inverse();
- }
- function complex_eq(a, b) {
- a = Complex(a);
- b = Complex(b);
- return a.re == b.re && a.im == b.im;
- }
-
- operators_set(Complex.prototype,
- {
- "+": complex_add,
- "-": complex_sub,
- "*": complex_mul,
- "/": complex_div,
- "**": generic_pow,
- "==": complex_eq,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- return Complex(-a.re, -a.im);
- }
- },
- {
- left: [Number, BigInt, Float, Fraction],
- right: [Number, BigInt, Float, Fraction],
- "+": complex_add,
- "-": complex_sub,
- "*": complex_mul,
- "/": complex_div,
- "**": generic_pow,
- "==": complex_eq,
- });
-
- add_props(Complex, {
- /* simplify to real number when possible */
- toComplex(re, im) {
- if (algebraicMode && im == 0)
- return re;
- else
- return Complex(re, im);
- },
- });
-
- add_props(Complex.prototype, {
- inverse() {
- var c = this.norm2();
- return Complex(this.re / c, -this.im / c);
- },
- toString() {
- var v, s = "", a = this;
- if (a.re != 0)
- s += a.re.toString();
- if (a.im == 1) {
- if (s != "")
- s += "+";
- s += "I";
- } else if (a.im == -1) {
- s += "-I";
- } else {
- v = a.im.toString();
- if (v[0] != "-" && s != "")
- s += "+";
- s += v + "*I";
- }
- return s;
- },
- norm2() {
- return this.re * this.re + this.im * this.im;
- },
- abs() {
- return Float.sqrt(norm2(this));
- },
- conj() {
- return Complex(this.re, -this.im);
- },
- arg() {
- return Float.atan2(this.im, this.re);
- },
- exp() {
- var arg = this.im, r = this.re.exp();
- return Complex(r * cos(arg), r * sin(arg));
- },
- log() {
- return Complex(abs(this).log(), atan2(this.im, this.re));
- },
- });
-
- /* Mod */
-
- Mod = function Mod(a, m) {
- var obj, t;
- if (new.target)
- throw TypeError("not a constructor");
- obj = Object.create(Mod.prototype);
- if (Integer.isInteger(m)) {
- if (m <= 0)
- throw RangeError("the modulo cannot be <= 0");
- if (Integer.isInteger(a)) {
- a %= m;
- } else if (a instanceof Fraction) {
- return Mod(a.num, m) / a.den;
- } else {
- throw TypeError("invalid types");
- }
- } else {
- throw TypeError("invalid types");
- }
- obj.res = a;
- obj.mod = m;
- return obj;
- };
-
- function mod_add(a, b) {
- if (!(a instanceof Mod)) {
- return Mod(a + b.res, b.mod);
- } else if (!(b instanceof Mod)) {
- return Mod(a.res + b, a.mod);
- } else {
- if (a.mod != b.mod)
- throw TypeError("different modulo for binary operator");
- return Mod(a.res + b.res, a.mod);
- }
- }
- function mod_sub(a, b) {
- if (!(a instanceof Mod)) {
- return Mod(a - b.res, b.mod);
- } else if (!(b instanceof Mod)) {
- return Mod(a.res - b, a.mod);
- } else {
- if (a.mod != b.mod)
- throw TypeError("different modulo for binary operator");
- return Mod(a.res - b.res, a.mod);
- }
- }
- function mod_mul(a, b) {
- if (!(a instanceof Mod)) {
- return Mod(a * b.res, b.mod);
- } else if (!(b instanceof Mod)) {
- return Mod(a.res * b, a.mod);
- } else {
- if (a.mod != b.mod)
- throw TypeError("different modulo for binary operator");
- return Mod(a.res * b.res, a.mod);
- }
- }
- function mod_div(a, b) {
- if (!(b instanceof Mod))
- b = Mod(b, a.mod);
- return mod_mul(a, b.inverse());
- }
- function mod_eq(a, b) {
- return (a.mod == b.mod && a.res == b.res);
- }
-
- operators_set(Mod.prototype,
- {
- "+": mod_add,
- "-": mod_sub,
- "*": mod_mul,
- "/": mod_div,
- "**": generic_pow,
- "==": mod_eq,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- return Mod(-a.res, a.mod);
- }
- },
- {
- left: [Number, BigInt, Float, Fraction],
- right: [Number, BigInt, Float, Fraction],
- "+": mod_add,
- "-": mod_sub,
- "*": mod_mul,
- "/": mod_div,
- "**": generic_pow,
- });
-
- add_props(Mod.prototype, {
- inverse() {
- var a = this, m = a.mod;
- if (Integer.isInteger(m)) {
- return Mod(Integer.invmod(a.res, m), m);
- } else {
- throw TypeError("unsupported type");
- }
- },
- toString() {
- return "Mod(" + this.res + "," + this.mod + ")";
- },
- });
-
- /* Polynomial */
-
- function polynomial_is_scalar(a)
- {
- if (typeof a === "number" ||
- typeof a === "bigint" ||
- typeof a === "bigfloat")
- return true;
- if (a instanceof Fraction ||
- a instanceof Complex ||
- a instanceof Mod)
- return true;
- return false;
- }
-
- Polynomial = function Polynomial(a)
- {
- if (new.target)
- throw TypeError("not a constructor");
- if (a instanceof Polynomial) {
- return a;
- } else if (Array.isArray(a)) {
- if (a.length == 0)
- a = [ 0 ];
- Object.setPrototypeOf(a, Polynomial.prototype);
- return a.trim();
- } else if (polynomial_is_scalar(a)) {
- a = [a];
- Object.setPrototypeOf(a, Polynomial.prototype);
- return a;
- } else {
- throw TypeError("invalid type");
- }
- }
-
- function number_need_paren(c)
- {
- return !(Integer.isInteger(c) ||
- Float.isFloat(c) ||
- c instanceof Fraction ||
- (c instanceof Complex && c.re == 0));
- }
-
- /* string for c*X^i */
- function monomial_toString(c, i)
- {
- var str1;
- if (i == 0) {
- str1 = c.toString();
- } else {
- if (c == 1) {
- str1 = "";
- } else if (c == -1) {
- str1 = "-";
- } else {
- if (number_need_paren(c)) {
- str1 = "(" + c + ")";
- } else {
- str1 = String(c);
- }
- str1 += "*";
- }
- str1 += "X";
- if (i != 1) {
- str1 += "^" + i;
- }
- }
- return str1;
- }
-
- /* find one complex root of 'p' starting from z at precision eps using
- at most max_it iterations. Return null if could not find root. */
- function poly_root_laguerre1(p, z, max_it)
- {
- var p1, p2, i, z0, z1, z2, d, t0, t1, d1, d2, e, el, zl;
-
- d = p.deg();
- if (d == 1) {
- /* monomial case */
- return -p[0] / p[1];
- }
- /* trivial zero */
- if (p[0] == 0)
- return 0.0;
-
- p1 = p.deriv();
- p2 = p1.deriv();
- el = 0.0;
- zl = 0.0;
- for(i = 0; i < max_it; i++) {
- z0 = p.apply(z);
- if (z0 == 0)
- return z; /* simple exit case */
-
- /* Ward stopping criteria */
- e = abs(z - zl);
-// print("e", i, e);
- if (i >= 2 && e >= el) {
- if (abs(zl) < 1e-4) {
- if (e < 1e-7)
- return zl;
- } else {
- if (e < abs(zl) * 1e-3)
- return zl;
- }
- }
- el = e;
- zl = z;
-
- z1 = p1.apply(z);
- z2 = p2.apply(z);
- t0 = (d - 1) * z1;
- t0 = t0 * t0;
- t1 = d * (d - 1) * z0 * z2;
- t0 = sqrt(t0 - t1);
- d1 = z1 + t0;
- d2 = z1 - t0;
- if (norm2(d2) > norm2(d1))
- d1 = d2;
- if (d1 == 0)
- return null;
- z = z - d * z0 / d1;
- }
- return null;
- }
-
- function poly_roots(p)
- {
- var d, i, roots, j, z, eps;
- var start_points = [ 0.1, -1.4, 1.7 ];
-
- if (!(p instanceof Polynomial))
- throw TypeError("polynomial expected");
- d = p.deg();
- if (d <= 0)
- return [];
- eps = 2.0 ^ (-BigFloatEnv.prec);
- roots = [];
- for(i = 0; i < d; i++) {
- /* XXX: should select another start point if error */
- for(j = 0; j < 3; j++) {
- z = poly_root_laguerre1(p, start_points[j], 100);
- if (z !== null)
- break;
- }
- if (j == 3)
- throw RangeError("error in root finding algorithm");
- roots[i] = z;
- p = Polynomial.divrem(p, X - z)[0];
- }
- return roots;
- }
-
- add_props(Polynomial.prototype, {
- trim() {
- var a = this, i;
- i = a.length;
- while (i > 1 && a[i - 1] == 0)
- i--;
- a.length = i;
- return a;
- },
- conj() {
- var r, i, n, a;
- a = this;
- n = a.length;
- r = [];
- for(i = 0; i < n; i++)
- r[i] = a[i].conj();
- return Polynomial(r);
- },
- inverse() {
- return RationalFunction(Polynomial([1]), this);
- },
- toString() {
- var i, str, str1, c, a = this;
- if (a.length == 1) {
- return a[0].toString();
- }
- str="";
- for(i = a.length - 1; i >= 0; i--) {
- c = a[i];
- if (c == 0 ||
- (c instanceof Mod) && c.res == 0)
- continue;
- str1 = monomial_toString(c, i);
- if (str1[0] != "-") {
- if (str != "")
- str += "+";
- }
- str += str1;
- }
- return str;
- },
- deg() {
- if (this.length == 1 && this[0] == 0)
- return -Infinity;
- else
- return this.length - 1;
- },
- apply(b) {
- var i, n, r, a = this;
- n = a.length - 1;
- r = a[n];
- while (n > 0) {
- n--;
- r = r * b + a[n];
- }
- return r;
- },
- deriv() {
- var a = this, n, r, i;
- n = a.length;
- if (n == 1) {
- return Polynomial(0);
- } else {
- r = [];
- for(i = 1; i < n; i++) {
- r[i - 1] = i * a[i];
- }
- return Polynomial(r);
- }
- },
- integ() {
- var a = this, n, r, i;
- n = a.length;
- r = [0];
- for(i = 0; i < n; i++) {
- r[i + 1] = a[i] / (i + 1);
- }
- return Polynomial(r);
- },
- norm2() {
- var a = this, n, r, i;
- n = a.length;
- r = 0;
- for(i = 0; i < n; i++) {
- r += a[i].norm2();
- }
- return r;
- },
- });
-
-
- function polynomial_add(a, b) {
- var tmp, r, i, n1, n2;
- a = Polynomial(a);
- b = Polynomial(b);
- if (a.length < b.length) {
- tmp = a;
- a = b;
- b = tmp;
- }
- n1 = b.length;
- n2 = a.length;
- r = [];
- for(i = 0; i < n1; i++)
- r[i] = a[i] + b[i];
- for(i = n1; i < n2; i++)
- r[i] = a[i];
- return Polynomial(r);
- }
- function polynomial_sub(a, b) {
- return polynomial_add(a, -b);
- }
- function polynomial_mul(a, b) {
- var i, j, n1, n2, n, r;
- a = Polynomial(a);
- b = Polynomial(b);
- n1 = a.length;
- n2 = b.length;
- n = n1 + n2 - 1;
- r = [];
- for(i = 0; i < n; i++)
- r[i] = 0;
- for(i = 0; i < n1; i++) {
- for(j = 0; j < n2; j++) {
- r[i + j] += a[i] * b[j];
- }
- }
- return Polynomial(r);
- }
- function polynomial_div_scalar(a, b) {
- return a * (1 / b);
- }
- function polynomial_div(a, b)
- {
- return RationalFunction(Polynomial(a),
- Polynomial(b));
- }
- function polynomial_mod(a, b) {
- return Polynomial.divrem(a, b)[1];
- }
- function polynomial_eq(a, b) {
- var n, i;
- n = a.length;
- if (n != b.length)
- return false;
- for(i = 0; i < n; i++) {
- if (a[i] != b[i])
- return false;
- }
- return true;
- }
-
- operators_set(Polynomial.prototype,
- {
- "+": polynomial_add,
- "-": polynomial_sub,
- "*": polynomial_mul,
- "/": polynomial_div,
- "**": generic_pow,
- "==": polynomial_eq,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- var r, i, n, a;
- n = a.length;
- r = [];
- for(i = 0; i < n; i++)
- r[i] = -a[i];
- return Polynomial(r);
- },
- },
- {
- left: [Number, BigInt, Float, Fraction, Complex, Mod],
- "+": polynomial_add,
- "-": polynomial_sub,
- "*": polynomial_mul,
- "/": polynomial_div,
- "**": generic_pow, /* XXX: only for integer */
- },
- {
- right: [Number, BigInt, Float, Fraction, Complex, Mod],
- "+": polynomial_add,
- "-": polynomial_sub,
- "*": polynomial_mul,
- "/": polynomial_div_scalar,
- "**": generic_pow, /* XXX: only for integer */
- });
-
- add_props(Polynomial, {
- divrem(a, b) {
- var n1, n2, i, j, q, r, n, c;
- if (b.deg() < 0)
- throw RangeError("division by zero");
- n1 = a.length;
- n2 = b.length;
- if (n1 < n2)
- return [Polynomial([0]), a];
- r = Array.prototype.dup.call(a);
- q = [];
- n2--;
- n = n1 - n2;
- for(i = 0; i < n; i++)
- q[i] = 0;
- for(i = n - 1; i >= 0; i--) {
- c = r[i + n2];
- if (c != 0) {
- c = c / b[n2];
- r[i + n2] = 0;
- for(j = 0; j < n2; j++) {
- r[i + j] -= b[j] * c;
- }
- q[i] = c;
- }
- }
- return [Polynomial(q), Polynomial(r)];
- },
- gcd(a, b) {
- var t;
- while (b.deg() >= 0) {
- t = Polynomial.divrem(a, b);
- a = b;
- b = t[1];
- }
- /* convert to monic form */
- return a / a[a.length - 1];
- },
- invmod(x, y) {
- var q, u, v, a, c, t;
- u = x;
- v = y;
- c = Polynomial([1]);
- a = Polynomial([0]);
- while (u.deg() >= 0) {
- t = Polynomial.divrem(v, u);
- q = t[0];
- v = u;
- u = t[1];
- t = c;
- c = a - q * c;
- a = t;
- }
- /* v = gcd(x, y) */
- if (v.deg() > 0)
- throw RangeError("not invertible");
- return Polynomial.divrem(a, y)[1];
- },
- roots(p) {
- return poly_roots(p);
- }
- });
-
- /* Polynomial Modulo Q */
-
- PolyMod = function PolyMod(a, m) {
- var obj, t;
- if (new.target)
- throw TypeError("not a constructor");
- obj = Object.create(PolyMod.prototype);
- if (m instanceof Polynomial) {
- if (m.deg() <= 0)
- throw RangeError("the modulo cannot have a degree <= 0");
- if (a instanceof RationalFunction) {
- return PolyMod(a.num, m) / a.den;
- } else {
- a = Polynomial(a);
- t = Polynomial.divrem(a, m);
- a = t[1];
- }
- } else {
- throw TypeError("invalid types");
- }
- obj.res = a;
- obj.mod = m;
- return obj;
- };
-
- function polymod_add(a, b) {
- if (!(a instanceof PolyMod)) {
- return PolyMod(a + b.res, b.mod);
- } else if (!(b instanceof PolyMod)) {
- return PolyMod(a.res + b, a.mod);
- } else {
- if (a.mod != b.mod)
- throw TypeError("different modulo for binary operator");
- return PolyMod(a.res + b.res, a.mod);
- }
- }
- function polymod_sub(a, b) {
- return polymod_add(a, -b);
- }
- function polymod_mul(a, b) {
- if (!(a instanceof PolyMod)) {
- return PolyMod(a * b.res, b.mod);
- } else if (!(b instanceof PolyMod)) {
- return PolyMod(a.res * b, a.mod);
- } else {
- if (a.mod != b.mod)
- throw TypeError("different modulo for binary operator");
- return PolyMod(a.res * b.res, a.mod);
- }
- }
- function polymod_div(a, b) {
- if (!(b instanceof PolyMod))
- b = PolyMod(b, a.mod);
- return polymod_mul(a, b.inverse());
- }
- function polymod_eq(a, b) {
- return (a.mod == b.mod && a.res == b.res);
- }
-
- operators_set(PolyMod.prototype,
- {
- "+": polymod_add,
- "-": polymod_sub,
- "*": polymod_mul,
- "/": polymod_div,
- "**": generic_pow,
- "==": polymod_eq,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- return PolyMod(-a.res, a.mod);
- },
- },
- {
- left: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial],
- right: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial],
- "+": polymod_add,
- "-": polymod_sub,
- "*": polymod_mul,
- "/": polymod_div,
- "**": generic_pow, /* XXX: only for integer */
- });
-
- add_props(PolyMod.prototype, {
- inverse() {
- var a = this, m = a.mod;
- if (m instanceof Polynomial) {
- return PolyMod(Polynomial.invmod(a.res, m), m);
- } else {
- throw TypeError("unsupported type");
- }
- },
- toString() {
- return "PolyMod(" + this.res + "," + this.mod + ")";
- },
- });
-
- /* Rational function */
-
- RationalFunction = function RationalFunction(a, b)
- {
- var t, r, d, obj;
- if (new.target)
- throw TypeError("not a constructor");
- if (!(a instanceof Polynomial) ||
- !(b instanceof Polynomial))
- throw TypeError("polynomial expected");
- t = Polynomial.divrem(a, b);
- r = t[1];
- if (r.deg() < 0)
- return t[0]; /* no need for a fraction */
- d = Polynomial.gcd(b, r);
- if (d.deg() > 0) {
- a = Polynomial.divrem(a, d)[0];
- b = Polynomial.divrem(b, d)[0];
- }
- obj = Object.create(RationalFunction.prototype);
- obj.num = a;
- obj.den = b;
- return obj;
- }
-
- add_props(RationalFunction.prototype, {
- inverse() {
- return RationalFunction(this.den, this.num);
- },
- conj() {
- return RationalFunction(this.num.conj(), this.den.conj());
- },
- toString() {
- var str;
- if (this.num.deg() <= 0 &&
- !number_need_paren(this.num[0]))
- str = this.num.toString();
- else
- str = "(" + this.num.toString() + ")";
- str += "/(" + this.den.toString() + ")"
- return str;
- },
- apply(b) {
- return this.num.apply(b) / this.den.apply(b);
- },
- deriv() {
- var n = this.num, d = this.den;
- return RationalFunction(n.deriv() * d - n * d.deriv(), d * d);
- },
- });
-
- function ratfunc_add(a, b) {
- a = RationalFunction.toRationalFunction(a);
- b = RationalFunction.toRationalFunction(b);
- return RationalFunction(a.num * b.den + a.den * b.num, a.den * b.den);
- }
- function ratfunc_sub(a, b) {
- a = RationalFunction.toRationalFunction(a);
- b = RationalFunction.toRationalFunction(b);
- return RationalFunction(a.num * b.den - a.den * b.num, a.den * b.den);
- }
- function ratfunc_mul(a, b) {
- a = RationalFunction.toRationalFunction(a);
- b = RationalFunction.toRationalFunction(b);
- return RationalFunction(a.num * b.num, a.den * b.den);
- }
- function ratfunc_div(a, b) {
- a = RationalFunction.toRationalFunction(a);
- b = RationalFunction.toRationalFunction(b);
- return RationalFunction(a.num * b.den, a.den * b.num);
- }
- function ratfunc_eq(a, b) {
- a = RationalFunction.toRationalFunction(a);
- b = RationalFunction.toRationalFunction(b);
- /* we assume the fractions are normalized */
- return (a.num == b.num && a.den == b.den);
- }
-
- operators_set(RationalFunction.prototype,
- {
- "+": ratfunc_add,
- "-": ratfunc_sub,
- "*": ratfunc_mul,
- "/": ratfunc_div,
- "**": generic_pow,
- "==": ratfunc_eq,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- return RationalFunction(-this.num, this.den);
- },
- },
- {
- left: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial],
- right: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial],
- "+": ratfunc_add,
- "-": ratfunc_sub,
- "*": ratfunc_mul,
- "/": ratfunc_div,
- "**": generic_pow, /* should only be used with integers */
- });
-
- add_props(RationalFunction, {
- /* This function always return a RationalFunction object even
- if it could simplified to a polynomial, so it is not
- equivalent to RationalFunction(a) */
- toRationalFunction(a) {
- var obj;
- if (a instanceof RationalFunction) {
- return a;
- } else {
- obj = Object.create(RationalFunction.prototype);
- obj.num = Polynomial(a);
- obj.den = Polynomial(1);
- return obj;
- }
- },
- });
-
- /* Power series */
-
- /* 'a' is an array */
- function get_emin(a) {
- var i, n;
- n = a.length;
- for(i = 0; i < n; i++) {
- if (a[i] != 0)
- return i;
- }
- return n;
- };
-
- function series_is_scalar_or_polynomial(a)
- {
- return polynomial_is_scalar(a) ||
- (a instanceof Polynomial);
- }
-
- /* n is the maximum number of terms if 'a' is not a serie */
- Series = function Series(a, n) {
- var emin, r, i;
-
- if (a instanceof Series) {
- return a;
- } else if (series_is_scalar_or_polynomial(a)) {
- if (n <= 0) {
- /* XXX: should still use the polynomial degree */
- return Series.zero(0, 0);
- } else {
- a = Polynomial(a);
- emin = get_emin(a);
- r = Series.zero(n, emin);
- n = Math.min(a.length - emin, n);
- for(i = 0; i < n; i++)
- r[i] = a[i + emin];
- return r;
- }
- } else if (a instanceof RationalFunction) {
- return Series(a.num, n) / a.den;
- } else {
- throw TypeError("invalid type");
- }
- };
-
- function series_add(v1, v2) {
- var tmp, d, emin, n, r, i, j, v2_emin, c1, c2;
- if (!(v1 instanceof Series)) {
- tmp = v1;
- v1 = v2;
- v2 = tmp;
- }
- d = v1.emin + v1.length;
- if (series_is_scalar_or_polynomial(v2)) {
- v2 = Polynomial(v2);
- if (d <= 0)
- return v1;
- v2_emin = 0;
- } else if (v2 instanceof RationalFunction) {
- /* compute the emin of the rational fonction */
- i = get_emin(v2.num) - get_emin(v2.den);
- if (d <= i)
- return v1;
- /* compute the serie with the required terms */
- v2 = Series(v2, d - i);
- v2_emin = v2.emin;
- } else {
- v2_emin = v2.emin;
- d = Math.min(d, v2_emin + v2.length);
- }
- emin = Math.min(v1.emin, v2_emin);
- n = d - emin;
- r = Series.zero(n, emin);
- /* XXX: slow */
- for(i = emin; i < d; i++) {
- j = i - v1.emin;
- if (j >= 0 && j < v1.length)
- c1 = v1[j];
- else
- c1 = 0;
- j = i - v2_emin;
- if (j >= 0 && j < v2.length)
- c2 = v2[j];
- else
- c2 = 0;
- r[i - emin] = c1 + c2;
- }
- return r.trim();
- }
- function series_sub(a, b) {
- return series_add(a, -b);
- }
- function series_mul(v1, v2) {
- var n, i, j, r, n, emin, n1, n2, k;
- if (!(v1 instanceof Series))
- v1 = Series(v1, v2.length);
- else if (!(v2 instanceof Series))
- v2 = Series(v2, v1.length);
- emin = v1.emin + v2.emin;
- n = Math.min(v1.length, v2.length);
- n1 = v1.length;
- n2 = v2.length;
- r = Series.zero(n, emin);
- for(i = 0; i < n1; i++) {
- k = Math.min(n2, n - i);
- for(j = 0; j < k; j++) {
- r[i + j] += v1[i] * v2[j];
- }
- }
- return r.trim();
- }
- function series_div(v1, v2) {
- if (!(v2 instanceof Series))
- v2 = Series(v2, v1.length);
- return series_mul(v1, v2.inverse());
- }
- function series_pow(a, b) {
- if (Integer.isInteger(b)) {
- return generic_pow(a, b);
- } else {
- if (!(a instanceof Series))
- a = Series(a, b.length);
- return exp(log(a) * b);
- }
- }
- function series_eq(a, b) {
- var n, i;
- if (a.emin != b.emin)
- return false;
- n = a.length;
- if (n != b.length)
- return false;
- for(i = 0; i < n; i++) {
- if (a[i] != b[i])
- return false;
- }
- return true;
- }
-
- operators_set(Series.prototype,
- {
- "+": series_add,
- "-": series_sub,
- "*": series_mul,
- "/": series_div,
- "**": series_pow,
- "==": series_eq,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- var obj, n, i;
- n = a.length;
- obj = Series.zero(a.length, a.emin);
- for(i = 0; i < n; i++) {
- obj[i] = -a[i];
- }
- return obj;
- },
- },
- {
- left: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial],
- right: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial],
- "+": series_add,
- "-": series_sub,
- "*": series_mul,
- "/": series_div,
- "**": series_pow,
- });
-
- add_props(Series.prototype, {
- conj() {
- var obj, n, i;
- n = this.length;
- obj = Series.zero(this.length, this.emin);
- for(i = 0; i < n; i++) {
- obj[i] = this[i].conj();
- }
- return obj;
- },
- inverse() {
- var r, n, i, j, sum, v1 = this;
- n = v1.length;
- if (n == 0)
- throw RangeError("division by zero");
- r = Series.zero(n, -v1.emin);
- r[0] = 1 / v1[0];
- for(i = 1; i < n; i++) {
- sum = 0;
- for(j = 1; j <= i; j++) {
- sum += v1[j] * r[i - j];
- }
- r[i] = -sum * r[0];
- }
- return r;
- },
- /* remove leading zero terms */
- trim() {
- var i, j, n, r, v1 = this;
- n = v1.length;
- i = 0;
- while (i < n && v1[i] == 0)
- i++;
- if (i == 0)
- return v1;
- for(j = i; j < n; j++)
- v1[j - i] = v1[j];
- v1.length = n - i;
- v1.__proto__.emin += i;
- return v1;
- },
- toString() {
- var i, j, str, str1, c, a = this, emin, n;
- str="";
- emin = this.emin;
- n = this.length;
- for(j = 0; j < n; j++) {
- i = j + emin;
- c = a[j];
- if (c != 0) {
- str1 = monomial_toString(c, i);
- if (str1[0] != "-") {
- if (str != "")
- str += "+";
- }
- str += str1;
- }
- }
- if (str != "")
- str += "+";
- str += "O(" + monomial_toString(1, n + emin) + ")";
- return str;
- },
- apply(b) {
- var i, n, r, a = this;
- n = a.length;
- if (n == 0)
- return 0;
- r = a[--n];
- while (n > 0) {
- n--;
- r = r * b + a[n];
- }
- if (a.emin != 0)
- r *= b ^ a.emin;
- return r;
- },
- deriv() {
- var a = this, n = a.length, emin = a.emin, r, i, j;
- if (n == 0 && emin == 0) {
- return Series.zero(0, 0);
- } else {
- r = Series.zero(n, emin - 1);
- for(i = 0; i < n; i++) {
- j = emin + i;
- if (j == 0)
- r[i] = 0;
- else
- r[i] = j * a[i];
- }
- return r.trim();
- }
- },
- integ() {
- var a = this, n = a.length, emin = a.emin, i, j, r;
- r = Series.zero(n, emin + 1);
- for(i = 0; i < n; i++) {
- j = emin + i;
- if (j == -1) {
- if (a[i] != 0)
- throw RangeError("cannot represent integ(1/X)");
- } else {
- r[i] = a[i] / (j + 1);
- }
- }
- return r.trim();
- },
- exp() {
- var c, i, r, n, a = this;
- if (a.emin < 0)
- throw RangeError("negative exponent in exp");
- n = a.emin + a.length;
- if (a.emin > 0 || a[0] == 0) {
- c = 1;
- } else {
- c = global.exp(a[0]);
- a -= a[0];
- }
- r = Series.zero(n, 0);
- for(i = 0; i < n; i++) {
- r[i] = c / fact(i);
- }
- return r.apply(a);
- },
- log() {
- var a = this, r;
- if (a.emin != 0)
- throw RangeError("log argument must have a non zero constant term");
- r = integ(deriv(a) / a);
- /* add the constant term */
- r += global.log(a[0]);
- return r;
- },
- });
-
- add_props(Series, {
- /* new series of length n and first exponent emin */
- zero(n, emin) {
- var r, i, obj;
-
- r = [];
- for(i = 0; i < n; i++)
- r[i] = 0;
- /* we return an array and store emin in its prototype */
- obj = Object.create(Series.prototype);
- obj.emin = emin;
- Object.setPrototypeOf(r, obj);
- return r;
- },
- O(a) {
- function ErrorO() {
- return TypeError("invalid O() argument");
- }
- var n;
- if (series_is_scalar_or_polynomial(a)) {
- a = Polynomial(a);
- n = a.deg();
- if (n < 0)
- throw ErrorO();
- } else if (a instanceof RationalFunction) {
- if (a.num.deg() != 0)
- throw ErrorO();
- n = a.den.deg();
- if (n < 0)
- throw ErrorO();
- n = -n;
- } else
- throw ErrorO();
- return Series.zero(0, n);
- },
- });
-
- /* Array (Matrix) */
-
- Matrix = function Matrix(h, w) {
- var i, j, r, rl;
- if (typeof w === "undefined")
- w = h;
- r = [];
- for(i = 0; i < h; i++) {
- rl = [];
- for(j = 0; j < w; j++)
- rl[j] = 0;
- r[i] = rl;
- }
- return r;
- };
-
- add_props(Matrix, {
- idn(n) {
- var r, i;
- r = Matrix(n, n);
- for(i = 0; i < n; i++)
- r[i][i] = 1;
- return r;
- },
- diag(a) {
- var r, i, n;
- n = a.length;
- r = Matrix(n, n);
- for(i = 0; i < n; i++)
- r[i][i] = a[i];
- return r;
- },
- hilbert(n) {
- var i, j, r;
- r = Matrix(n);
- for(i = 0; i < n; i++) {
- for(j = 0; j < n; j++) {
- r[i][j] = 1 / (1 + i + j);
- }
- }
- return r;
- },
- trans(a) {
- var h, w, r, i, j;
- if (!Array.isArray(a))
- throw TypeError("matrix expected");
- h = a.length;
- if (!Array.isArray(a[0])) {
- w = 1;
- r = Matrix(w, h);
- for(i = 0; i < h; i++) {
- r[0][i] = a[i];
- }
- } else {
- w = a[0].length;
- r = Matrix(w, h);
- for(i = 0; i < h; i++) {
- for(j = 0; j < w; j++) {
- r[j][i] = a[i][j];
- }
- }
- }
- return r;
- },
- check_square(a) {
- var a, n;
- if (!Array.isArray(a))
- throw TypeError("array expected");
- n = a.length;
- if (!Array.isArray(a[0]) || n != a[0].length)
- throw TypeError("square matrix expected");
- return n;
- },
- trace(a) {
- var n, r, i;
- n = Matrix.check_square(a);
- r = a[0][0];
- for(i = 1; i < n; i++) {
- r += a[i][i];
- }
- return r;
- },
- charpoly(a) {
- var n, p, c, i, j, coef;
- n = Matrix.check_square(a);
- p = [];
- for(i = 0; i < n + 1; i++)
- p[i] = 0;
- p[n] = 1;
- c = Matrix.idn(n);
- for(i = 0; i < n; i++) {
- c = c * a;
- coef = -trace(c) / (i + 1);
- p[n - i - 1] = coef;
- for(j = 0; j < n; j++)
- c[j][j] += coef;
- }
- return Polynomial(p);
- },
- eigenvals(a) {
- return Polynomial.roots(Matrix.charpoly(a));
- },
- det(a) {
- var n, i, j, k, s, src, v, c;
-
- n = Matrix.check_square(a);
- s = 1;
- src = a.dup();
- for(i=0;i<n;i++) {
- for(j = i; j < n; j++) {
- if (src[j][i] != 0)
- break;
- }
- if (j == n)
- return 0;
- if (j != i) {
- for(k = 0;k < n; k++) {
- v = src[j][k];
- src[j][k] = src[i][k];
- src[i][k] = v;
- }
- s = -s;
- }
- c = src[i][i].inverse();
- for(j = i + 1; j < n; j++) {
- v = c * src[j][i];
- for(k = 0;k < n; k++) {
- src[j][k] -= src[i][k] * v;
- }
- }
- }
- c = s;
- for(i=0;i<n;i++)
- c *= src[i][i];
- return c;
- },
- inverse(a) {
- var n, dst, src, i, j, k, n2, r, c, v;
- n = Matrix.check_square(a);
- src = a.dup();
- dst = Matrix.idn(n);
- for(i=0;i<n;i++) {
- for(j = i; j < n; j++) {
- if (src[j][i] != 0)
- break;
- }
- if (j == n)
- throw RangeError("matrix is not invertible");
- if (j != i) {
- /* swap lines in src and dst */
- v = src[j];
- src[j] = src[i];
- src[i] = v;
- v = dst[j];
- dst[j] = dst[i];
- dst[i] = v;
- }
-
- c = src[i][i].inverse();
- for(k = 0; k < n; k++) {
- src[i][k] *= c;
- dst[i][k] *= c;
- }
-
- for(j = 0; j < n; j++) {
- if (j != i) {
- c = src[j][i];
- for(k = i; k < n; k++) {
- src[j][k] -= src[i][k] * c;
- }
- for(k = 0; k < n; k++) {
- dst[j][k] -= dst[i][k] * c;
- }
- }
- }
- }
- return dst;
- },
- rank(a) {
- var src, i, j, k, w, h, l, c;
-
- if (!Array.isArray(a) ||
- !Array.isArray(a[0]))
- throw TypeError("matrix expected");
- h = a.length;
- w = a[0].length;
- src = a.dup();
- l = 0;
- for(i=0;i<w;i++) {
- for(j = l; j < h; j++) {
- if (src[j][i] != 0)
- break;
- }
- if (j == h)
- continue;
- if (j != l) {
- /* swap lines */
- for(k = 0; k < w; k++) {
- v = src[j][k];
- src[j][k] = src[l][k];
- src[l][k] = v;
- }
- }
-
- c = src[l][i].inverse();
- for(k = 0; k < w; k++) {
- src[l][k] *= c;
- }
-
- for(j = l + 1; j < h; j++) {
- c = src[j][i];
- for(k = i; k < w; k++) {
- src[j][k] -= src[l][k] * c;
- }
- }
- l++;
- }
- return l;
- },
- ker(a) {
- var src, i, j, k, w, h, l, m, r, im_cols, ker_dim, c;
-
- if (!Array.isArray(a) ||
- !Array.isArray(a[0]))
- throw TypeError("matrix expected");
- h = a.length;
- w = a[0].length;
- src = a.dup();
- im_cols = [];
- l = 0;
- for(i=0;i<w;i++) {
- im_cols[i] = false;
- for(j = l; j < h; j++) {
- if (src[j][i] != 0)
- break;
- }
- if (j == h)
- continue;
- im_cols[i] = true;
- if (j != l) {
- /* swap lines */
- for(k = 0; k < w; k++) {
- v = src[j][k];
- src[j][k] = src[l][k];
- src[l][k] = v;
- }
- }
-
- c = src[l][i].inverse();
- for(k = 0; k < w; k++) {
- src[l][k] *= c;
- }
-
- for(j = 0; j < h; j++) {
- if (j != l) {
- c = src[j][i];
- for(k = i; k < w; k++) {
- src[j][k] -= src[l][k] * c;
- }
- }
- }
- l++;
- // log_str("m=" + cval_toString(v1) + "\n");
- }
- // log_str("im cols="+im_cols+"\n");
-
- /* build the kernel vectors */
- ker_dim = w - l;
- r = Matrix(w, ker_dim);
- k = 0;
- for(i = 0; i < w; i++) {
- if (!im_cols[i]) {
- /* select this column from the matrix */
- l = 0;
- m = 0;
- for(j = 0; j < w; j++) {
- if (im_cols[j]) {
- r[j][k] = -src[m][i];
- m++;
- } else {
- if (l == k) {
- r[j][k] = 1;
- } else {
- r[j][k] = 0;
- }
- l++;
- }
- }
- k++;
- }
- }
- return r;
- },
- dp(a, b) {
- var i, n, r;
- n = a.length;
- if (n != b.length)
- throw TypeError("incompatible array length");
- /* XXX: could do complex product */
- r = 0;
- for(i = 0; i < n; i++) {
- r += a[i] * b[i];
- }
- return r;
- },
- /* cross product */
- cp(v1, v2) {
- var r;
- if (v1.length != 3 || v2.length != 3)
- throw TypeError("vectors must have 3 elements");
- r = [];
- r[0] = v1[1] * v2[2] - v1[2] * v2[1];
- r[1] = v1[2] * v2[0] - v1[0] * v2[2];
- r[2] = v1[0] * v2[1] - v1[1] * v2[0];
- return r;
- },
- });
-
- function array_add(a, b) {
- var r, i, n;
- n = a.length;
- if (n != b.length)
- throw TypeError("incompatible array size");
- r = [];
- for(i = 0; i < n; i++)
- r[i] = a[i] + b[i];
- return r;
- }
- function array_sub(a, b) {
- var r, i, n;
- n = a.length;
- if (n != b.length)
- throw TypeError("incompatible array size");
- r = [];
- for(i = 0; i < n; i++)
- r[i] = a[i] - b[i];
- return r;
- }
- function array_scalar_mul(a, b) {
- var r, i, n;
- n = a.length;
- r = [];
- for(i = 0; i < n; i++)
- r[i] = a[i] * b;
- return r;
- }
- function array_mul(a, b) {
- var h, w, l, i, j, k, r, rl, sum, a_mat, b_mat;
- h = a.length;
- a_mat = Array.isArray(a[0]);
- if (a_mat) {
- l = a[0].length;
- } else {
- l = 1;
- }
- if (l != b.length)
- throw RangeError("incompatible matrix size");
- b_mat = Array.isArray(b[0]);
- if (b_mat)
- w = b[0].length;
- else
- w = 1;
- r = [];
- if (a_mat && b_mat) {
- for(i = 0; i < h; i++) {
- rl = [];
- for(j = 0; j < w; j++) {
- sum = 0;
- for(k = 0; k < l; k++) {
- sum += a[i][k] * b[k][j];
- }
- rl[j] = sum;
- }
- r[i] = rl;
- }
- } else if (a_mat && !b_mat) {
- for(i = 0; i < h; i++) {
- sum = 0;
- for(k = 0; k < l; k++) {
- sum += a[i][k] * b[k];
- }
- r[i] = sum;
- }
- } else if (!a_mat && b_mat) {
- for(i = 0; i < h; i++) {
- rl = [];
- for(j = 0; j < w; j++) {
- rl[j] = a[i] * b[0][j];
- }
- r[i] = rl;
- }
- } else {
- for(i = 0; i < h; i++) {
- r[i] = a[i] * b[0];
- }
- }
- return r;
- }
- function array_div(a, b) {
- return array_mul(a, b.inverse());
- }
- function array_element_wise_inverse(a) {
- var r, i, n;
- n = a.length;
- r = [];
- for(i = 0; i < n; i++)
- r[i] = a[i].inverse();
- return r;
- }
- function array_eq(a, b) {
- var n, i;
- n = a.length;
- if (n != b.length)
- return false;
- for(i = 0; i < n; i++) {
- if (a[i] != b[i])
- return false;
- }
- return true;
- }
-
- operators_set(Array.prototype,
- {
- "+": array_add,
- "-": array_sub,
- "*": array_mul,
- "/": array_div,
- "==": array_eq,
- "pos"(a) {
- return a;
- },
- "neg"(a) {
- var i, n, r;
- n = a.length;
- r = [];
- for(i = 0; i < n; i++)
- r[i] = -a[i];
- return r;
- }
- },
- {
- right: [Number, BigInt, Float, Fraction, Complex, Mod,
- Polynomial, PolyMod, RationalFunction, Series],
- "*": array_scalar_mul,
- "/"(a, b) { return a * b.inverse(); },
- "**": generic_pow, /* XXX: only for integer */
- },
- {
- left: [Number, BigInt, Float, Fraction, Complex, Mod,
- Polynomial, PolyMod, RationalFunction, Series],
- "*"(a, b) { return array_scalar_mul(b, a); },
- "/"(a, b) { return a * array_element_wise_inverse(b); },
- });
-
- add_props(Array.prototype, {
- conj() {
- var i, n, r;
- n = this.length;
- r = [];
- for(i = 0; i < n; i++)
- r[i] = this[i].conj();
- return r;
- },
- dup() {
- var r, i, n, el, a = this;
- r = [];
- n = a.length;
- for(i = 0; i < n; i++) {
- el = a[i];
- if (Array.isArray(el))
- el = el.dup();
- r[i] = el;
- }
- return r;
- },
- inverse() {
- return Matrix.inverse(this);
- },
- norm2: Polynomial.prototype.norm2,
- });
-
-})(this);
-
-/* global definitions */
-var I = Complex(0, 1);
-var X = Polynomial([0, 1]);
-var O = Series.O;
-
-Object.defineProperty(this, "PI", { get: function () { return Float.PI } });
-
-/* put frequently used functions in the global context */
-var gcd = Integer.gcd;
-var fact = Integer.fact;
-var comb = Integer.comb;
-var pmod = Integer.pmod;
-var invmod = Integer.invmod;
-var factor = Integer.factor;
-var isprime = Integer.isPrime;
-var nextprime = Integer.nextPrime;
-
-function deriv(a)
-{
- return a.deriv();
-}
-
-function integ(a)
-{
- return a.integ();
-}
-
-function norm2(a)
-{
- return a.norm2();
-}
-
-function abs(a)
-{
- return a.abs();
-}
-
-function conj(a)
-{
- return a.conj();
-}
-
-function arg(a)
-{
- return a.arg();
-}
-
-function inverse(a)
-{
- return a.inverse();
-}
-
-function trunc(a)
-{
- if (Integer.isInteger(a)) {
- return a;
- } else if (a instanceof Fraction) {
- return Integer.tdiv(a.num, a.den);
- } else if (a instanceof Polynomial) {
- return a;
- } else if (a instanceof RationalFunction) {
- return Polynomial.divrem(a.num, a.den)[0];
- } else {
- return Float.ceil(a);
- }
-}
-
-function floor(a)
-{
- if (Integer.isInteger(a)) {
- return a;
- } else if (a instanceof Fraction) {
- return Integer.fdiv(a.num, a.den);
- } else {
- return Float.floor(a);
- }
-}
-
-function ceil(a)
-{
- if (Integer.isInteger(a)) {
- return a;
- } else if (a instanceof Fraction) {
- return Integer.cdiv(a.num, a.den);
- } else {
- return Float.ceil(a);
- }
-}
-
-function sqrt(a)
-{
- var t, u, re, im;
- if (a instanceof Series) {
- return a ^ (1/2);
- } else if (a instanceof Complex) {
- t = abs(a);
- u = a.re;
- re = sqrt((t + u) / 2);
- im = sqrt((t - u) / 2);
- if (a.im < 0)
- im = -im;
- return Complex.toComplex(re, im);
- } else {
- a = Float(a);
- if (a < 0) {
- return Complex(0, Float.sqrt(-a));
- } else {
- return Float.sqrt(a);
- }
- }
-}
-
-function exp(a)
-{
- return a.exp();
-}
-
-function log(a)
-{
- return a.log();
-}
-
-function log2(a)
-{
- return log(a) * Float.LOG2E;
-}
-
-function log10(a)
-{
- return log(a) * Float.LOG10E;
-}
-
-function todb(a)
-{
- return log10(a) * 10;
-}
-
-function fromdb(a)
-{
- return 10 ^ (a / 10);
-}
-
-function sin(a)
-{
- var t;
- if (a instanceof Complex || a instanceof Series) {
- t = exp(a * I);
- return (t - 1/t) / (2 * I);
- } else {
- return Float.sin(Float(a));
- }
-}
-
-function cos(a)
-{
- var t;
- if (a instanceof Complex || a instanceof Series) {
- t = exp(a * I);
- return (t + 1/t) / 2;
- } else {
- return Float.cos(Float(a));
- }
-}
-
-function tan(a)
-{
- if (a instanceof Complex || a instanceof Series) {
- return sin(a) / cos(a);
- } else {
- return Float.tan(Float(a));
- }
-}
-
-function asin(a)
-{
- return Float.asin(Float(a));
-}
-
-function acos(a)
-{
- return Float.acos(Float(a));
-}
-
-function atan(a)
-{
- return Float.atan(Float(a));
-}
-
-function atan2(a, b)
-{
- return Float.atan2(Float(a), Float(b));
-}
-
-function sinc(a)
-{
- if (a == 0) {
- return 1;
- } else {
- a *= Float.PI;
- return sin(a) / a;
- }
-}
-
-function todeg(a)
-{
- return a * 180 / Float.PI;
-}
-
-function fromdeg(a)
-{
- return a * Float.PI / 180;
-}
-
-function sinh(a)
-{
- var e = Float.exp(Float(a));
- return (e - 1/e) * 0.5;
-}
-
-function cosh(a)
-{
- var e = Float.exp(Float(a));
- return (e + 1/e) * 0.5;
-}
-
-function tanh(a)
-{
- var e = Float.exp(Float(a) * 2);
- return (e - 1) / (e + 1);
-}
-
-function asinh(a)
-{
- var x = Float(a);
- return log(sqrt(x * x + 1) + x);
-}
-
-function acosh(a)
-{
- var x = Float(a);
- return log(sqrt(x * x - 1) + x);
-}
-
-function atanh(a)
-{
- var x = Float(a);
- return 0.5 * log((1 + x) / (1 - x));
-}
-
-function sigmoid(x)
-{
- x = Float(x);
- return 1 / (1 + exp(-x));
-}
-
-function lerp(a, b, t)
-{
- return a + (b - a) * t;
-}
-
-var idn = Matrix.idn;
-var diag = Matrix.diag;
-var trans = Matrix.trans;
-var trace = Matrix.trace;
-var charpoly = Matrix.charpoly;
-var eigenvals = Matrix.eigenvals;
-var det = Matrix.det;
-var rank = Matrix.rank;
-var ker = Matrix.ker;
-var cp = Matrix.cp;
-var dp = Matrix.dp;
-
-var polroots = Polynomial.roots;
-var bestappr = Float.bestappr;
diff --git a/quickjs-atom.h b/quickjs-atom.h
index f4d5838..628588e 100644
--- a/quickjs-atom.h
+++ b/quickjs-atom.h
@@ -172,13 +172,6 @@ DEF(status, "status")
DEF(reason, "reason")
DEF(globalThis, "globalThis")
DEF(bigint, "bigint")
-#ifdef CONFIG_BIGNUM
-DEF(bigfloat, "bigfloat")
-DEF(bigdecimal, "bigdecimal")
-DEF(roundingMode, "roundingMode")
-DEF(maximumSignificantDigits, "maximumSignificantDigits")
-DEF(maximumFractionDigits, "maximumFractionDigits")
-#endif
/* the following 3 atoms are only used with CONFIG_ATOMICS */
DEF(not_equal, "not-equal")
DEF(timed_out, "timed-out")
@@ -217,13 +210,6 @@ DEF(Float32Array, "Float32Array")
DEF(Float64Array, "Float64Array")
DEF(DataView, "DataView")
DEF(BigInt, "BigInt")
-#ifdef CONFIG_BIGNUM
-DEF(BigFloat, "BigFloat")
-DEF(BigFloatEnv, "BigFloatEnv")
-DEF(BigDecimal, "BigDecimal")
-DEF(OperatorSet, "OperatorSet")
-DEF(Operators, "Operators")
-#endif
DEF(Map, "Map")
DEF(Set, "Set") /* Map + 1 */
DEF(WeakMap, "WeakMap") /* Map + 2 */
@@ -266,8 +252,5 @@ DEF(Symbol_hasInstance, "Symbol.hasInstance")
DEF(Symbol_species, "Symbol.species")
DEF(Symbol_unscopables, "Symbol.unscopables")
DEF(Symbol_asyncIterator, "Symbol.asyncIterator")
-#ifdef CONFIG_BIGNUM
-DEF(Symbol_operatorSet, "Symbol.operatorSet")
-#endif
#endif /* DEF */
diff --git a/quickjs-opcode.h b/quickjs-opcode.h
index 1e18212..02ef4a7 100644
--- a/quickjs-opcode.h
+++ b/quickjs-opcode.h
@@ -258,10 +258,7 @@ DEF( xor, 1, 2, 1, none)
DEF( or, 1, 2, 1, none)
DEF(is_undefined_or_null, 1, 1, 1, none)
DEF( private_in, 1, 2, 1, none)
-#ifdef CONFIG_BIGNUM
-DEF( mul_pow10, 1, 2, 1, none)
-DEF( math_mod, 1, 2, 1, none)
-#endif
+DEF(push_bigint_i32, 5, 0, 1, i32)
/* must be the last non short and non temporary opcode */
DEF( nop, 1, 0, 0, none)
diff --git a/quickjs.c b/quickjs.c
index 7537fb7..1003dd4 100644
--- a/quickjs.c
+++ b/quickjs.c
@@ -1,8 +1,8 @@
/*
* QuickJS Javascript Engine
*
- * Copyright (c) 2017-2021 Fabrice Bellard
- * Copyright (c) 2017-2021 Charlie Gordon
+ * Copyright (c) 2017-2025 Fabrice Bellard
+ * Copyright (c) 2017-2025 Charlie Gordon
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -45,7 +45,6 @@
#include "quickjs.h"
#include "libregexp.h"
#include "libunicode.h"
-#include "libbf.h"
#define OPTIMIZE 1
#define SHORT_OPCODES 1
@@ -150,12 +149,6 @@ enum {
JS_CLASS_FLOAT64_ARRAY, /* u.array (typed_array) */
JS_CLASS_DATAVIEW, /* u.typed_array */
JS_CLASS_BIG_INT, /* u.object_data */
-#ifdef CONFIG_BIGNUM
- JS_CLASS_BIG_FLOAT, /* u.object_data */
- JS_CLASS_FLOAT_ENV, /* u.float_env */
- JS_CLASS_BIG_DECIMAL, /* u.object_data */
- JS_CLASS_OPERATOR_SET, /* u.operator_set */
-#endif
JS_CLASS_MAP, /* u.map_state */
JS_CLASS_SET, /* u.map_state */
JS_CLASS_WEAKMAP, /* u.map_state */
@@ -216,24 +209,6 @@ typedef enum {
typedef enum OPCodeEnum OPCodeEnum;
-/* function pointers are used for numeric operations so that it is
- possible to remove some numeric types */
-typedef struct {
- JSValue (*to_string)(JSContext *ctx, JSValueConst val);
- JSValue (*from_string)(JSContext *ctx, const char *buf,
- int radix, int flags, slimb_t *pexponent);
- int (*unary_arith)(JSContext *ctx,
- JSValue *pres, OPCodeEnum op, JSValue op1);
- int (*binary_arith)(JSContext *ctx, OPCodeEnum op,
- JSValue *pres, JSValue op1, JSValue op2);
- int (*compare)(JSContext *ctx, OPCodeEnum op,
- JSValue op1, JSValue op2);
- /* only for bigfloat: */
- JSValue (*mul_pow10_to_float64)(JSContext *ctx, const bf_t *a,
- int64_t exponent);
- int (*mul_pow10)(JSContext *ctx, JSValue *sp);
-} JSNumericOperations;
-
struct JSRuntime {
JSMallocFunctions mf;
JSMallocState malloc_state;
@@ -296,13 +271,6 @@ struct JSRuntime {
int shape_hash_size;
int shape_hash_count; /* number of hashed shapes */
JSShape **shape_hash;
- bf_context_t bf_ctx;
- JSNumericOperations bigint_ops;
-#ifdef CONFIG_BIGNUM
- JSNumericOperations bigfloat_ops;
- JSNumericOperations bigdecimal_ops;
- uint32_t operator_count;
-#endif
void *user_opaque;
};
@@ -377,26 +345,45 @@ typedef struct JSVarRef {
};
} JSVarRef;
-/* the same structure is used for big integers and big floats. Big
- integers are never infinite or NaNs */
-typedef struct JSBigFloat {
- JSRefCountHeader header; /* must come first, 32-bit */
- bf_t num;
-} JSBigFloat;
+/* bigint */
-#ifdef CONFIG_BIGNUM
-typedef struct JSFloatEnv {
- limb_t prec;
- bf_flags_t flags;
- unsigned int status;
-} JSFloatEnv;
+#if JS_LIMB_BITS == 32
+
+typedef int32_t js_slimb_t;
+typedef uint32_t js_limb_t;
+typedef int64_t js_sdlimb_t;
+typedef uint64_t js_dlimb_t;
+
+#define JS_LIMB_DIGITS 9
+
+#else
+
+typedef __int128 int128_t;
+typedef unsigned __int128 uint128_t;
+typedef int64_t js_slimb_t;
+typedef uint64_t js_limb_t;
+typedef int128_t js_sdlimb_t;
+typedef uint128_t js_dlimb_t;
+
+#define JS_LIMB_DIGITS 19
-typedef struct JSBigDecimal {
- JSRefCountHeader header; /* must come first, 32-bit */
- bfdec_t num;
-} JSBigDecimal;
#endif
+typedef struct JSBigInt {
+ JSRefCountHeader header; /* must come first, 32-bit */
+ uint32_t len; /* number of limbs, >= 1 */
+ js_limb_t tab[]; /* two's complement representation, always
+ normalized so that 'len' is the minimum
+ possible length >= 1 */
+} JSBigInt;
+
+/* this bigint structure can hold a 64 bit integer */
+typedef struct {
+ JSBigInt big_int;
+ /* must come just after */
+ js_limb_t tab[(64 + JS_LIMB_BITS - 1) / JS_LIMB_BITS];
+} JSBigIntBuf;
+
typedef enum {
JS_AUTOINIT_ID_PROTOTYPE,
JS_AUTOINIT_ID_MODULE_NS,
@@ -434,12 +421,7 @@ struct JSContext {
JSValue global_var_obj; /* contains the global let/const definitions */
uint64_t random_state;
- bf_context_t *bf_ctx; /* points to rt->bf_ctx, shared by all contexts */
-#ifdef CONFIG_BIGNUM
- JSFloatEnv fp_env; /* global FP environment */
- BOOL bignum_ext : 8; /* enable math mode */
- BOOL allow_operator_overloading : 8;
-#endif
+
/* when the counter reaches zero, JSRutime.interrupt_handler is called */
int interrupt_counter;
@@ -911,10 +893,6 @@ struct JSObject {
struct JSForInIterator *for_in_iterator; /* JS_CLASS_FOR_IN_ITERATOR */
struct JSArrayBuffer *array_buffer; /* JS_CLASS_ARRAY_BUFFER, JS_CLASS_SHARED_ARRAY_BUFFER */
struct JSTypedArray *typed_array; /* JS_CLASS_UINT8C_ARRAY..JS_CLASS_DATAVIEW */
-#ifdef CONFIG_BIGNUM
- struct JSFloatEnv *float_env; /* JS_CLASS_FLOAT_ENV */
- struct JSOperatorSetData *operator_set; /* JS_CLASS_OPERATOR_SET */
-#endif
struct JSMapState *map_state; /* JS_CLASS_MAP..JS_CLASS_WEAKSET */
struct JSMapIteratorData *map_iterator_data; /* JS_CLASS_MAP_ITERATOR, JS_CLASS_SET_ITERATOR */
struct JSArrayIteratorData *array_iterator_data; /* JS_CLASS_ARRAY_ITERATOR, JS_CLASS_STRING_ITERATOR */
@@ -1097,11 +1075,6 @@ static void js_promise_mark(JSRuntime *rt, JSValueConst val,
static void js_promise_resolve_function_finalizer(JSRuntime *rt, JSValue val);
static void js_promise_resolve_function_mark(JSRuntime *rt, JSValueConst val,
JS_MarkFunc *mark_func);
-#ifdef CONFIG_BIGNUM
-static void js_operator_set_finalizer(JSRuntime *rt, JSValue val);
-static void js_operator_set_mark(JSRuntime *rt, JSValueConst val,
- JS_MarkFunc *mark_func);
-#endif
#define HINT_STRING 0
#define HINT_NUMBER 1
@@ -1136,37 +1109,7 @@ static JSValue JS_ToObject(JSContext *ctx, JSValueConst val);
static JSValue JS_ToObjectFree(JSContext *ctx, JSValue val);
static JSProperty *add_property(JSContext *ctx,
JSObject *p, JSAtom prop, int prop_flags);
-static JSValue JS_NewBigInt(JSContext *ctx);
-static inline bf_t *JS_GetBigInt(JSValueConst val)
-{
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- return &p->num;
-}
-static JSValue JS_CompactBigInt1(JSContext *ctx, JSValue val,
- BOOL convert_to_safe_integer);
-static JSValue JS_CompactBigInt(JSContext *ctx, JSValue val);
static int JS_ToBigInt64Free(JSContext *ctx, int64_t *pres, JSValue val);
-static bf_t *JS_ToBigInt(JSContext *ctx, bf_t *buf, JSValueConst val);
-static void JS_FreeBigInt(JSContext *ctx, bf_t *a, bf_t *buf);
-#ifdef CONFIG_BIGNUM
-static void js_float_env_finalizer(JSRuntime *rt, JSValue val);
-static JSValue JS_NewBigFloat(JSContext *ctx);
-static inline bf_t *JS_GetBigFloat(JSValueConst val)
-{
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- return &p->num;
-}
-static JSValue JS_NewBigDecimal(JSContext *ctx);
-static inline bfdec_t *JS_GetBigDecimal(JSValueConst val)
-{
- JSBigDecimal *p = JS_VALUE_GET_PTR(val);
- return &p->num;
-}
-static bf_t *JS_ToBigFloat(JSContext *ctx, bf_t *buf, JSValueConst val);
-static JSValue JS_ToBigDecimalFree(JSContext *ctx, JSValue val,
- BOOL allow_null_or_undefined);
-static bfdec_t *JS_ToBigDecimal(JSContext *ctx, JSValueConst val);
-#endif
JSValue JS_ThrowOutOfMemory(JSContext *ctx);
static JSValue JS_ThrowTypeErrorRevokedProxy(JSContext *ctx);
static JSValue js_proxy_getPrototypeOf(JSContext *ctx, JSValueConst obj);
@@ -1337,13 +1280,6 @@ void *js_mallocz_rt(JSRuntime *rt, size_t size)
return memset(ptr, 0, size);
}
-/* called by libbf */
-static void *js_bf_realloc(void *opaque, void *ptr, size_t size)
-{
- JSRuntime *rt = opaque;
- return js_realloc_rt(rt, ptr, size);
-}
-
/* Throw out of memory in case of error */
void *js_malloc(JSContext *ctx, size_t size)
{
@@ -1503,12 +1439,6 @@ static JSClassShortDef const js_std_class_def[] = {
{ JS_ATOM_Float64Array, js_typed_array_finalizer, js_typed_array_mark }, /* JS_CLASS_FLOAT64_ARRAY */
{ JS_ATOM_DataView, js_typed_array_finalizer, js_typed_array_mark }, /* JS_CLASS_DATAVIEW */
{ JS_ATOM_BigInt, js_object_data_finalizer, js_object_data_mark }, /* JS_CLASS_BIG_INT */
-#ifdef CONFIG_BIGNUM
- { JS_ATOM_BigFloat, js_object_data_finalizer, js_object_data_mark }, /* JS_CLASS_BIG_FLOAT */
- { JS_ATOM_BigFloatEnv, js_float_env_finalizer, NULL }, /* JS_CLASS_FLOAT_ENV */
- { JS_ATOM_BigDecimal, js_object_data_finalizer, js_object_data_mark }, /* JS_CLASS_BIG_DECIMAL */
- { JS_ATOM_OperatorSet, js_operator_set_finalizer, js_operator_set_mark }, /* JS_CLASS_OPERATOR_SET */
-#endif
{ JS_ATOM_Map, js_map_finalizer, js_map_mark }, /* JS_CLASS_MAP */
{ JS_ATOM_Set, js_map_finalizer, js_map_mark }, /* JS_CLASS_SET */
{ JS_ATOM_WeakMap, js_map_finalizer, js_map_mark }, /* JS_CLASS_WEAKMAP */
@@ -1538,61 +1468,6 @@ static int init_class_range(JSRuntime *rt, JSClassShortDef const *tab,
return 0;
}
-static JSValue JS_ThrowUnsupportedOperation(JSContext *ctx)
-{
- return JS_ThrowTypeError(ctx, "unsupported operation");
-}
-
-static JSValue invalid_to_string(JSContext *ctx, JSValueConst val)
-{
- return JS_ThrowUnsupportedOperation(ctx);
-}
-
-static JSValue invalid_from_string(JSContext *ctx, const char *buf,
- int radix, int flags, slimb_t *pexponent)
-{
- return JS_NAN;
-}
-
-static int invalid_unary_arith(JSContext *ctx,
- JSValue *pres, OPCodeEnum op, JSValue op1)
-{
- JS_FreeValue(ctx, op1);
- JS_ThrowUnsupportedOperation(ctx);
- return -1;
-}
-
-static int invalid_binary_arith(JSContext *ctx, OPCodeEnum op,
- JSValue *pres, JSValue op1, JSValue op2)
-{
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- JS_ThrowUnsupportedOperation(ctx);
- return -1;
-}
-
-static JSValue invalid_mul_pow10_to_float64(JSContext *ctx, const bf_t *a,
- int64_t exponent)
-{
- return JS_ThrowUnsupportedOperation(ctx);
-}
-
-static int invalid_mul_pow10(JSContext *ctx, JSValue *sp)
-{
- JS_ThrowUnsupportedOperation(ctx);
- return -1;
-}
-
-static void set_dummy_numeric_ops(JSNumericOperations *ops)
-{
- ops->to_string = invalid_to_string;
- ops->from_string = invalid_from_string;
- ops->unary_arith = invalid_unary_arith;
- ops->binary_arith = invalid_binary_arith;
- ops->mul_pow10_to_float64 = invalid_mul_pow10_to_float64;
- ops->mul_pow10 = invalid_mul_pow10;
-}
-
#if !defined(CONFIG_STACK_CHECK)
/* no stack limitation */
static inline uintptr_t js_get_stack_pointer(void)
@@ -1640,13 +1515,6 @@ JSRuntime *JS_NewRuntime2(const JSMallocFunctions *mf, void *opaque)
rt->malloc_state = ms;
rt->malloc_gc_threshold = 256 * 1024;
- bf_context_init(&rt->bf_ctx, js_bf_realloc, rt);
- set_dummy_numeric_ops(&rt->bigint_ops);
-#ifdef CONFIG_BIGNUM
- set_dummy_numeric_ops(&rt->bigfloat_ops);
- set_dummy_numeric_ops(&rt->bigdecimal_ops);
-#endif
-
init_list_head(&rt->context_list);
init_list_head(&rt->gc_obj_list);
init_list_head(&rt->gc_zero_ref_count_list);
@@ -2003,8 +1871,6 @@ void JS_FreeRuntime(JSRuntime *rt)
}
js_free_rt(rt, rt->class_array);
- bf_context_end(&rt->bf_ctx);
-
#ifdef DUMP_LEAKS
/* only the atoms defined in JS_InitAtoms() should be left */
{
@@ -2141,11 +2007,6 @@ JSContext *JS_NewContextRaw(JSRuntime *rt)
}
ctx->rt = rt;
list_add_tail(&ctx->link, &rt->context_list);
- ctx->bf_ctx = &rt->bf_ctx;
-#ifdef CONFIG_BIGNUM
- ctx->fp_env.prec = 113;
- ctx->fp_env.flags = bf_set_exp_bits(15) | BF_RNDN | BF_FLAG_SUBNORMAL;
-#endif
for(i = 0; i < rt->class_count; i++)
ctx->class_proto[i] = JS_NULL;
ctx->array_ctor = JS_NULL;
@@ -2375,19 +2236,6 @@ static inline BOOL is_strict_mode(JSContext *ctx)
return (sf && (sf->js_mode & JS_MODE_STRICT));
}
-#ifdef CONFIG_BIGNUM
-static inline BOOL is_math_mode(JSContext *ctx)
-{
- JSStackFrame *sf = ctx->rt->current_stack_frame;
- return (sf && (sf->js_mode & JS_MODE_MATH));
-}
-#else
-static inline BOOL is_math_mode(JSContext *ctx)
-{
- return FALSE;
-}
-#endif
-
/* JSAtom support */
#define JS_ATOM_TAG_INT (1U << 31)
@@ -4832,10 +4680,6 @@ static JSValue JS_NewObjectFromShape(JSContext *ctx, JSShape *sh, JSClassID clas
case JS_CLASS_SYMBOL:
case JS_CLASS_DATE:
case JS_CLASS_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_CLASS_BIG_FLOAT:
- case JS_CLASS_BIG_DECIMAL:
-#endif
p->u.object_data = JS_UNDEFINED;
goto set_exotic;
case JS_CLASS_REGEXP:
@@ -4895,10 +4739,6 @@ static JSValue JS_GetObjectData(JSContext *ctx, JSValueConst obj)
case JS_CLASS_SYMBOL:
case JS_CLASS_DATE:
case JS_CLASS_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_CLASS_BIG_FLOAT:
- case JS_CLASS_BIG_DECIMAL:
-#endif
return JS_DupValue(ctx, p->u.object_data);
}
}
@@ -4919,10 +4759,6 @@ static int JS_SetObjectData(JSContext *ctx, JSValueConst obj, JSValue val)
case JS_CLASS_SYMBOL:
case JS_CLASS_DATE:
case JS_CLASS_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_CLASS_BIG_FLOAT:
- case JS_CLASS_BIG_DECIMAL:
-#endif
JS_FreeValue(ctx, p->u.object_data);
p->u.object_data = val;
return 0;
@@ -5560,24 +5396,11 @@ void __JS_FreeValueRT(JSRuntime *rt, JSValue v)
abort(); /* never freed here */
break;
case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
-#endif
{
- JSBigFloat *bf = JS_VALUE_GET_PTR(v);
- bf_delete(&bf->num);
- js_free_rt(rt, bf);
- }
- break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_DECIMAL:
- {
- JSBigDecimal *bf = JS_VALUE_GET_PTR(v);
- bfdec_delete(&bf->num);
- js_free_rt(rt, bf);
+ JSBigInt *p = JS_VALUE_GET_PTR(v);
+ js_free_rt(rt, p);
}
break;
-#endif
case JS_TAG_SYMBOL:
{
JSAtomStruct *p = JS_VALUE_GET_PTR(v);
@@ -5949,11 +5772,7 @@ static void compute_value_size(JSValueConst val, JSMemoryUsage_helper *hp)
compute_jsstring_size(JS_VALUE_GET_STRING(val), hp);
break;
case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- case JS_TAG_BIG_DECIMAL:
-#endif
- /* should track JSBigFloat usage */
+ /* should track JSBigInt usage */
break;
}
}
@@ -6079,10 +5898,6 @@ void JS_ComputeMemoryUsage(JSRuntime *rt, JSMemoryUsage *s)
case JS_CLASS_SYMBOL: /* u.object_data */
case JS_CLASS_DATE: /* u.object_data */
case JS_CLASS_BIG_INT: /* u.object_data */
-#ifdef CONFIG_BIGNUM
- case JS_CLASS_BIG_FLOAT: /* u.object_data */
- case JS_CLASS_BIG_DECIMAL: /* u.object_data */
-#endif
compute_value_size(p->u.object_data, hp);
break;
case JS_CLASS_C_FUNCTION: /* u.cfunc */
@@ -6176,9 +5991,6 @@ void JS_ComputeMemoryUsage(JSRuntime *rt, JSMemoryUsage *s)
case JS_CLASS_FLOAT32_ARRAY: /* u.typed_array / u.array */
case JS_CLASS_FLOAT64_ARRAY: /* u.typed_array / u.array */
case JS_CLASS_DATAVIEW: /* u.typed_array */
-#ifdef CONFIG_BIGNUM
- case JS_CLASS_FLOAT_ENV: /* u.float_env */
-#endif
case JS_CLASS_MAP: /* u.map_state */
case JS_CLASS_SET: /* u.map_state */
case JS_CLASS_WEAKMAP: /* u.map_state */
@@ -6248,11 +6060,7 @@ void JS_ComputeMemoryUsage(JSRuntime *rt, JSMemoryUsage *s)
void JS_DumpMemoryUsage(FILE *fp, const JSMemoryUsage *s, JSRuntime *rt)
{
- fprintf(fp, "QuickJS memory usage -- "
-#ifdef CONFIG_BIGNUM
- "BigNum "
-#endif
- CONFIG_VERSION " version, %d-bit, malloc limit: %"PRId64"\n\n",
+ fprintf(fp, "QuickJS memory usage -- " CONFIG_VERSION " version, %d-bit, malloc limit: %"PRId64"\n\n",
(int)sizeof(void *) * 8, s->malloc_limit);
#if 1
if (rt) {
@@ -6942,17 +6750,10 @@ int JS_SetPrototype(JSContext *ctx, JSValueConst obj, JSValueConst proto_val)
static JSValueConst JS_GetPrototypePrimitive(JSContext *ctx, JSValueConst val)
{
switch(JS_VALUE_GET_NORM_TAG(val)) {
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
val = ctx->class_proto[JS_CLASS_BIG_INT];
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- val = ctx->class_proto[JS_CLASS_BIG_FLOAT];
- break;
- case JS_TAG_BIG_DECIMAL:
- val = ctx->class_proto[JS_CLASS_BIG_DECIMAL];
- break;
-#endif
case JS_TAG_INT:
case JS_TAG_FLOAT64:
val = ctx->class_proto[JS_CLASS_NUMBER];
@@ -9979,27 +9780,27 @@ static int JS_ToBoolFree(JSContext *ctx, JSValue val)
JS_FreeValue(ctx, val);
return ret;
}
+ case JS_TAG_SHORT_BIG_INT:
+ return JS_VALUE_GET_SHORT_BIG_INT(val) != 0;
case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
-#endif
{
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
+ JSBigInt *p = JS_VALUE_GET_PTR(val);
BOOL ret;
- ret = p->num.expn != BF_EXP_ZERO && p->num.expn != BF_EXP_NAN;
- JS_FreeValue(ctx, val);
- return ret;
- }
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_DECIMAL:
- {
- JSBigDecimal *p = JS_VALUE_GET_PTR(val);
- BOOL ret;
- ret = p->num.expn != BF_EXP_ZERO && p->num.expn != BF_EXP_NAN;
+ int i;
+
+ /* fail safe: we assume it is not necessarily
+ normalized. Beginning from the MSB ensures that the
+ test is fast. */
+ ret = FALSE;
+ for(i = p->len - 1; i >= 0; i--) {
+ if (p->tab[i] != 0) {
+ ret = TRUE;
+ break;
+ }
+ }
JS_FreeValue(ctx, val);
return ret;
}
-#endif
case JS_TAG_OBJECT:
{
JSObject *p = JS_VALUE_GET_OBJ(val);
@@ -10059,6 +9860,1491 @@ static inline int to_digit(int c)
return 36;
}
+/* bigint support */
+
+#define JS_BIGINT_MAX_SIZE ((1024 * 1024) / JS_LIMB_BITS) /* in limbs */
+
+/* it is currently assumed that JS_SHORT_BIG_INT_BITS = JS_LIMB_BITS */
+#if JS_SHORT_BIG_INT_BITS == 32
+#define JS_SHORT_BIG_INT_MIN INT32_MIN
+#define JS_SHORT_BIG_INT_MAX INT32_MAX
+#elif JS_SHORT_BIG_INT_BITS == 64
+#define JS_SHORT_BIG_INT_MIN INT64_MIN
+#define JS_SHORT_BIG_INT_MAX INT64_MAX
+#else
+#error unsupported
+#endif
+
+#define ADDC(res, carry_out, op1, op2, carry_in) \
+do { \
+ js_limb_t __v, __a, __k, __k1; \
+ __v = (op1); \
+ __a = __v + (op2); \
+ __k1 = __a < __v; \
+ __k = (carry_in); \
+ __a = __a + __k; \
+ carry_out = (__a < __k) | __k1; \
+ res = __a; \
+} while (0)
+
+#if JS_LIMB_BITS == 32
+/* a != 0 */
+static inline js_limb_t js_limb_clz(js_limb_t a)
+{
+ return clz32(a);
+}
+#else
+static inline js_limb_t js_limb_clz(js_limb_t a)
+{
+ return clz64(a);
+}
+#endif
+
+static js_limb_t mp_add(js_limb_t *res, const js_limb_t *op1, const js_limb_t *op2,
+ js_limb_t n, js_limb_t carry)
+{
+ int i;
+ for(i = 0;i < n; i++) {
+ ADDC(res[i], carry, op1[i], op2[i], carry);
+ }
+ return carry;
+}
+
+static js_limb_t mp_sub(js_limb_t *res, const js_limb_t *op1, const js_limb_t *op2,
+ int n, js_limb_t carry)
+{
+ int i;
+ js_limb_t k, a, v, k1;
+
+ k = carry;
+ for(i=0;i<n;i++) {
+ v = op1[i];
+ a = v - op2[i];
+ k1 = a > v;
+ v = a - k;
+ k = (v > a) | k1;
+ res[i] = v;
+ }
+ return k;
+}
+
+/* compute 0 - op2. carry = 0 or 1. */
+static js_limb_t mp_neg(js_limb_t *res, const js_limb_t *op2, int n)
+{
+ int i;
+ js_limb_t v, carry;
+
+ carry = 1;
+ for(i=0;i<n;i++) {
+ v = ~op2[i] + carry;
+ carry = v < carry;
+ res[i] = v;
+ }
+ return carry;
+}
+
+/* tabr[] = taba[] * b + l. Return the high carry */
+static js_limb_t mp_mul1(js_limb_t *tabr, const js_limb_t *taba, js_limb_t n,
+ js_limb_t b, js_limb_t l)
+{
+ js_limb_t i;
+ js_dlimb_t t;
+
+ for(i = 0; i < n; i++) {
+ t = (js_dlimb_t)taba[i] * (js_dlimb_t)b + l;
+ tabr[i] = t;
+ l = t >> JS_LIMB_BITS;
+ }
+ return l;
+}
+
+static js_limb_t mp_div1(js_limb_t *tabr, const js_limb_t *taba, js_limb_t n,
+ js_limb_t b, js_limb_t r)
+{
+ js_slimb_t i;
+ js_dlimb_t a1;
+ for(i = n - 1; i >= 0; i--) {
+ a1 = ((js_dlimb_t)r << JS_LIMB_BITS) | taba[i];
+ tabr[i] = a1 / b;
+ r = a1 % b;
+ }
+ return r;
+}
+
+/* tabr[] += taba[] * b, return the high word. */
+static js_limb_t mp_add_mul1(js_limb_t *tabr, const js_limb_t *taba, js_limb_t n,
+ js_limb_t b)
+{
+ js_limb_t i, l;
+ js_dlimb_t t;
+
+ l = 0;
+ for(i = 0; i < n; i++) {
+ t = (js_dlimb_t)taba[i] * (js_dlimb_t)b + l + tabr[i];
+ tabr[i] = t;
+ l = t >> JS_LIMB_BITS;
+ }
+ return l;
+}
+
+/* size of the result : op1_size + op2_size. */
+static void mp_mul_basecase(js_limb_t *result,
+ const js_limb_t *op1, js_limb_t op1_size,
+ const js_limb_t *op2, js_limb_t op2_size)
+{
+ int i;
+ js_limb_t r;
+
+ result[op1_size] = mp_mul1(result, op1, op1_size, op2[0], 0);
+ for(i=1;i<op2_size;i++) {
+ r = mp_add_mul1(result + i, op1, op1_size, op2[i]);
+ result[i + op1_size] = r;
+ }
+}
+
+/* tabr[] -= taba[] * b. Return the value to substract to the high
+ word. */
+static js_limb_t mp_sub_mul1(js_limb_t *tabr, const js_limb_t *taba, js_limb_t n,
+ js_limb_t b)
+{
+ js_limb_t i, l;
+ js_dlimb_t t;
+
+ l = 0;
+ for(i = 0; i < n; i++) {
+ t = tabr[i] - (js_dlimb_t)taba[i] * (js_dlimb_t)b - l;
+ tabr[i] = t;
+ l = -(t >> JS_LIMB_BITS);
+ }
+ return l;
+}
+
+/* WARNING: d must be >= 2^(JS_LIMB_BITS-1) */
+static inline js_limb_t udiv1norm_init(js_limb_t d)
+{
+ js_limb_t a0, a1;
+ a1 = -d - 1;
+ a0 = -1;
+ return (((js_dlimb_t)a1 << JS_LIMB_BITS) | a0) / d;
+}
+
+/* return the quotient and the remainder in '*pr'of 'a1*2^JS_LIMB_BITS+a0
+ / d' with 0 <= a1 < d. */
+static inline js_limb_t udiv1norm(js_limb_t *pr, js_limb_t a1, js_limb_t a0,
+ js_limb_t d, js_limb_t d_inv)
+{
+ js_limb_t n1m, n_adj, q, r, ah;
+ js_dlimb_t a;
+ n1m = ((js_slimb_t)a0 >> (JS_LIMB_BITS - 1));
+ n_adj = a0 + (n1m & d);
+ a = (js_dlimb_t)d_inv * (a1 - n1m) + n_adj;
+ q = (a >> JS_LIMB_BITS) + a1;
+ /* compute a - q * r and update q so that the remainder is\
+ between 0 and d - 1 */
+ a = ((js_dlimb_t)a1 << JS_LIMB_BITS) | a0;
+ a = a - (js_dlimb_t)q * d - d;
+ ah = a >> JS_LIMB_BITS;
+ q += 1 + ah;
+ r = (js_limb_t)a + (ah & d);
+ *pr = r;
+ return q;
+}
+
+#define UDIV1NORM_THRESHOLD 3
+
+/* b must be >= 1 << (JS_LIMB_BITS - 1) */
+static js_limb_t mp_div1norm(js_limb_t *tabr, const js_limb_t *taba, js_limb_t n,
+ js_limb_t b, js_limb_t r)
+{
+ js_slimb_t i;
+
+ if (n >= UDIV1NORM_THRESHOLD) {
+ js_limb_t b_inv;
+ b_inv = udiv1norm_init(b);
+ for(i = n - 1; i >= 0; i--) {
+ tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv);
+ }
+ } else {
+ js_dlimb_t a1;
+ for(i = n - 1; i >= 0; i--) {
+ a1 = ((js_dlimb_t)r << JS_LIMB_BITS) | taba[i];
+ tabr[i] = a1 / b;
+ r = a1 % b;
+ }
+ }
+ return r;
+}
+
+/* base case division: divides taba[0..na-1] by tabb[0..nb-1]. tabb[nb
+ - 1] must be >= 1 << (JS_LIMB_BITS - 1). na - nb must be >= 0. 'taba'
+ is modified and contains the remainder (nb limbs). tabq[0..na-nb]
+ contains the quotient with tabq[na - nb] <= 1. */
+static void mp_divnorm(js_limb_t *tabq, js_limb_t *taba, js_limb_t na,
+ const js_limb_t *tabb, js_limb_t nb)
+{
+ js_limb_t r, a, c, q, v, b1, b1_inv, n, dummy_r;
+ int i, j;
+
+ b1 = tabb[nb - 1];
+ if (nb == 1) {
+ taba[0] = mp_div1norm(tabq, taba, na, b1, 0);
+ return;
+ }
+ n = na - nb;
+
+ if (n >= UDIV1NORM_THRESHOLD)
+ b1_inv = udiv1norm_init(b1);
+ else
+ b1_inv = 0;
+
+ /* first iteration: the quotient is only 0 or 1 */
+ q = 1;
+ for(j = nb - 1; j >= 0; j--) {
+ if (taba[n + j] != tabb[j]) {
+ if (taba[n + j] < tabb[j])
+ q = 0;
+ break;
+ }
+ }
+ tabq[n] = q;
+ if (q) {
+ mp_sub(taba + n, taba + n, tabb, nb, 0);
+ }
+
+ for(i = n - 1; i >= 0; i--) {
+ if (unlikely(taba[i + nb] >= b1)) {
+ q = -1;
+ } else if (b1_inv) {
+ q = udiv1norm(&dummy_r, taba[i + nb], taba[i + nb - 1], b1, b1_inv);
+ } else {
+ js_dlimb_t al;
+ al = ((js_dlimb_t)taba[i + nb] << JS_LIMB_BITS) | taba[i + nb - 1];
+ q = al / b1;
+ r = al % b1;
+ }
+ r = mp_sub_mul1(taba + i, tabb, nb, q);
+
+ v = taba[i + nb];
+ a = v - r;
+ c = (a > v);
+ taba[i + nb] = a;
+
+ if (c != 0) {
+ /* negative result */
+ for(;;) {
+ q--;
+ c = mp_add(taba + i, taba + i, tabb, nb, 0);
+ /* propagate carry and test if positive result */
+ if (c != 0) {
+ if (++taba[i + nb] == 0) {
+ break;
+ }
+ }
+ }
+ }
+ tabq[i] = q;
+ }
+}
+
+/* 1 <= shift <= JS_LIMB_BITS - 1 */
+static js_limb_t mp_shl(js_limb_t *tabr, const js_limb_t *taba, int n,
+ int shift)
+{
+ int i;
+ js_limb_t l, v;
+ l = 0;
+ for(i = 0; i < n; i++) {
+ v = taba[i];
+ tabr[i] = (v << shift) | l;
+ l = v >> (JS_LIMB_BITS - shift);
+ }
+ return l;
+}
+
+/* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift).
+ 1 <= shift <= LIMB_BITS - 1 */
+static js_limb_t mp_shr(js_limb_t *tab_r, const js_limb_t *tab, int n,
+ int shift, js_limb_t high)
+{
+ int i;
+ js_limb_t l, a;
+
+ l = high;
+ for(i = n - 1; i >= 0; i--) {
+ a = tab[i];
+ tab_r[i] = (a >> shift) | (l << (JS_LIMB_BITS - shift));
+ l = a;
+ }
+ return l & (((js_limb_t)1 << shift) - 1);
+}
+
+static JSBigInt *js_bigint_new(JSContext *ctx, int len)
+{
+ JSBigInt *r;
+ if (len > JS_BIGINT_MAX_SIZE) {
+ JS_ThrowRangeError(ctx, "BigInt is too large to allocate");
+ return NULL;
+ }
+ r = js_malloc(ctx, sizeof(JSBigInt) + len * sizeof(js_limb_t));
+ if (!r)
+ return NULL;
+ r->header.ref_count = 1;
+ r->len = len;
+ return r;
+}
+
+static JSBigInt *js_bigint_set_si(JSBigIntBuf *buf, js_slimb_t a)
+{
+ JSBigInt *r = &buf->big_int;
+ r->len = 1;
+ r->tab[0] = a;
+ return r;
+}
+
+/* val must be a short big int */
+static JSBigInt *js_bigint_set_short(JSBigIntBuf *buf, JSValueConst val)
+{
+ return js_bigint_set_si(buf, JS_VALUE_GET_SHORT_BIG_INT(val));
+}
+
+static __maybe_unused void js_bigint_dump1(JSContext *ctx, const char *str,
+ const js_limb_t *tab, int len)
+{
+ int i;
+ printf("%s: ", str);
+ for(i = len - 1; i >= 0; i--) {
+#if JS_LIMB_BITS == 32
+ printf(" %08x", tab[i]);
+#else
+ printf(" %016" PRIx64, tab[i]);
+#endif
+ }
+ printf("\n");
+}
+
+static __maybe_unused void js_bigint_dump(JSContext *ctx, const char *str,
+ const JSBigInt *p)
+{
+ js_bigint_dump1(ctx, str, p->tab, p->len);
+}
+
+static JSBigInt *js_bigint_new_si(JSContext *ctx, js_slimb_t a)
+{
+ JSBigInt *r;
+ r = js_bigint_new(ctx, 1);
+ if (!r)
+ return NULL;
+ r->tab[0] = a;
+ return r;
+}
+
+static JSBigInt *js_bigint_new_si64(JSContext *ctx, int64_t a)
+{
+#if JS_LIMB_BITS == 64
+ return js_bigint_new_si(ctx, a);
+#else
+ if (a >= INT32_MIN && a <= INT32_MAX) {
+ return js_bigint_new_si(ctx, a);
+ } else {
+ JSBigInt *r;
+ r = js_bigint_new(ctx, 2);
+ if (!r)
+ return NULL;
+ r->tab[0] = a;
+ r->tab[1] = a >> 32;
+ return r;
+ }
+#endif
+}
+
+static JSBigInt *js_bigint_new_ui64(JSContext *ctx, uint64_t a)
+{
+ if (a <= INT64_MAX) {
+ return js_bigint_new_si64(ctx, a);
+ } else {
+ JSBigInt *r;
+ r = js_bigint_new(ctx, (65 + JS_LIMB_BITS - 1) / JS_LIMB_BITS);
+ if (!r)
+ return NULL;
+#if JS_LIMB_BITS == 64
+ r->tab[0] = a;
+ r->tab[1] = 0;
+#else
+ r->tab[0] = a;
+ r->tab[1] = a >> 32;
+ r->tab[2] = 0;
+#endif
+ return r;
+ }
+}
+
+static JSBigInt *js_bigint_new_di(JSContext *ctx, js_sdlimb_t a)
+{
+ JSBigInt *r;
+ if (a == (js_slimb_t)a) {
+ r = js_bigint_new(ctx, 1);
+ if (!r)
+ return NULL;
+ r->tab[0] = a;
+ } else {
+ r = js_bigint_new(ctx, 2);
+ if (!r)
+ return NULL;
+ r->tab[0] = a;
+ r->tab[1] = a >> JS_LIMB_BITS;
+ }
+ return r;
+}
+
+/* Remove redundant high order limbs. Warning: 'a' may be
+ reallocated. Can never fail.
+*/
+static JSBigInt *js_bigint_normalize1(JSContext *ctx, JSBigInt *a, int l)
+{
+ js_limb_t v;
+
+ assert(a->header.ref_count == 1);
+ while (l > 1) {
+ v = a->tab[l - 1];
+ if ((v != 0 && v != -1) ||
+ (v & 1) != (a->tab[l - 2] >> (JS_LIMB_BITS - 1))) {
+ break;
+ }
+ l--;
+ }
+ if (l != a->len) {
+ JSBigInt *a1;
+ /* realloc to reduce the size */
+ a->len = l;
+ a1 = js_realloc(ctx, a, sizeof(JSBigInt) + l * sizeof(js_limb_t));
+ if (a1)
+ a = a1;
+ }
+ return a;
+}
+
+static JSBigInt *js_bigint_normalize(JSContext *ctx, JSBigInt *a)
+{
+ return js_bigint_normalize1(ctx, a, a->len);
+}
+
+/* return 0 or 1 depending on the sign */
+static inline int js_bigint_sign(const JSBigInt *a)
+{
+ return a->tab[a->len - 1] >> (JS_LIMB_BITS - 1);
+}
+
+static js_slimb_t js_bigint_get_si_sat(const JSBigInt *a)
+{
+ if (a->len == 1) {
+ return a->tab[0];
+ } else {
+#if JS_LIMB_BITS == 32
+ if (js_bigint_sign(a))
+ return INT32_MIN;
+ else
+ return INT32_MAX;
+#else
+ if (js_bigint_sign(a))
+ return INT64_MIN;
+ else
+ return INT64_MAX;
+#endif
+ }
+}
+
+/* add the op1 limb */
+static JSBigInt *js_bigint_extend(JSContext *ctx, JSBigInt *r,
+ js_limb_t op1)
+{
+ int n2 = r->len;
+ if ((op1 != 0 && op1 != -1) ||
+ (op1 & 1) != r->tab[n2 - 1] >> (JS_LIMB_BITS - 1)) {
+ JSBigInt *r1;
+ r1 = js_realloc(ctx, r,
+ sizeof(JSBigInt) + (n2 + 1) * sizeof(js_limb_t));
+ if (!r1) {
+ js_free(ctx, r);
+ return NULL;
+ }
+ r = r1;
+ r->len = n2 + 1;
+ r->tab[n2] = op1;
+ } else {
+ /* otherwise still need to normalize the result */
+ r = js_bigint_normalize(ctx, r);
+ }
+ return r;
+}
+
+/* return NULL in case of error. Compute a + b (b_neg = 0) or a - b
+ (b_neg = 1) */
+/* XXX: optimize */
+static JSBigInt *js_bigint_add(JSContext *ctx, const JSBigInt *a,
+ const JSBigInt *b, int b_neg)
+{
+ JSBigInt *r;
+ int n1, n2, i;
+ js_limb_t carry, op1, op2, a_sign, b_sign;
+
+ n2 = max_int(a->len, b->len);
+ n1 = min_int(a->len, b->len);
+ r = js_bigint_new(ctx, n2);
+ if (!r)
+ return NULL;
+ /* XXX: optimize */
+ /* common part */
+ carry = b_neg;
+ for(i = 0; i < n1; i++) {
+ op1 = a->tab[i];
+ op2 = b->tab[i] ^ (-b_neg);
+ ADDC(r->tab[i], carry, op1, op2, carry);
+ }
+ a_sign = -js_bigint_sign(a);
+ b_sign = (-js_bigint_sign(b)) ^ (-b_neg);
+ /* part with sign extension of one operand */
+ if (a->len > b->len) {
+ for(i = n1; i < n2; i++) {
+ op1 = a->tab[i];
+ ADDC(r->tab[i], carry, op1, b_sign, carry);
+ }
+ } else if (a->len < b->len) {
+ for(i = n1; i < n2; i++) {
+ op2 = b->tab[i] ^ (-b_neg);
+ ADDC(r->tab[i], carry, a_sign, op2, carry);
+ }
+ }
+
+ /* part with sign extension for both operands. Extend the result
+ if necessary */
+ return js_bigint_extend(ctx, r, a_sign + b_sign + carry);
+}
+
+/* XXX: optimize */
+static JSBigInt *js_bigint_neg(JSContext *ctx, const JSBigInt *a)
+{
+ JSBigIntBuf buf;
+ JSBigInt *b;
+ b = js_bigint_set_si(&buf, 0);
+ return js_bigint_add(ctx, b, a, 1);
+}
+
+static JSBigInt *js_bigint_mul(JSContext *ctx, const JSBigInt *a,
+ const JSBigInt *b)
+{
+ JSBigInt *r;
+
+ r = js_bigint_new(ctx, a->len + b->len);
+ if (!r)
+ return NULL;
+ mp_mul_basecase(r->tab, a->tab, a->len, b->tab, b->len);
+ /* correct the result if negative operands (no overflow is
+ possible) */
+ if (js_bigint_sign(a))
+ mp_sub(r->tab + a->len, r->tab + a->len, b->tab, b->len, 0);
+ if (js_bigint_sign(b))
+ mp_sub(r->tab + b->len, r->tab + b->len, a->tab, a->len, 0);
+ return js_bigint_normalize(ctx, r);
+}
+
+/* return the division or the remainder. 'b' must be != 0. return NULL
+ in case of exception (division by zero or memory error) */
+static JSBigInt *js_bigint_divrem(JSContext *ctx, const JSBigInt *a,
+ const JSBigInt *b, BOOL is_rem)
+{
+ JSBigInt *r, *q;
+ js_limb_t *tabb, h;
+ int na, nb, a_sign, b_sign, shift;
+
+ if (b->len == 1 && b->tab[0] == 0) {
+ JS_ThrowRangeError(ctx, "BigInt division by zero");
+ return NULL;
+ }
+
+ a_sign = js_bigint_sign(a);
+ b_sign = js_bigint_sign(b);
+ na = a->len;
+ nb = b->len;
+
+ r = js_bigint_new(ctx, na + 2);
+ if (!r)
+ return NULL;
+ if (a_sign) {
+ mp_neg(r->tab, a->tab, na);
+ } else {
+ memcpy(r->tab, a->tab, na * sizeof(a->tab[0]));
+ }
+ /* normalize */
+ while (na > 1 && r->tab[na - 1] == 0)
+ na--;
+
+ tabb = js_malloc(ctx, nb * sizeof(tabb[0]));
+ if (!tabb) {
+ js_free(ctx, r);
+ return NULL;
+ }
+ if (b_sign) {
+ mp_neg(tabb, b->tab, nb);
+ } else {
+ memcpy(tabb, b->tab, nb * sizeof(tabb[0]));
+ }
+ /* normalize */
+ while (nb > 1 && tabb[nb - 1] == 0)
+ nb--;
+
+ /* trivial case if 'a' is small */
+ if (na < nb) {
+ js_free(ctx, r);
+ js_free(ctx, tabb);
+ if (is_rem) {
+ /* r = a */
+ r = js_bigint_new(ctx, a->len);
+ if (!r)
+ return NULL;
+ memcpy(r->tab, a->tab, a->len * sizeof(a->tab[0]));
+ return r;
+ } else {
+ /* q = 0 */
+ return js_bigint_new_si(ctx, 0);
+ }
+ }
+
+ /* normalize 'b' */
+ shift = js_limb_clz(tabb[nb - 1]);
+ if (shift != 0) {
+ mp_shl(tabb, tabb, nb, shift);
+ h = mp_shl(r->tab, r->tab, na, shift);
+ if (h != 0)
+ r->tab[na++] = h;
+ }
+
+ q = js_bigint_new(ctx, na - nb + 2); /* one more limb for the sign */
+ if (!q) {
+ js_free(ctx, r);
+ js_free(ctx, tabb);
+ return NULL;
+ }
+
+ // js_bigint_dump1(ctx, "a", r->tab, na);
+ // js_bigint_dump1(ctx, "b", tabb, nb);
+ mp_divnorm(q->tab, r->tab, na, tabb, nb);
+ js_free(ctx, tabb);
+
+ if (is_rem) {
+ js_free(ctx, q);
+ if (shift != 0)
+ mp_shr(r->tab, r->tab, nb, shift, 0);
+ r->tab[nb++] = 0;
+ if (a_sign)
+ mp_neg(r->tab, r->tab, nb);
+ r = js_bigint_normalize1(ctx, r, nb);
+ return r;
+ } else {
+ js_free(ctx, r);
+ q->tab[na - nb + 1] = 0;
+ if (a_sign ^ b_sign) {
+ mp_neg(q->tab, q->tab, q->len);
+ }
+ q = js_bigint_normalize(ctx, q);
+ return q;
+ }
+}
+
+/* and, or, xor */
+static JSBigInt *js_bigint_logic(JSContext *ctx, const JSBigInt *a,
+ const JSBigInt *b, OPCodeEnum op)
+{
+ JSBigInt *r;
+ js_limb_t b_sign;
+ int a_len, b_len, i;
+
+ if (a->len < b->len) {
+ const JSBigInt *tmp;
+ tmp = a;
+ a = b;
+ b = tmp;
+ }
+ /* a_len >= b_len */
+ a_len = a->len;
+ b_len = b->len;
+ b_sign = -js_bigint_sign(b);
+
+ r = js_bigint_new(ctx, a_len);
+ if (!r)
+ return NULL;
+ switch(op) {
+ case OP_or:
+ for(i = 0; i < b_len; i++) {
+ r->tab[i] = a->tab[i] | b->tab[i];
+ }
+ for(i = b_len; i < a_len; i++) {
+ r->tab[i] = a->tab[i] | b_sign;
+ }
+ break;
+ case OP_and:
+ for(i = 0; i < b_len; i++) {
+ r->tab[i] = a->tab[i] & b->tab[i];
+ }
+ for(i = b_len; i < a_len; i++) {
+ r->tab[i] = a->tab[i] & b_sign;
+ }
+ break;
+ case OP_xor:
+ for(i = 0; i < b_len; i++) {
+ r->tab[i] = a->tab[i] ^ b->tab[i];
+ }
+ for(i = b_len; i < a_len; i++) {
+ r->tab[i] = a->tab[i] ^ b_sign;
+ }
+ break;
+ default:
+ abort();
+ }
+ return js_bigint_normalize(ctx, r);
+}
+
+static JSBigInt *js_bigint_not(JSContext *ctx, const JSBigInt *a)
+{
+ JSBigInt *r;
+ int i;
+
+ r = js_bigint_new(ctx, a->len);
+ if (!r)
+ return NULL;
+ for(i = 0; i < a->len; i++) {
+ r->tab[i] = ~a->tab[i];
+ }
+ /* no normalization is needed */
+ return r;
+}
+
+static JSBigInt *js_bigint_shl(JSContext *ctx, const JSBigInt *a,
+ unsigned int shift1)
+{
+ int d, i, shift;
+ JSBigInt *r;
+ js_limb_t l;
+
+ if (a->len == 1 && a->tab[0] == 0)
+ return js_bigint_new_si(ctx, 0); /* zero case */
+ d = shift1 / JS_LIMB_BITS;
+ shift = shift1 % JS_LIMB_BITS;
+ r = js_bigint_new(ctx, a->len + d);
+ if (!r)
+ return NULL;
+ for(i = 0; i < d; i++)
+ r->tab[i] = 0;
+ if (shift == 0) {
+ for(i = 0; i < a->len; i++) {
+ r->tab[i + d] = a->tab[i];
+ }
+ } else {
+ l = mp_shl(r->tab + d, a->tab, a->len, shift);
+ if (js_bigint_sign(a))
+ l |= (js_limb_t)(-1) << shift;
+ r = js_bigint_extend(ctx, r, l);
+ }
+ return r;
+}
+
+static JSBigInt *js_bigint_shr(JSContext *ctx, const JSBigInt *a,
+ unsigned int shift1)
+{
+ int d, i, shift, a_sign, n1;
+ JSBigInt *r;
+
+ d = shift1 / JS_LIMB_BITS;
+ shift = shift1 % JS_LIMB_BITS;
+ a_sign = js_bigint_sign(a);
+ if (d >= a->len)
+ return js_bigint_new_si(ctx, -a_sign);
+ n1 = a->len - d;
+ r = js_bigint_new(ctx, n1);
+ if (!r)
+ return NULL;
+ if (shift == 0) {
+ for(i = 0; i < n1; i++) {
+ r->tab[i] = a->tab[i + d];
+ }
+ /* no normalization is needed */
+ } else {
+ mp_shr(r->tab, a->tab + d, n1, shift, -a_sign);
+ r = js_bigint_normalize(ctx, r);
+ }
+ return r;
+}
+
+static JSBigInt *js_bigint_pow(JSContext *ctx, const JSBigInt *a, JSBigInt *b)
+{
+ uint32_t e;
+ int n_bits, i;
+ JSBigInt *r, *r1;
+
+ /* b must be >= 0 */
+ if (js_bigint_sign(b)) {
+ JS_ThrowRangeError(ctx, "BigInt negative exponent");
+ return NULL;
+ }
+ if (b->len == 1 && b->tab[0] == 0) {
+ /* a^0 = 1 */
+ return js_bigint_new_si(ctx, 1);
+ } else if (a->len == 1) {
+ js_limb_t v;
+ BOOL is_neg;
+
+ v = a->tab[0];
+ if (v <= 1)
+ return js_bigint_new_si(ctx, v);
+ else if (v == -1)
+ return js_bigint_new_si(ctx, 1 - 2 * (b->tab[0] & 1));
+ is_neg = (js_slimb_t)v < 0;
+ if (is_neg)
+ v = -v;
+ if ((v & (v - 1)) == 0) {
+ uint64_t e1;
+ int n;
+ /* v = 2^n */
+ n = JS_LIMB_BITS - 1 - js_limb_clz(v);
+ if (b->len > 1)
+ goto overflow;
+ if (b->tab[0] > INT32_MAX)
+ goto overflow;
+ e = b->tab[0];
+ e1 = (uint64_t)e * n;
+ if (e1 > JS_BIGINT_MAX_SIZE * JS_LIMB_BITS)
+ goto overflow;
+ e = e1;
+ if (is_neg)
+ is_neg = b->tab[0] & 1;
+ r = js_bigint_new(ctx,
+ (e + JS_LIMB_BITS + 1 - is_neg) / JS_LIMB_BITS);
+ if (!r)
+ return NULL;
+ memset(r->tab, 0, sizeof(r->tab[0]) * r->len);
+ r->tab[e / JS_LIMB_BITS] =
+ (js_limb_t)(1 - 2 * is_neg) << (e % JS_LIMB_BITS);
+ return r;
+ }
+ }
+ if (b->len > 1)
+ goto overflow;
+ if (b->tab[0] > INT32_MAX)
+ goto overflow;
+ e = b->tab[0];
+ n_bits = 32 - clz32(e);
+
+ r = js_bigint_new(ctx, a->len);
+ if (!r)
+ return NULL;
+ memcpy(r->tab, a->tab, a->len * sizeof(a->tab[0]));
+ for(i = n_bits - 2; i >= 0; i--) {
+ r1 = js_bigint_mul(ctx, r, r);
+ if (!r1)
+ return NULL;
+ js_free(ctx, r);
+ r = r1;
+ if ((e >> i) & 1) {
+ r1 = js_bigint_mul(ctx, r, a);
+ if (!r1)
+ return NULL;
+ js_free(ctx, r);
+ r = r1;
+ }
+ }
+ return r;
+ overflow:
+ JS_ThrowRangeError(ctx, "BigInt is too large");
+ return NULL;
+}
+
+/* return (mant, exp) so that abs(a) ~ mant*2^(exp - (limb_bits -
+ 1). a must be != 0. */
+static uint64_t js_bigint_get_mant_exp(JSContext *ctx,
+ int *pexp, const JSBigInt *a)
+{
+ js_limb_t t[4 - JS_LIMB_BITS / 32], carry, v, low_bits;
+ int n1, n2, sgn, shift, i, j, e;
+ uint64_t a1, a0;
+
+ n2 = 4 - JS_LIMB_BITS / 32;
+ n1 = a->len - n2;
+ sgn = js_bigint_sign(a);
+
+ /* low_bits != 0 if there are a non zero low bit in abs(a) */
+ low_bits = 0;
+ carry = sgn;
+ for(i = 0; i < n1; i++) {
+ v = (a->tab[i] ^ (-sgn)) + carry;
+ carry = v < carry;
+ low_bits |= v;
+ }
+ /* get the n2 high limbs of abs(a) */
+ for(j = 0; j < n2; j++) {
+ i = j + n1;
+ if (i < 0) {
+ v = 0;
+ } else {
+ v = (a->tab[i] ^ (-sgn)) + carry;
+ carry = v < carry;
+ }
+ t[j] = v;
+ }
+
+#if JS_LIMB_BITS == 32
+ a1 = ((uint64_t)t[2] << 32) | t[1];
+ a0 = (uint64_t)t[0] << 32;
+#else
+ a1 = t[1];
+ a0 = t[0];
+#endif
+ a0 |= (low_bits != 0);
+ /* normalize */
+ if (a1 == 0) {
+ /* JS_LIMB_BITS = 64 bit only */
+ shift = 64;
+ a1 = a0;
+ a0 = 0;
+ } else {
+ shift = clz64(a1);
+ if (shift != 0) {
+ a1 = (a1 << shift) | (a0 >> (64 - shift));
+ a0 <<= shift;
+ }
+ }
+ a1 |= (a0 != 0); /* keep the bits for the final rounding */
+ /* compute the exponent */
+ e = a->len * JS_LIMB_BITS - shift - 1;
+ *pexp = e;
+ return a1;
+}
+
+/* shift left with round to nearest, ties to even. n >= 1 */
+static uint64_t shr_rndn(uint64_t a, int n)
+{
+ uint64_t addend = ((a >> n) & 1) + ((1 << (n - 1)) - 1);
+ return (a + addend) >> n;
+}
+
+/* convert to float64 with round to nearest, ties to even. Return
+ +/-infinity if too large. */
+static double js_bigint_to_float64(JSContext *ctx, const JSBigInt *a)
+{
+ int sgn, e;
+ uint64_t mant;
+
+ if (a->len == 1) {
+ /* fast case, including zero */
+ return (double)(js_slimb_t)a->tab[0];
+ }
+
+ sgn = js_bigint_sign(a);
+ mant = js_bigint_get_mant_exp(ctx, &e, a);
+ if (e > 1023) {
+ /* overflow: return infinity */
+ mant = 0;
+ e = 1024;
+ } else {
+ mant = (mant >> 1) | (mant & 1); /* avoid overflow in rounding */
+ mant = shr_rndn(mant, 10);
+ /* rounding can cause an overflow */
+ if (mant >= ((uint64_t)1 << 53)) {
+ mant >>= 1;
+ e++;
+ }
+ mant &= (((uint64_t)1 << 52) - 1);
+ }
+ return uint64_as_float64(((uint64_t)sgn << 63) |
+ ((uint64_t)(e + 1023) << 52) |
+ mant);
+}
+
+/* return (1, NULL) if not an integer, (2, NULL) if NaN or Infinity,
+ (0, n) if an integer, (0, NULL) in case of memory error */
+static JSBigInt *js_bigint_from_float64(JSContext *ctx, int *pres, double a1)
+{
+ uint64_t a = float64_as_uint64(a1);
+ int sgn, e, shift;
+ uint64_t mant;
+ JSBigIntBuf buf;
+ JSBigInt *r, *r1;
+
+ sgn = a >> 63;
+ e = (a >> 52) & ((1 << 11) - 1);
+ mant = a & (((uint64_t)1 << 52) - 1);
+ if (e == 2047) {
+ /* NaN, Infinity */
+ *pres = 2;
+ return NULL;
+ }
+ if (e == 0 && mant == 0) {
+ /* zero */
+ *pres = 0;
+ return js_bigint_new_si(ctx, 0);
+ }
+ e -= 1023;
+ /* 0 < a < 1 : not an integer */
+ if (e < 0)
+ goto not_an_integer;
+ mant |= (uint64_t)1 << 52;
+ if (e < 52) {
+ shift = 52 - e;
+ /* check that there is no fractional part */
+ if (mant & (((uint64_t)1 << shift) - 1)) {
+ not_an_integer:
+ *pres = 1;
+ return NULL;
+ }
+ mant >>= shift;
+ e = 0;
+ } else {
+ e -= 52;
+ }
+
+ /* the integer is mant*2^e */
+ r = &buf.big_int;
+#if JS_LIMB_BITS == 64
+ r->len = 1;
+ r->tab[0] = mant;
+#else
+ if (mant <= INT32_MAX) {
+ r->len = 1;
+ r->tab[0] = mant;
+ } else {
+ r->len = 2;
+ r->tab[0] = mant;
+ r->tab[1] = mant >> 32;
+ }
+#endif
+ /* XXX: optimize */
+ if (sgn) {
+ r = js_bigint_neg(ctx, r);
+ if (!r)
+ goto fail;
+ r1 = js_bigint_shl(ctx, r, e);
+ js_free(ctx, r);
+ if (!r1)
+ goto fail;
+ r = r1;
+ } else {
+ r = js_bigint_shl(ctx, r, e);
+ }
+ *pres = 0;
+ return r;
+ fail:
+ *pres = 0;
+ return NULL;
+}
+
+/* return -1, 0, 1 or (2) (unordered) */
+static int js_bigint_float64_cmp(JSContext *ctx, const JSBigInt *a,
+ double b)
+{
+ int b_sign, a_sign, e, f;
+ uint64_t mant, b1, a_mant;
+
+ b1 = float64_as_uint64(b);
+ b_sign = b1 >> 63;
+ e = (b1 >> 52) & ((1 << 11) - 1);
+ mant = b1 & (((uint64_t)1 << 52) - 1);
+ a_sign = js_bigint_sign(a);
+ if (e == 2047) {
+ if (mant != 0) {
+ /* NaN */
+ return 2;
+ } else {
+ /* +/- infinity */
+ return 2 * b_sign - 1;
+ }
+ } else if (e == 0 && mant == 0) {
+ /* b = +/-0 */
+ if (a->len == 1 && a->tab[0] == 0)
+ return 0;
+ else
+ return 1 - 2 * a_sign;
+ } else if (a->len == 1 && a->tab[0] == 0) {
+ /* a = 0, b != 0 */
+ return 2 * b_sign - 1;
+ } else if (a_sign != b_sign) {
+ return 1 - 2 * a_sign;
+ } else {
+ e -= 1023;
+ /* Note: handling denormals is not necessary because we
+ compare to integers hence f >= 0 */
+ /* compute f so that 2^f <= abs(a) < 2^(f+1) */
+ a_mant = js_bigint_get_mant_exp(ctx, &f, a);
+ if (f != e) {
+ if (f < e)
+ return -1;
+ else
+ return 1;
+ } else {
+ mant = (mant | ((uint64_t)1 << 52)) << 11; /* align to a_mant */
+ if (a_mant < mant)
+ return 2 * a_sign - 1;
+ else if (a_mant > mant)
+ return 1 - 2 * a_sign;
+ else
+ return 0;
+ }
+ }
+}
+
+/* return -1, 0 or 1 */
+static int js_bigint_cmp(JSContext *ctx, const JSBigInt *a,
+ const JSBigInt *b)
+{
+ int a_sign, b_sign, res, i;
+ a_sign = js_bigint_sign(a);
+ b_sign = js_bigint_sign(b);
+ if (a_sign != b_sign) {
+ res = 1 - 2 * a_sign;
+ } else {
+ /* we assume the numbers are normalized */
+ if (a->len != b->len) {
+ if (a->len < b->len)
+ res = 2 * a_sign - 1;
+ else
+ res = 1 - 2 * a_sign;
+ } else {
+ res = 0;
+ for(i = a->len -1; i >= 0; i--) {
+ if (a->tab[i] != b->tab[i]) {
+ if (a->tab[i] < b->tab[i])
+ res = -1;
+ else
+ res = 1;
+ break;
+ }
+ }
+ }
+ }
+ return res;
+}
+
+/* contains 10^i */
+static const js_limb_t js_pow_dec[JS_LIMB_DIGITS + 1] = {
+ 1U,
+ 10U,
+ 100U,
+ 1000U,
+ 10000U,
+ 100000U,
+ 1000000U,
+ 10000000U,
+ 100000000U,
+ 1000000000U,
+#if JS_LIMB_BITS == 64
+ 10000000000U,
+ 100000000000U,
+ 1000000000000U,
+ 10000000000000U,
+ 100000000000000U,
+ 1000000000000000U,
+ 10000000000000000U,
+ 100000000000000000U,
+ 1000000000000000000U,
+ 10000000000000000000U,
+#endif
+};
+
+/* syntax: [-]digits in base radix. Return NULL if memory error. radix
+ = 10, 2, 8 or 16. */
+static JSBigInt *js_bigint_from_string(JSContext *ctx,
+ const char *str, int radix)
+{
+ const char *p = str;
+ int is_neg, n_digits, n_limbs, len, log2_radix, n_bits, i;
+ JSBigInt *r;
+ js_limb_t v, c, h;
+
+ is_neg = 0;
+ if (*p == '-') {
+ is_neg = 1;
+ p++;
+ }
+ while (*p == '0')
+ p++;
+ n_digits = strlen(p);
+ log2_radix = 32 - clz32(radix - 1); /* ceil(log2(radix)) */
+ /* compute the maximum number of limbs */
+ /* XXX: overflow */
+ if (radix == 10) {
+ n_bits = (n_digits * 27 + 7) / 8; /* >= ceil(n_digits * log2(10)) */
+ } else {
+ n_bits = n_digits * log2_radix;
+ }
+ /* we add one extra bit for the sign */
+ n_limbs = max_int(1, n_bits / JS_LIMB_BITS + 1);
+ r = js_bigint_new(ctx, n_limbs);
+ if (!r)
+ return NULL;
+ if (radix == 10) {
+ int digits_per_limb = JS_LIMB_DIGITS;
+ len = 1;
+ r->tab[0] = 0;
+ for(;;) {
+ /* XXX: slow */
+ v = 0;
+ for(i = 0; i < digits_per_limb; i++) {
+ c = to_digit(*p);
+ if (c >= radix)
+ break;
+ p++;
+ v = v * 10 + c;
+ }
+ if (i == 0)
+ break;
+ if (len == 1 && r->tab[0] == 0) {
+ r->tab[0] = v;
+ } else {
+ h = mp_mul1(r->tab, r->tab, len, js_pow_dec[i], v);
+ if (h != 0) {
+ r->tab[len++] = h;
+ }
+ }
+ }
+ /* add one extra limb to have the correct sign*/
+ if ((r->tab[len - 1] >> (JS_LIMB_BITS - 1)) != 0)
+ r->tab[len++] = 0;
+ r->len = len;
+ } else {
+ unsigned int bit_pos, shift, pos;
+
+ /* power of two base: no multiplication is needed */
+ r->len = n_limbs;
+ memset(r->tab, 0, sizeof(r->tab[0]) * n_limbs);
+ for(i = 0; i < n_digits; i++) {
+ c = to_digit(p[n_digits - 1 - i]);
+ assert(c < radix);
+ bit_pos = i * log2_radix;
+ shift = bit_pos & (JS_LIMB_BITS - 1);
+ pos = bit_pos / JS_LIMB_BITS;
+ r->tab[pos] |= c << shift;
+ /* if log2_radix does not divide JS_LIMB_BITS, needed an
+ additional op */
+ if (shift + log2_radix > JS_LIMB_BITS) {
+ r->tab[pos + 1] |= c >> (JS_LIMB_BITS - shift);
+ }
+ }
+ }
+ r = js_bigint_normalize(ctx, r);
+ /* XXX: could do it in place */
+ if (is_neg) {
+ JSBigInt *r1;
+ r1 = js_bigint_neg(ctx, r);
+ js_free(ctx, r);
+ r = r1;
+ }
+ return r;
+}
+
+/* 2 <= base <= 36 */
+static char const digits[36] = "0123456789abcdefghijklmnopqrstuvwxyz";
+
+static char *u64toa(char *q, int64_t n, unsigned int base)
+{
+ int digit;
+ if (base == 10) {
+ /* division by known base uses multiplication */
+ do {
+ digit = (uint64_t)n % 10;
+ n = (uint64_t)n / 10;
+ *--q = '0' + digit;
+ } while (n != 0);
+ } else {
+ do {
+ digit = (uint64_t)n % base;
+ n = (uint64_t)n / base;
+ *--q = digits[digit];
+ } while (n != 0);
+ }
+ return q;
+}
+
+static char *i64toa(char *buf_end, int64_t n, unsigned int base)
+{
+ char *q = buf_end;
+ int is_neg;
+
+ is_neg = 0;
+ if (n < 0) {
+ is_neg = 1;
+ n = -n;
+ }
+ *--q = '\0';
+ q = u64toa(q, n, base);
+ if (is_neg)
+ *--q = '-';
+ return q;
+}
+
+/* len >= 1. 2 <= radix <= 36 */
+static char *limb_to_a(char *q, js_limb_t n, unsigned int radix, int len)
+{
+ int digit, i;
+
+ if (radix == 10) {
+ /* specific case with constant divisor */
+ /* XXX: optimize */
+ for(i = 0; i < len; i++) {
+ digit = (js_limb_t)n % 10;
+ n = (js_limb_t)n / 10;
+ *--q = digit + '0';
+ }
+ } else {
+ for(i = 0; i < len; i++) {
+ digit = (js_limb_t)n % radix;
+ n = (js_limb_t)n / radix;
+ *--q = digits[digit];
+ }
+ }
+ return q;
+}
+
+#define JS_RADIX_MAX 36
+
+static const uint8_t digits_per_limb_table[JS_RADIX_MAX - 1] = {
+#if JS_LIMB_BITS == 32
+32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+#else
+64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12,
+#endif
+};
+
+static const js_limb_t radix_base_table[JS_RADIX_MAX - 1] = {
+#if JS_LIMB_BITS == 32
+ 0x00000000, 0xcfd41b91, 0x00000000, 0x48c27395,
+ 0x81bf1000, 0x75db9c97, 0x40000000, 0xcfd41b91,
+ 0x3b9aca00, 0x8c8b6d2b, 0x19a10000, 0x309f1021,
+ 0x57f6c100, 0x98c29b81, 0x00000000, 0x18754571,
+ 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
+ 0x94ace180, 0xcaf18367, 0x0b640000, 0x0e8d4a51,
+ 0x1269ae40, 0x17179149, 0x1cb91000, 0x23744899,
+ 0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1,
+ 0x5c13d840, 0x6d91b519, 0x81bf1000,
+#else
+ 0x0000000000000000, 0xa8b8b452291fe821, 0x0000000000000000, 0x6765c793fa10079d,
+ 0x41c21cb8e1000000, 0x3642798750226111, 0x8000000000000000, 0xa8b8b452291fe821,
+ 0x8ac7230489e80000, 0x4d28cb56c33fa539, 0x1eca170c00000000, 0x780c7372621bd74d,
+ 0x1e39a5057d810000, 0x5b27ac993df97701, 0x0000000000000000, 0x27b95e997e21d9f1,
+ 0x5da0e1e53c5c8000, 0xd2ae3299c1c4aedb, 0x16bcc41e90000000, 0x2d04b7fdd9c0ef49,
+ 0x5658597bcaa24000, 0xa0e2073737609371, 0x0c29e98000000000, 0x14adf4b7320334b9,
+ 0x226ed36478bfa000, 0x383d9170b85ff80b, 0x5a3c23e39c000000, 0x8e65137388122bcd,
+ 0xdd41bb36d259e000, 0x0aee5720ee830681, 0x1000000000000000, 0x172588ad4f5f0981,
+ 0x211e44f7d02c1000, 0x2ee56725f06e5c71, 0x41c21cb8e1000000,
+#endif
+};
+
+static JSValue js_bigint_to_string1(JSContext *ctx, JSValueConst val, int radix)
+{
+ if (JS_VALUE_GET_TAG(val) == JS_TAG_SHORT_BIG_INT) {
+ char buf[66], *q;
+
+ q = i64toa(buf + sizeof(buf), JS_VALUE_GET_SHORT_BIG_INT(val), radix);
+ return JS_NewString(ctx, q);
+ } else {
+ JSBigInt *r, *tmp = NULL;
+ char *buf, *q;
+ int is_neg, n_bits, log2_radix, n_digits;
+ BOOL is_binary_radix;
+ JSValue res;
+
+ assert(JS_VALUE_GET_TAG(val) == JS_TAG_BIG_INT);
+ r = JS_VALUE_GET_PTR(val);
+ if (r->len == 1 && r->tab[0] == 0) {
+ /* '0' case */
+ return JS_NewString(ctx, "0");
+ }
+ is_binary_radix = ((radix & (radix - 1)) == 0);
+ is_neg = js_bigint_sign(r);
+ if (is_neg) {
+ tmp = js_bigint_neg(ctx, r);
+ if (!tmp)
+ return JS_EXCEPTION;
+ r = tmp;
+ } else if (!is_binary_radix) {
+ /* need to modify 'r' */
+ tmp = js_bigint_new(ctx, r->len);
+ if (!tmp)
+ return JS_EXCEPTION;
+ memcpy(tmp->tab, r->tab, r->len * sizeof(r->tab[0]));
+ r = tmp;
+ }
+ log2_radix = 31 - clz32(radix); /* floor(log2(radix)) */
+ n_bits = r->len * JS_LIMB_BITS - js_limb_clz(r->tab[r->len - 1]);
+ /* n_digits is exact only if radix is a power of
+ two. Otherwise it is >= the exact number of digits */
+ n_digits = (n_bits + log2_radix - 1) / log2_radix;
+ /* XXX: could directly build the JSString */
+ buf = js_malloc(ctx, n_digits + is_neg + 1);
+ if (!buf) {
+ js_free(ctx, tmp);
+ return JS_EXCEPTION;
+ }
+ q = buf + n_digits + is_neg + 1;
+ *--q = '\0';
+ if (!is_binary_radix) {
+ int len;
+ js_limb_t radix_base, v;
+ radix_base = radix_base_table[radix - 2];
+ len = r->len;
+ for(;;) {
+ /* remove leading zero limbs */
+ while (len > 1 && r->tab[len - 1] == 0)
+ len--;
+ if (len == 1 && r->tab[0] < radix_base) {
+ v = r->tab[0];
+ if (v != 0) {
+ q = u64toa(q, v, radix);
+ }
+ break;
+ } else {
+ v = mp_div1(r->tab, r->tab, len, radix_base, 0);
+ q = limb_to_a(q, v, radix, digits_per_limb_table[radix - 2]);
+ }
+ }
+ } else {
+ int i, shift;
+ unsigned int bit_pos, pos, c;
+
+ /* radix is a power of two */
+ for(i = 0; i < n_digits; i++) {
+ bit_pos = i * log2_radix;
+ pos = bit_pos / JS_LIMB_BITS;
+ shift = bit_pos % JS_LIMB_BITS;
+ if (likely((shift + log2_radix) <= JS_LIMB_BITS)) {
+ c = r->tab[pos] >> shift;
+ } else {
+ c = (r->tab[pos] >> shift) |
+ (r->tab[pos + 1] << (JS_LIMB_BITS - shift));
+ }
+ c &= (radix - 1);
+ *--q = digits[c];
+ }
+ }
+ if (is_neg)
+ *--q = '-';
+ js_free(ctx, tmp);
+ res = JS_NewString(ctx, q);
+ js_free(ctx, buf);
+ return res;
+ }
+}
+
+/* if possible transform a BigInt to short big and free it, otherwise
+ return a normal bigint */
+static JSValue JS_CompactBigInt(JSContext *ctx, JSBigInt *p)
+{
+ JSValue res;
+ if (p->len == 1) {
+ res = __JS_NewShortBigInt(ctx, (js_slimb_t)p->tab[0]);
+ js_free(ctx, p);
+ return res;
+ } else {
+ return JS_MKPTR(JS_TAG_BIG_INT, p);
+ }
+}
+
/* XXX: remove */
static double js_strtod(const char *str, int radix, BOOL is_float)
{
@@ -10125,96 +11411,13 @@ static double js_strtod(const char *str, int radix, BOOL is_float)
#define ATOD_TYPE_MASK (3 << 7)
#define ATOD_TYPE_FLOAT64 (0 << 7)
#define ATOD_TYPE_BIG_INT (1 << 7)
-#ifdef CONFIG_BIGNUM
-#define ATOD_TYPE_BIG_FLOAT (2 << 7)
-#define ATOD_TYPE_BIG_DECIMAL (3 << 7)
-/* assume bigint mode: floats are parsed as integers if no decimal
- point nor exponent */
-#define ATOD_MODE_BIGINT (1 << 9)
-#endif
/* accept -0x1 */
#define ATOD_ACCEPT_PREFIX_AFTER_SIGN (1 << 10)
-static JSValue js_string_to_bigint(JSContext *ctx, const char *buf,
- int radix, int flags, slimb_t *pexponent)
-{
- bf_t a_s, *a = &a_s;
- int ret;
- JSValue val;
- val = JS_NewBigInt(ctx);
- if (JS_IsException(val))
- return val;
- a = JS_GetBigInt(val);
- ret = bf_atof(a, buf, NULL, radix, BF_PREC_INF, BF_RNDZ);
- if (ret & BF_ST_MEM_ERROR) {
- JS_FreeValue(ctx, val);
- return JS_ThrowOutOfMemory(ctx);
- }
-#ifdef CONFIG_BIGNUM
- val = JS_CompactBigInt1(ctx, val, (flags & ATOD_MODE_BIGINT) != 0);
-#else
- val = JS_CompactBigInt1(ctx, val, FALSE);
-#endif
- return val;
-}
-
-#ifdef CONFIG_BIGNUM
-static JSValue js_string_to_bigfloat(JSContext *ctx, const char *buf,
- int radix, int flags, slimb_t *pexponent)
-{
- bf_t *a;
- int ret;
- JSValue val;
-
- val = JS_NewBigFloat(ctx);
- if (JS_IsException(val))
- return val;
- a = JS_GetBigFloat(val);
- if (flags & ATOD_ACCEPT_SUFFIX) {
- /* return the exponent to get infinite precision */
- ret = bf_atof2(a, pexponent, buf, NULL, radix, BF_PREC_INF,
- BF_RNDZ | BF_ATOF_EXPONENT);
- } else {
- ret = bf_atof(a, buf, NULL, radix, ctx->fp_env.prec,
- ctx->fp_env.flags);
- }
- if (ret & BF_ST_MEM_ERROR) {
- JS_FreeValue(ctx, val);
- return JS_ThrowOutOfMemory(ctx);
- }
- return val;
-}
-
-static JSValue js_string_to_bigdecimal(JSContext *ctx, const char *buf,
- int radix, int flags, slimb_t *pexponent)
-{
- bfdec_t *a;
- int ret;
- JSValue val;
-
- val = JS_NewBigDecimal(ctx);
- if (JS_IsException(val))
- return val;
- a = JS_GetBigDecimal(val);
- ret = bfdec_atof(a, buf, NULL, BF_PREC_INF,
- BF_RNDZ | BF_ATOF_NO_NAN_INF);
- if (ret & BF_ST_MEM_ERROR) {
- JS_FreeValue(ctx, val);
- return JS_ThrowOutOfMemory(ctx);
- }
- return val;
-}
-#endif
-
/* return an exception in case of memory error. Return JS_NAN if
invalid syntax */
-#ifdef CONFIG_BIGNUM
-static JSValue js_atof2(JSContext *ctx, const char *str, const char **pp,
- int radix, int flags, slimb_t *pexponent)
-#else
static JSValue js_atof(JSContext *ctx, const char *str, const char **pp,
int radix, int flags)
-#endif
{
const char *p, *p_start;
int sep, is_neg;
@@ -10278,28 +11481,12 @@ static JSValue js_atof(JSContext *ctx, const char *str, const char **pp,
} else {
no_radix_prefix:
if (!(flags & ATOD_INT_ONLY) &&
- (atod_type == ATOD_TYPE_FLOAT64
-#ifdef CONFIG_BIGNUM
- || atod_type == ATOD_TYPE_BIG_FLOAT
-#endif
- ) &&
+ (atod_type == ATOD_TYPE_FLOAT64) &&
strstart(p, "Infinity", &p)) {
-#ifdef CONFIG_BIGNUM
- if (atod_type == ATOD_TYPE_BIG_FLOAT) {
- bf_t *a;
- val = JS_NewBigFloat(ctx);
- if (JS_IsException(val))
- goto done;
- a = JS_GetBigFloat(val);
- bf_set_inf(a, is_neg);
- } else
-#endif
- {
- double d = 1.0 / 0.0;
- if (is_neg)
- d = -d;
- val = JS_NewFloat64(ctx, d);
- }
+ double d = 1.0 / 0.0;
+ if (is_neg)
+ d = -d;
+ val = JS_NewFloat64(ctx, d);
goto done;
}
}
@@ -10366,39 +11553,14 @@ static JSValue js_atof(JSContext *ctx, const char *str, const char **pp,
if (*p == 'n') {
p++;
atod_type = ATOD_TYPE_BIG_INT;
- } else
-#ifdef CONFIG_BIGNUM
- if (*p == 'l') {
- p++;
- atod_type = ATOD_TYPE_BIG_FLOAT;
- } else if (*p == 'm') {
- p++;
- atod_type = ATOD_TYPE_BIG_DECIMAL;
- } else if (flags & ATOD_MODE_BIGINT) {
- if (!is_float)
- atod_type = ATOD_TYPE_BIG_INT;
- if (has_legacy_octal)
- goto fail;
- } else
-#endif
- {
+ } else {
if (is_float && radix != 10)
goto fail;
}
} else {
if (atod_type == ATOD_TYPE_FLOAT64) {
-#ifdef CONFIG_BIGNUM
- if (flags & ATOD_MODE_BIGINT) {
- if (!is_float)
- atod_type = ATOD_TYPE_BIG_INT;
- if (has_legacy_octal)
- goto fail;
- } else
-#endif
- {
- if (is_float && radix != 10)
- goto fail;
- }
+ if (is_float && radix != 10)
+ goto fail;
}
}
@@ -10412,23 +11574,16 @@ static JSValue js_atof(JSContext *ctx, const char *str, const char **pp,
}
break;
case ATOD_TYPE_BIG_INT:
- if (has_legacy_octal || is_float)
- goto fail;
- val = ctx->rt->bigint_ops.from_string(ctx, buf, radix, flags, NULL);
- break;
-#ifdef CONFIG_BIGNUM
- case ATOD_TYPE_BIG_FLOAT:
- if (has_legacy_octal)
- goto fail;
- val = ctx->rt->bigfloat_ops.from_string(ctx, buf, radix, flags,
- pexponent);
- break;
- case ATOD_TYPE_BIG_DECIMAL:
- if (radix != 10)
- goto fail;
- val = ctx->rt->bigdecimal_ops.from_string(ctx, buf, radix, flags, NULL);
+ {
+ JSBigInt *r;
+ if (has_legacy_octal || is_float)
+ goto fail;
+ r = js_bigint_from_string(ctx, buf, radix);
+ if (!r)
+ goto mem_error;
+ val = JS_CompactBigInt(ctx, r);
+ }
break;
-#endif
default:
abort();
}
@@ -10447,14 +11602,6 @@ done:
goto done;
}
-#ifdef CONFIG_BIGNUM
-static JSValue js_atof(JSContext *ctx, const char *str, const char **pp,
- int radix, int flags)
-{
- return js_atof2(ctx, str, pp, radix, flags, NULL);
-}
-#endif
-
typedef enum JSToNumberHintEnum {
TON_FLAG_NUMBER,
TON_FLAG_NUMERIC,
@@ -10470,28 +11617,13 @@ static JSValue JS_ToNumberHintFree(JSContext *ctx, JSValue val,
tag = JS_VALUE_GET_NORM_TAG(val);
switch(tag) {
case JS_TAG_BIG_INT:
+ case JS_TAG_SHORT_BIG_INT:
if (flag != TON_FLAG_NUMERIC) {
JS_FreeValue(ctx, val);
return JS_ThrowTypeError(ctx, "cannot convert bigint to number");
}
ret = val;
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_DECIMAL:
- if (flag != TON_FLAG_NUMERIC) {
- JS_FreeValue(ctx, val);
- return JS_ThrowTypeError(ctx, "cannot convert bigdecimal to number");
- }
- ret = val;
- break;
- case JS_TAG_BIG_FLOAT:
- if (flag != TON_FLAG_NUMERIC) {
- JS_FreeValue(ctx, val);
- return JS_ThrowTypeError(ctx, "cannot convert bigfloat to number");
- }
- ret = val;
- break;
-#endif
case JS_TAG_FLOAT64:
case JS_TAG_INT:
case JS_TAG_EXCEPTION:
@@ -10568,12 +11700,10 @@ static __exception int __JS_ToFloat64Free(JSContext *ctx, double *pres,
{
double d;
uint32_t tag;
-
+
val = JS_ToNumberFree(ctx, val);
- if (JS_IsException(val)) {
- *pres = JS_FLOAT64_NAN;
- return -1;
- }
+ if (JS_IsException(val))
+ goto fail;
tag = JS_VALUE_GET_NORM_TAG(val);
switch(tag) {
case JS_TAG_INT:
@@ -10582,24 +11712,14 @@ static __exception int __JS_ToFloat64Free(JSContext *ctx, double *pres,
case JS_TAG_FLOAT64:
d = JS_VALUE_GET_FLOAT64(val);
break;
- case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
-#endif
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- /* XXX: there can be a double rounding issue with some
- primitives (such as JS_ToUint8ClampFree()), but it is
- not critical to fix it. */
- bf_get_float64(&p->num, &d, BF_RNDN);
- JS_FreeValue(ctx, val);
- }
- break;
default:
abort();
}
*pres = d;
return 0;
+ fail:
+ *pres = JS_FLOAT64_NAN;
+ return -1;
}
static inline int JS_ToFloat64Free(JSContext *ctx, double *pres, JSValue val)
@@ -10655,38 +11775,6 @@ static __maybe_unused JSValue JS_ToIntegerFree(JSContext *ctx, JSValue val)
}
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- bf_t a_s, *a, r_s, *r = &r_s;
- BOOL is_nan;
-
- a = JS_ToBigFloat(ctx, &a_s, val);
- if (!a) {
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
- }
- if (!bf_is_finite(a)) {
- is_nan = bf_is_nan(a);
- if (is_nan)
- ret = JS_NewInt32(ctx, 0);
- else
- ret = JS_DupValue(ctx, val);
- } else {
- ret = JS_NewBigInt(ctx);
- if (!JS_IsException(ret)) {
- r = JS_GetBigInt(ret);
- bf_set(r, a);
- bf_rint(r, BF_RNDZ);
- ret = JS_CompactBigInt(ctx, ret);
- }
- }
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, val);
- }
- break;
-#endif
default:
val = JS_ToNumberFree(ctx, val);
if (JS_IsException(val))
@@ -10729,15 +11817,6 @@ static int JS_ToInt32SatFree(JSContext *ctx, int *pres, JSValue val)
}
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- bf_get_int32(&ret, &p->num, 0);
- JS_FreeValue(ctx, val);
- }
- break;
-#endif
default:
val = JS_ToNumberFree(ctx, val);
if (JS_IsException(val)) {
@@ -10803,15 +11882,6 @@ static int JS_ToInt64SatFree(JSContext *ctx, int64_t *pres, JSValue val)
}
}
return 0;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- bf_get_int64(pres, &p->num, 0);
- JS_FreeValue(ctx, val);
- }
- return 0;
-#endif
default:
val = JS_ToNumberFree(ctx, val);
if (JS_IsException(val)) {
@@ -10883,15 +11953,6 @@ static int JS_ToInt64Free(JSContext *ctx, int64_t *pres, JSValue val)
}
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- bf_get_int64(&ret, &p->num, BF_GET_INT_MOD);
- JS_FreeValue(ctx, val);
- }
- break;
-#endif
default:
val = JS_ToNumberFree(ctx, val);
if (JS_IsException(val)) {
@@ -10958,15 +12019,6 @@ static int JS_ToInt32Free(JSContext *ctx, int32_t *pres, JSValue val)
}
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- bf_get_int32(&ret, &p->num, BF_GET_INT_MOD);
- JS_FreeValue(ctx, val);
- }
- break;
-#endif
default:
val = JS_ToNumberFree(ctx, val);
if (JS_IsException(val)) {
@@ -11002,9 +12054,6 @@ static int JS_ToUint8ClampFree(JSContext *ctx, int32_t *pres, JSValue val)
case JS_TAG_NULL:
case JS_TAG_UNDEFINED:
res = JS_VALUE_GET_INT(val);
-#ifdef CONFIG_BIGNUM
- int_clamp:
-#endif
res = max_int(0, min_int(255, res));
break;
case JS_TAG_FLOAT64:
@@ -11022,20 +12071,6 @@ static int JS_ToUint8ClampFree(JSContext *ctx, int32_t *pres, JSValue val)
}
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- bf_t r_s, *r = &r_s;
- bf_init(ctx->bf_ctx, r);
- bf_set(r, &p->num);
- bf_rint(r, BF_RNDN);
- bf_get_int32(&res, r, 0);
- bf_delete(r);
- JS_FreeValue(ctx, val);
- }
- goto int_clamp;
-#endif
default:
val = JS_ToNumberFree(ctx, val);
if (JS_IsException(val)) {
@@ -11066,24 +12101,6 @@ static __exception int JS_ToArrayLengthFree(JSContext *ctx, uint32_t *plen,
len = v;
}
break;
- case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
-#endif
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- bf_t a;
- BOOL res;
- bf_get_int32((int32_t *)&len, &p->num, BF_GET_INT_MOD);
- bf_init(ctx->bf_ctx, &a);
- bf_set_ui(&a, len);
- res = bf_cmp_eq(&a, &p->num);
- bf_delete(&a);
- JS_FreeValue(ctx, val);
- if (!res)
- goto fail;
- }
- break;
default:
if (JS_TAG_IS_FLOAT64(tag)) {
double d;
@@ -11189,189 +12206,23 @@ static BOOL JS_NumberIsNegativeOrMinusZero(JSContext *ctx, JSValueConst val)
u.d = JS_VALUE_GET_FLOAT64(val);
return (u.u64 >> 63);
}
+ case JS_TAG_SHORT_BIG_INT:
+ return (JS_VALUE_GET_SHORT_BIG_INT(val) < 0);
case JS_TAG_BIG_INT:
{
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- /* Note: integer zeros are not necessarily positive */
- return p->num.sign && !bf_is_zero(&p->num);
- }
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- return p->num.sign;
+ JSBigInt *p = JS_VALUE_GET_PTR(val);
+ return js_bigint_sign(p);
}
- break;
- case JS_TAG_BIG_DECIMAL:
- {
- JSBigDecimal *p = JS_VALUE_GET_PTR(val);
- return p->num.sign;
- }
- break;
-#endif
default:
return FALSE;
}
}
-static JSValue js_bigint_to_string1(JSContext *ctx, JSValueConst val, int radix)
-{
- JSValue ret;
- bf_t a_s, *a;
- char *str;
- int saved_sign;
-
- a = JS_ToBigInt(ctx, &a_s, val);
- if (!a)
- return JS_EXCEPTION;
- saved_sign = a->sign;
- if (a->expn == BF_EXP_ZERO)
- a->sign = 0;
- str = bf_ftoa(NULL, a, radix, 0, BF_RNDZ | BF_FTOA_FORMAT_FRAC |
- BF_FTOA_JS_QUIRKS);
- a->sign = saved_sign;
- JS_FreeBigInt(ctx, a, &a_s);
- if (!str)
- return JS_ThrowOutOfMemory(ctx);
- ret = JS_NewString(ctx, str);
- bf_free(ctx->bf_ctx, str);
- return ret;
-}
-
static JSValue js_bigint_to_string(JSContext *ctx, JSValueConst val)
{
return js_bigint_to_string1(ctx, val, 10);
}
-#ifdef CONFIG_BIGNUM
-
-static JSValue js_ftoa(JSContext *ctx, JSValueConst val1, int radix,
- limb_t prec, bf_flags_t flags)
-{
- JSValue val, ret;
- bf_t a_s, *a;
- char *str;
- int saved_sign;
-
- val = JS_ToNumeric(ctx, val1);
- if (JS_IsException(val))
- return val;
- a = JS_ToBigFloat(ctx, &a_s, val);
- if (!a) {
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
- }
- saved_sign = a->sign;
- if (a->expn == BF_EXP_ZERO)
- a->sign = 0;
- flags |= BF_FTOA_JS_QUIRKS;
- if ((flags & BF_FTOA_FORMAT_MASK) == BF_FTOA_FORMAT_FREE_MIN) {
- /* Note: for floating point numbers with a radix which is not
- a power of two, the current precision is used to compute
- the number of digits. */
- if ((radix & (radix - 1)) != 0) {
- bf_t r_s, *r = &r_s;
- int prec, flags1;
- /* must round first */
- if (JS_VALUE_GET_TAG(val) == JS_TAG_BIG_FLOAT) {
- prec = ctx->fp_env.prec;
- flags1 = ctx->fp_env.flags &
- (BF_FLAG_SUBNORMAL | (BF_EXP_BITS_MASK << BF_EXP_BITS_SHIFT));
- } else {
- prec = 53;
- flags1 = bf_set_exp_bits(11) | BF_FLAG_SUBNORMAL;
- }
- bf_init(ctx->bf_ctx, r);
- bf_set(r, a);
- bf_round(r, prec, flags1 | BF_RNDN);
- str = bf_ftoa(NULL, r, radix, prec, flags1 | flags);
- bf_delete(r);
- } else {
- str = bf_ftoa(NULL, a, radix, BF_PREC_INF, flags);
- }
- } else {
- str = bf_ftoa(NULL, a, radix, prec, flags);
- }
- a->sign = saved_sign;
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, val);
- if (!str)
- return JS_ThrowOutOfMemory(ctx);
- ret = JS_NewString(ctx, str);
- bf_free(ctx->bf_ctx, str);
- return ret;
-}
-
-static JSValue js_bigfloat_to_string(JSContext *ctx, JSValueConst val)
-{
- return js_ftoa(ctx, val, 10, 0, BF_RNDN | BF_FTOA_FORMAT_FREE_MIN);
-}
-
-static JSValue js_bigdecimal_to_string1(JSContext *ctx, JSValueConst val,
- limb_t prec, int flags)
-{
- JSValue ret;
- bfdec_t *a;
- char *str;
- int saved_sign;
-
- a = JS_ToBigDecimal(ctx, val);
- if (!a)
- return JS_EXCEPTION;
- saved_sign = a->sign;
- if (a->expn == BF_EXP_ZERO)
- a->sign = 0;
- str = bfdec_ftoa(NULL, a, prec, flags | BF_FTOA_JS_QUIRKS);
- a->sign = saved_sign;
- if (!str)
- return JS_ThrowOutOfMemory(ctx);
- ret = JS_NewString(ctx, str);
- bf_free(ctx->bf_ctx, str);
- return ret;
-}
-
-static JSValue js_bigdecimal_to_string(JSContext *ctx, JSValueConst val)
-{
- return js_bigdecimal_to_string1(ctx, val, 0,
- BF_RNDZ | BF_FTOA_FORMAT_FREE);
-}
-
-#endif /* CONFIG_BIGNUM */
-
-/* 2 <= base <= 36 */
-static char const digits[36] = "0123456789abcdefghijklmnopqrstuvwxyz";
-
-static char *i64toa(char *buf_end, int64_t n, unsigned int base)
-{
- char *q = buf_end;
- int digit, is_neg;
-
- is_neg = 0;
- if (n < 0) {
- is_neg = 1;
- n = -n;
- }
- *--q = '\0';
- if (base == 10) {
- /* division by known base uses multiplication */
- do {
- digit = (uint64_t)n % 10;
- n = (uint64_t)n / 10;
- *--q = '0' + digit;
- } while (n != 0);
- } else {
- do {
- digit = (uint64_t)n % base;
- n = (uint64_t)n / base;
- *--q = digits[digit];
- } while (n != 0);
- }
- if (is_neg)
- *--q = '-';
- return q;
-}
-
/* buf1 contains the printf result */
static void js_ecvt1(double d, int n_digits, int *decpt, int *sign, char *buf,
int rounding_mode, char *buf1, int buf1_size)
@@ -11734,14 +12585,9 @@ JSValue JS_ToStringInternal(JSContext *ctx, JSValueConst val, BOOL is_ToProperty
case JS_TAG_FLOAT64:
return js_dtoa(ctx, JS_VALUE_GET_FLOAT64(val), 10, 0,
JS_DTOA_VAR_FORMAT);
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
- return ctx->rt->bigint_ops.to_string(ctx, val);
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- return ctx->rt->bigfloat_ops.to_string(ctx, val);
- case JS_TAG_BIG_DECIMAL:
- return ctx->rt->bigdecimal_ops.to_string(ctx, val);
-#endif
+ return js_bigint_to_string(ctx, val);
default:
str = "[unsupported type]";
new_string:
@@ -12025,6 +12871,8 @@ static __maybe_unused void JS_DumpValueShort(JSRuntime *rt,
case JS_TAG_FLOAT64:
printf("%.14g", JS_VALUE_GET_FLOAT64(val));
break;
+#if 0
+ /* XXX: TODO */
case JS_TAG_BIG_INT:
{
JSBigFloat *p = JS_VALUE_GET_PTR(val);
@@ -12035,27 +12883,6 @@ static __maybe_unused void JS_DumpValueShort(JSRuntime *rt,
bf_realloc(&rt->bf_ctx, str, 0);
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- char *str;
- str = bf_ftoa(NULL, &p->num, 16, BF_PREC_INF,
- BF_RNDZ | BF_FTOA_FORMAT_FREE | BF_FTOA_ADD_PREFIX);
- printf("%sl", str);
- bf_free(&rt->bf_ctx, str);
- }
- break;
- case JS_TAG_BIG_DECIMAL:
- {
- JSBigDecimal *p = JS_VALUE_GET_PTR(val);
- char *str;
- str = bfdec_ftoa(NULL, &p->num, BF_PREC_INF,
- BF_RNDZ | BF_FTOA_FORMAT_FREE);
- printf("%sm", str);
- bf_free(&rt->bf_ctx, str);
- }
- break;
#endif
case JS_TAG_STRING:
{
@@ -12136,48 +12963,34 @@ static double js_pow(double a, double b)
}
}
-JSValue JS_NewBigInt64_1(JSContext *ctx, int64_t v)
-{
- JSValue val;
- bf_t *a;
- val = JS_NewBigInt(ctx);
- if (JS_IsException(val))
- return val;
- a = JS_GetBigInt(val);
- if (bf_set_si(a, v)) {
- JS_FreeValue(ctx, val);
- return JS_ThrowOutOfMemory(ctx);
- }
- return val;
-}
-
JSValue JS_NewBigInt64(JSContext *ctx, int64_t v)
{
- if (is_math_mode(ctx) &&
- v >= -MAX_SAFE_INTEGER && v <= MAX_SAFE_INTEGER) {
- return JS_NewInt64(ctx, v);
+#if JS_SHORT_BIG_INT_BITS == 64
+ return __JS_NewShortBigInt(ctx, v);
+#else
+ if (v >= JS_SHORT_BIG_INT_MIN && v <= JS_SHORT_BIG_INT_MAX) {
+ return __JS_NewShortBigInt(ctx, v);
} else {
- return JS_NewBigInt64_1(ctx, v);
+ JSBigInt *p;
+ p = js_bigint_new_si64(ctx, v);
+ if (!p)
+ return JS_EXCEPTION;
+ return JS_MKPTR(JS_TAG_BIG_INT, p);
}
+#endif
}
JSValue JS_NewBigUint64(JSContext *ctx, uint64_t v)
{
- JSValue val;
- if (is_math_mode(ctx) && v <= MAX_SAFE_INTEGER) {
- val = JS_NewInt64(ctx, v);
+ if (v <= JS_SHORT_BIG_INT_MAX) {
+ return __JS_NewShortBigInt(ctx, v);
} else {
- bf_t *a;
- val = JS_NewBigInt(ctx);
- if (JS_IsException(val))
- return val;
- a = JS_GetBigInt(val);
- if (bf_set_ui(a, v)) {
- JS_FreeValue(ctx, val);
- return JS_ThrowOutOfMemory(ctx);
- }
+ JSBigInt *p;
+ p = js_bigint_new_ui64(ctx, v);
+ if (!p)
+ return JS_EXCEPTION;
+ return JS_MKPTR(JS_TAG_BIG_INT, p);
}
- return val;
}
/* return NaN if bad bigint literal */
@@ -12197,10 +13010,6 @@ static JSValue JS_StringToBigInt(JSContext *ctx, JSValue val)
val = JS_NewBigInt64(ctx, 0);
} else {
flags = ATOD_INT_ONLY | ATOD_ACCEPT_BIN_OCT | ATOD_TYPE_BIG_INT;
-#ifdef CONFIG_BIGNUM
- if (is_math_mode(ctx))
- flags |= ATOD_MODE_BIGINT;
-#endif
val = js_atof(ctx, p, &p, 0, flags);
p += skip_spaces(p);
if (!JS_IsException(val)) {
@@ -12222,785 +13031,77 @@ static JSValue JS_StringToBigIntErr(JSContext *ctx, JSValue val)
return val;
}
-/* if the returned bigfloat is allocated it is equal to
- 'buf'. Otherwise it is a pointer to the bigfloat in 'val'. */
-static bf_t *JS_ToBigIntFree(JSContext *ctx, bf_t *buf, JSValue val)
+/* JS Numbers are not allowed */
+static JSValue JS_ToBigIntFree(JSContext *ctx, JSValue val)
{
uint32_t tag;
- bf_t *r;
- JSBigFloat *p;
redo:
tag = JS_VALUE_GET_NORM_TAG(val);
switch(tag) {
+ case JS_TAG_SHORT_BIG_INT:
+ case JS_TAG_BIG_INT:
+ break;
case JS_TAG_INT:
case JS_TAG_NULL:
case JS_TAG_UNDEFINED:
- if (!is_math_mode(ctx))
- goto fail;
- /* fall tru */
- case JS_TAG_BOOL:
- r = buf;
- bf_init(ctx->bf_ctx, r);
- bf_set_si(r, JS_VALUE_GET_INT(val));
- break;
case JS_TAG_FLOAT64:
- {
- double d = JS_VALUE_GET_FLOAT64(val);
- if (!is_math_mode(ctx))
- goto fail;
- if (!isfinite(d))
- goto fail;
- r = buf;
- bf_init(ctx->bf_ctx, r);
- d = trunc(d);
- bf_set_float64(r, d);
- }
- break;
- case JS_TAG_BIG_INT:
- p = JS_VALUE_GET_PTR(val);
- r = &p->num;
- break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- if (!is_math_mode(ctx))
- goto fail;
- p = JS_VALUE_GET_PTR(val);
- if (!bf_is_finite(&p->num))
- goto fail;
- r = buf;
- bf_init(ctx->bf_ctx, r);
- bf_set(r, &p->num);
- bf_rint(r, BF_RNDZ);
- JS_FreeValue(ctx, val);
+ goto fail;
+ case JS_TAG_BOOL:
+ val = __JS_NewShortBigInt(ctx, JS_VALUE_GET_INT(val));
break;
-#endif
case JS_TAG_STRING:
val = JS_StringToBigIntErr(ctx, val);
if (JS_IsException(val))
- return NULL;
+ return val;
goto redo;
case JS_TAG_OBJECT:
val = JS_ToPrimitiveFree(ctx, val, HINT_NUMBER);
if (JS_IsException(val))
- return NULL;
+ return val;
goto redo;
default:
fail:
JS_FreeValue(ctx, val);
- JS_ThrowTypeError(ctx, "cannot convert to bigint");
- return NULL;
- }
- return r;
-}
-
-static bf_t *JS_ToBigInt(JSContext *ctx, bf_t *buf, JSValueConst val)
-{
- return JS_ToBigIntFree(ctx, buf, JS_DupValue(ctx, val));
-}
-
-static __maybe_unused JSValue JS_ToBigIntValueFree(JSContext *ctx, JSValue val)
-{
- if (JS_VALUE_GET_TAG(val) == JS_TAG_BIG_INT) {
- return val;
- } else {
- bf_t a_s, *a, *r;
- int ret;
- JSValue res;
-
- res = JS_NewBigInt(ctx);
- if (JS_IsException(res))
- return JS_EXCEPTION;
- a = JS_ToBigIntFree(ctx, &a_s, val);
- if (!a) {
- JS_FreeValue(ctx, res);
- return JS_EXCEPTION;
- }
- r = JS_GetBigInt(res);
- ret = bf_set(r, a);
- JS_FreeBigInt(ctx, a, &a_s);
- if (ret) {
- JS_FreeValue(ctx, res);
- return JS_ThrowOutOfMemory(ctx);
- }
- return JS_CompactBigInt(ctx, res);
+ return JS_ThrowTypeError(ctx, "cannot convert to bigint");
}
+ return val;
}
-/* free the bf_t allocated by JS_ToBigInt */
-static void JS_FreeBigInt(JSContext *ctx, bf_t *a, bf_t *buf)
+static JSValue JS_ToBigInt(JSContext *ctx, JSValueConst val)
{
- if (a == buf) {
- bf_delete(a);
- } else {
- JSBigFloat *p = (JSBigFloat *)((uint8_t *)a -
- offsetof(JSBigFloat, num));
- JS_FreeValue(ctx, JS_MKPTR(JS_TAG_BIG_INT, p));
- }
+ return JS_ToBigIntFree(ctx, JS_DupValue(ctx, val));
}
-/* XXX: merge with JS_ToInt64Free with a specific flag */
+/* XXX: merge with JS_ToInt64Free with a specific flag ? */
static int JS_ToBigInt64Free(JSContext *ctx, int64_t *pres, JSValue val)
{
- bf_t a_s, *a;
+ uint64_t res;
- a = JS_ToBigIntFree(ctx, &a_s, val);
- if (!a) {
+ val = JS_ToBigIntFree(ctx, val);
+ if (JS_IsException(val)) {
*pres = 0;
return -1;
}
- bf_get_int64(pres, a, BF_GET_INT_MOD);
- JS_FreeBigInt(ctx, a, &a_s);
- return 0;
-}
-
-int JS_ToBigInt64(JSContext *ctx, int64_t *pres, JSValueConst val)
-{
- return JS_ToBigInt64Free(ctx, pres, JS_DupValue(ctx, val));
-}
-
-static JSBigFloat *js_new_bf(JSContext *ctx)
-{
- JSBigFloat *p;
- p = js_malloc(ctx, sizeof(*p));
- if (!p)
- return NULL;
- p->header.ref_count = 1;
- bf_init(ctx->bf_ctx, &p->num);
- return p;
-}
-
-static JSValue JS_NewBigInt(JSContext *ctx)
-{
- JSBigFloat *p;
- p = js_malloc(ctx, sizeof(*p));
- if (!p)
- return JS_EXCEPTION;
- p->header.ref_count = 1;
- bf_init(ctx->bf_ctx, &p->num);
- return JS_MKPTR(JS_TAG_BIG_INT, p);
-}
-
-static JSValue JS_CompactBigInt1(JSContext *ctx, JSValue val,
- BOOL convert_to_safe_integer)
-{
- int64_t v;
- bf_t *a;
-
- if (JS_VALUE_GET_TAG(val) != JS_TAG_BIG_INT)
- return val; /* fail safe */
- a = JS_GetBigInt(val);
- if (convert_to_safe_integer && bf_get_int64(&v, a, 0) == 0 &&
- v >= -MAX_SAFE_INTEGER && v <= MAX_SAFE_INTEGER) {
- JS_FreeValue(ctx, val);
- return JS_NewInt64(ctx, v);
- } else if (a->expn == BF_EXP_ZERO && a->sign) {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- assert(p->header.ref_count == 1);
- a->sign = 0;
- }
- return val;
-}
-
-/* Convert the big int to a safe integer if in math mode. normalize
- the zero representation. Could also be used to convert the bigint
- to a short bigint value. The reference count of the value must be
- 1. Cannot fail */
-static JSValue JS_CompactBigInt(JSContext *ctx, JSValue val)
-{
- return JS_CompactBigInt1(ctx, val, is_math_mode(ctx));
-}
-
-static JSValue throw_bf_exception(JSContext *ctx, int status)
-{
- const char *str;
- if (status & BF_ST_MEM_ERROR)
- return JS_ThrowOutOfMemory(ctx);
- if (status & BF_ST_DIVIDE_ZERO) {
- str = "division by zero";
- } else if (status & BF_ST_INVALID_OP) {
- str = "invalid operation";
+ if (JS_VALUE_GET_TAG(val) == JS_TAG_SHORT_BIG_INT) {
+ res = JS_VALUE_GET_SHORT_BIG_INT(val);
} else {
- str = "integer overflow";
- }
- return JS_ThrowRangeError(ctx, "%s", str);
-}
-
-/* if the returned bigfloat is allocated it is equal to
- 'buf'. Otherwise it is a pointer to the bigfloat in 'val'. Return
- NULL in case of error. */
-static bf_t *JS_ToBigFloat(JSContext *ctx, bf_t *buf, JSValueConst val)
-{
- uint32_t tag;
- bf_t *r;
- JSBigFloat *p;
-
- tag = JS_VALUE_GET_NORM_TAG(val);
- switch(tag) {
- case JS_TAG_INT:
- case JS_TAG_BOOL:
- case JS_TAG_NULL:
- r = buf;
- bf_init(ctx->bf_ctx, r);
- if (bf_set_si(r, JS_VALUE_GET_INT(val)))
- goto fail;
- break;
- case JS_TAG_FLOAT64:
- r = buf;
- bf_init(ctx->bf_ctx, r);
- if (bf_set_float64(r, JS_VALUE_GET_FLOAT64(val))) {
- fail:
- bf_delete(r);
- return NULL;
- }
- break;
- case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
+ JSBigInt *p = JS_VALUE_GET_PTR(val);
+ /* return the value mod 2^64 */
+ res = p->tab[0];
+#if JS_LIMB_BITS == 32
+ if (p->len >= 2)
+ res |= (uint64_t)p->tab[1] << 32;
#endif
- p = JS_VALUE_GET_PTR(val);
- r = &p->num;
- break;
- case JS_TAG_UNDEFINED:
- default:
- r = buf;
- bf_init(ctx->bf_ctx, r);
- bf_set_nan(r);
- break;
- }
- return r;
-}
-
-#ifdef CONFIG_BIGNUM
-/* return NULL if invalid type */
-static bfdec_t *JS_ToBigDecimal(JSContext *ctx, JSValueConst val)
-{
- uint32_t tag;
- JSBigDecimal *p;
- bfdec_t *r;
-
- tag = JS_VALUE_GET_NORM_TAG(val);
- switch(tag) {
- case JS_TAG_BIG_DECIMAL:
- p = JS_VALUE_GET_PTR(val);
- r = &p->num;
- break;
- default:
- JS_ThrowTypeError(ctx, "bigdecimal expected");
- r = NULL;
- break;
- }
- return r;
-}
-
-static JSValue JS_NewBigFloat(JSContext *ctx)
-{
- JSBigFloat *p;
- p = js_malloc(ctx, sizeof(*p));
- if (!p)
- return JS_EXCEPTION;
- p->header.ref_count = 1;
- bf_init(ctx->bf_ctx, &p->num);
- return JS_MKPTR(JS_TAG_BIG_FLOAT, p);
-}
-
-static JSValue JS_NewBigDecimal(JSContext *ctx)
-{
- JSBigDecimal *p;
- p = js_malloc(ctx, sizeof(*p));
- if (!p)
- return JS_EXCEPTION;
- p->header.ref_count = 1;
- bfdec_init(ctx->bf_ctx, &p->num);
- return JS_MKPTR(JS_TAG_BIG_DECIMAL, p);
-}
-
-/* must be kept in sync with JSOverloadableOperatorEnum */
-/* XXX: use atoms ? */
-static const char js_overloadable_operator_names[JS_OVOP_COUNT][4] = {
- "+",
- "-",
- "*",
- "/",
- "%",
- "**",
- "|",
- "&",
- "^",
- "<<",
- ">>",
- ">>>",
- "==",
- "<",
- "pos",
- "neg",
- "++",
- "--",
- "~",
-};
-
-static int get_ovop_from_opcode(OPCodeEnum op)
-{
- switch(op) {
- case OP_add:
- return JS_OVOP_ADD;
- case OP_sub:
- return JS_OVOP_SUB;
- case OP_mul:
- return JS_OVOP_MUL;
- case OP_div:
- return JS_OVOP_DIV;
- case OP_mod:
- case OP_math_mod:
- return JS_OVOP_MOD;
- case OP_pow:
- return JS_OVOP_POW;
- case OP_or:
- return JS_OVOP_OR;
- case OP_and:
- return JS_OVOP_AND;
- case OP_xor:
- return JS_OVOP_XOR;
- case OP_shl:
- return JS_OVOP_SHL;
- case OP_sar:
- return JS_OVOP_SAR;
- case OP_shr:
- return JS_OVOP_SHR;
- case OP_eq:
- case OP_neq:
- return JS_OVOP_EQ;
- case OP_lt:
- case OP_lte:
- case OP_gt:
- case OP_gte:
- return JS_OVOP_LESS;
- case OP_plus:
- return JS_OVOP_POS;
- case OP_neg:
- return JS_OVOP_NEG;
- case OP_inc:
- return JS_OVOP_INC;
- case OP_dec:
- return JS_OVOP_DEC;
- default:
- abort();
- }
-}
-
-/* return NULL if not present */
-static JSObject *find_binary_op(JSBinaryOperatorDef *def,
- uint32_t operator_index,
- JSOverloadableOperatorEnum op)
-{
- JSBinaryOperatorDefEntry *ent;
- int i;
- for(i = 0; i < def->count; i++) {
- ent = &def->tab[i];
- if (ent->operator_index == operator_index)
- return ent->ops[op];
- }
- return NULL;
-}
-
-/* return -1 if exception, 0 if no operator overloading, 1 if
- overloaded operator called */
-static __exception int js_call_binary_op_fallback(JSContext *ctx,
- JSValue *pret,
- JSValueConst op1,
- JSValueConst op2,
- OPCodeEnum op,
- BOOL is_numeric,
- int hint)
-{
- JSValue opset1_obj, opset2_obj, method, ret, new_op1, new_op2;
- JSOperatorSetData *opset1, *opset2;
- JSOverloadableOperatorEnum ovop;
- JSObject *p;
- JSValueConst args[2];
-
- if (!ctx->allow_operator_overloading)
- return 0;
-
- opset2_obj = JS_UNDEFINED;
- opset1_obj = JS_GetProperty(ctx, op1, JS_ATOM_Symbol_operatorSet);
- if (JS_IsException(opset1_obj))
- goto exception;
- if (JS_IsUndefined(opset1_obj))
- return 0;
- opset1 = JS_GetOpaque2(ctx, opset1_obj, JS_CLASS_OPERATOR_SET);
- if (!opset1)
- goto exception;
-
- opset2_obj = JS_GetProperty(ctx, op2, JS_ATOM_Symbol_operatorSet);
- if (JS_IsException(opset2_obj))
- goto exception;
- if (JS_IsUndefined(opset2_obj)) {
- JS_FreeValue(ctx, opset1_obj);
- return 0;
- }
- opset2 = JS_GetOpaque2(ctx, opset2_obj, JS_CLASS_OPERATOR_SET);
- if (!opset2)
- goto exception;
-
- if (opset1->is_primitive && opset2->is_primitive) {
- JS_FreeValue(ctx, opset1_obj);
- JS_FreeValue(ctx, opset2_obj);
- return 0;
- }
-
- ovop = get_ovop_from_opcode(op);
-
- if (opset1->operator_counter == opset2->operator_counter) {
- p = opset1->self_ops[ovop];
- } else if (opset1->operator_counter > opset2->operator_counter) {
- p = find_binary_op(&opset1->left, opset2->operator_counter, ovop);
- } else {
- p = find_binary_op(&opset2->right, opset1->operator_counter, ovop);
- }
- if (!p) {
- JS_ThrowTypeError(ctx, "operator %s: no function defined",
- js_overloadable_operator_names[ovop]);
- goto exception;
- }
-
- if (opset1->is_primitive) {
- if (is_numeric) {
- new_op1 = JS_ToNumeric(ctx, op1);
- } else {
- new_op1 = JS_ToPrimitive(ctx, op1, hint);
- }
- if (JS_IsException(new_op1))
- goto exception;
- } else {
- new_op1 = JS_DupValue(ctx, op1);
- }
-
- if (opset2->is_primitive) {
- if (is_numeric) {
- new_op2 = JS_ToNumeric(ctx, op2);
- } else {
- new_op2 = JS_ToPrimitive(ctx, op2, hint);
- }
- if (JS_IsException(new_op2)) {
- JS_FreeValue(ctx, new_op1);
- goto exception;
- }
- } else {
- new_op2 = JS_DupValue(ctx, op2);
- }
-
- /* XXX: could apply JS_ToPrimitive() if primitive type so that the
- operator function does not get a value object */
-
- method = JS_DupValue(ctx, JS_MKPTR(JS_TAG_OBJECT, p));
- if (ovop == JS_OVOP_LESS && (op == OP_lte || op == OP_gt)) {
- args[0] = new_op2;
- args[1] = new_op1;
- } else {
- args[0] = new_op1;
- args[1] = new_op2;
- }
- ret = JS_CallFree(ctx, method, JS_UNDEFINED, 2, args);
- JS_FreeValue(ctx, new_op1);
- JS_FreeValue(ctx, new_op2);
- if (JS_IsException(ret))
- goto exception;
- if (ovop == JS_OVOP_EQ) {
- BOOL res = JS_ToBoolFree(ctx, ret);
- if (op == OP_neq)
- res ^= 1;
- ret = JS_NewBool(ctx, res);
- } else if (ovop == JS_OVOP_LESS) {
- if (JS_IsUndefined(ret)) {
- ret = JS_FALSE;
- } else {
- BOOL res = JS_ToBoolFree(ctx, ret);
- if (op == OP_lte || op == OP_gte)
- res ^= 1;
- ret = JS_NewBool(ctx, res);
- }
- }
- JS_FreeValue(ctx, opset1_obj);
- JS_FreeValue(ctx, opset2_obj);
- *pret = ret;
- return 1;
- exception:
- JS_FreeValue(ctx, opset1_obj);
- JS_FreeValue(ctx, opset2_obj);
- *pret = JS_UNDEFINED;
- return -1;
-}
-
-/* try to call the operation on the operatorSet field of 'obj'. Only
- used for "/" and "**" on the BigInt prototype in math mode */
-static __exception int js_call_binary_op_simple(JSContext *ctx,
- JSValue *pret,
- JSValueConst obj,
- JSValueConst op1,
- JSValueConst op2,
- OPCodeEnum op)
-{
- JSValue opset1_obj, method, ret, new_op1, new_op2;
- JSOperatorSetData *opset1;
- JSOverloadableOperatorEnum ovop;
- JSObject *p;
- JSValueConst args[2];
-
- opset1_obj = JS_GetProperty(ctx, obj, JS_ATOM_Symbol_operatorSet);
- if (JS_IsException(opset1_obj))
- goto exception;
- if (JS_IsUndefined(opset1_obj))
- return 0;
- opset1 = JS_GetOpaque2(ctx, opset1_obj, JS_CLASS_OPERATOR_SET);
- if (!opset1)
- goto exception;
- ovop = get_ovop_from_opcode(op);
-
- p = opset1->self_ops[ovop];
- if (!p) {
- JS_FreeValue(ctx, opset1_obj);
- return 0;
- }
-
- new_op1 = JS_ToNumeric(ctx, op1);
- if (JS_IsException(new_op1))
- goto exception;
- new_op2 = JS_ToNumeric(ctx, op2);
- if (JS_IsException(new_op2)) {
- JS_FreeValue(ctx, new_op1);
- goto exception;
- }
-
- method = JS_DupValue(ctx, JS_MKPTR(JS_TAG_OBJECT, p));
- args[0] = new_op1;
- args[1] = new_op2;
- ret = JS_CallFree(ctx, method, JS_UNDEFINED, 2, args);
- JS_FreeValue(ctx, new_op1);
- JS_FreeValue(ctx, new_op2);
- if (JS_IsException(ret))
- goto exception;
- JS_FreeValue(ctx, opset1_obj);
- *pret = ret;
- return 1;
- exception:
- JS_FreeValue(ctx, opset1_obj);
- *pret = JS_UNDEFINED;
- return -1;
-}
-
-/* return -1 if exception, 0 if no operator overloading, 1 if
- overloaded operator called */
-static __exception int js_call_unary_op_fallback(JSContext *ctx,
- JSValue *pret,
- JSValueConst op1,
- OPCodeEnum op)
-{
- JSValue opset1_obj, method, ret;
- JSOperatorSetData *opset1;
- JSOverloadableOperatorEnum ovop;
- JSObject *p;
-
- if (!ctx->allow_operator_overloading)
- return 0;
-
- opset1_obj = JS_GetProperty(ctx, op1, JS_ATOM_Symbol_operatorSet);
- if (JS_IsException(opset1_obj))
- goto exception;
- if (JS_IsUndefined(opset1_obj))
- return 0;
- opset1 = JS_GetOpaque2(ctx, opset1_obj, JS_CLASS_OPERATOR_SET);
- if (!opset1)
- goto exception;
- if (opset1->is_primitive) {
- JS_FreeValue(ctx, opset1_obj);
- return 0;
- }
-
- ovop = get_ovop_from_opcode(op);
-
- p = opset1->self_ops[ovop];
- if (!p) {
- JS_ThrowTypeError(ctx, "no overloaded operator %s",
- js_overloadable_operator_names[ovop]);
- goto exception;
- }
- method = JS_DupValue(ctx, JS_MKPTR(JS_TAG_OBJECT, p));
- ret = JS_CallFree(ctx, method, JS_UNDEFINED, 1, &op1);
- if (JS_IsException(ret))
- goto exception;
- JS_FreeValue(ctx, opset1_obj);
- *pret = ret;
- return 1;
- exception:
- JS_FreeValue(ctx, opset1_obj);
- *pret = JS_UNDEFINED;
- return -1;
-}
-
-static int js_unary_arith_bigfloat(JSContext *ctx,
- JSValue *pres, OPCodeEnum op, JSValue op1)
-{
- bf_t a_s, *r, *a;
- int ret, v;
- JSValue res;
-
- if (op == OP_plus && !is_math_mode(ctx)) {
- JS_ThrowTypeError(ctx, "bigfloat argument with unary +");
- JS_FreeValue(ctx, op1);
- return -1;
- }
-
- res = JS_NewBigFloat(ctx);
- if (JS_IsException(res)) {
- JS_FreeValue(ctx, op1);
- return -1;
- }
- r = JS_GetBigFloat(res);
- a = JS_ToBigFloat(ctx, &a_s, op1);
- if (!a) {
- JS_FreeValue(ctx, res);
- JS_FreeValue(ctx, op1);
- return -1;
- }
- ret = 0;
- switch(op) {
- case OP_inc:
- case OP_dec:
- v = 2 * (op - OP_dec) - 1;
- ret = bf_add_si(r, a, v, ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- case OP_plus:
- ret = bf_set(r, a);
- break;
- case OP_neg:
- ret = bf_set(r, a);
- bf_neg(r);
- break;
- default:
- abort();
- }
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, op1);
- if (unlikely(ret & BF_ST_MEM_ERROR)) {
- JS_FreeValue(ctx, res);
- throw_bf_exception(ctx, ret);
- return -1;
- }
- *pres = res;
- return 0;
-}
-
-static int js_unary_arith_bigdecimal(JSContext *ctx,
- JSValue *pres, OPCodeEnum op, JSValue op1)
-{
- bfdec_t *r, *a;
- int ret, v;
- JSValue res;
-
- if (op == OP_plus && !is_math_mode(ctx)) {
- JS_ThrowTypeError(ctx, "bigdecimal argument with unary +");
- JS_FreeValue(ctx, op1);
- return -1;
- }
-
- res = JS_NewBigDecimal(ctx);
- if (JS_IsException(res)) {
- JS_FreeValue(ctx, op1);
- return -1;
- }
- r = JS_GetBigDecimal(res);
- a = JS_ToBigDecimal(ctx, op1);
- if (!a) {
- JS_FreeValue(ctx, res);
- JS_FreeValue(ctx, op1);
- return -1;
- }
- ret = 0;
- switch(op) {
- case OP_inc:
- case OP_dec:
- v = 2 * (op - OP_dec) - 1;
- ret = bfdec_add_si(r, a, v, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_plus:
- ret = bfdec_set(r, a);
- break;
- case OP_neg:
- ret = bfdec_set(r, a);
- bfdec_neg(r);
- break;
- default:
- abort();
- }
- JS_FreeValue(ctx, op1);
- if (unlikely(ret)) {
- JS_FreeValue(ctx, res);
- throw_bf_exception(ctx, ret);
- return -1;
+ JS_FreeValue(ctx, val);
}
*pres = res;
return 0;
}
-#endif /* CONFIG_BIGNUM */
-
-static int js_unary_arith_bigint(JSContext *ctx,
- JSValue *pres, OPCodeEnum op, JSValue op1)
+int JS_ToBigInt64(JSContext *ctx, int64_t *pres, JSValueConst val)
{
- bf_t a_s, *r, *a;
- int ret, v;
- JSValue res;
-
- if (op == OP_plus && !is_math_mode(ctx)) {
- JS_ThrowTypeError(ctx, "bigint argument with unary +");
- JS_FreeValue(ctx, op1);
- return -1;
- }
- res = JS_NewBigInt(ctx);
- if (JS_IsException(res)) {
- JS_FreeValue(ctx, op1);
- return -1;
- }
- r = JS_GetBigInt(res);
- a = JS_ToBigInt(ctx, &a_s, op1);
- if (!a) {
- JS_FreeValue(ctx, res);
- JS_FreeValue(ctx, op1);
- return -1;
- }
- ret = 0;
- switch(op) {
- case OP_inc:
- case OP_dec:
- v = 2 * (op - OP_dec) - 1;
- ret = bf_add_si(r, a, v, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_plus:
- ret = bf_set(r, a);
- break;
- case OP_neg:
- ret = bf_set(r, a);
- bf_neg(r);
- break;
- case OP_not:
- ret = bf_add_si(r, a, 1, BF_PREC_INF, BF_RNDZ);
- bf_neg(r);
- break;
- default:
- abort();
- }
- JS_FreeBigInt(ctx, a, &a_s);
- JS_FreeValue(ctx, op1);
- if (unlikely(ret)) {
- JS_FreeValue(ctx, res);
- throw_bf_exception(ctx, ret);
- return -1;
- }
- res = JS_CompactBigInt(ctx, res);
- *pres = res;
- return 0;
+ return JS_ToBigInt64Free(ctx, pres, JS_DupValue(ctx, val));
}
static no_inline __exception int js_unary_arith_slow(JSContext *ctx,
@@ -13010,24 +13111,13 @@ static no_inline __exception int js_unary_arith_slow(JSContext *ctx,
JSValue op1;
int v;
uint32_t tag;
+ JSBigIntBuf buf1;
+ JSBigInt *p1;
op1 = sp[-1];
/* fast path for float64 */
if (JS_TAG_IS_FLOAT64(JS_VALUE_GET_TAG(op1)))
goto handle_float64;
-#ifdef CONFIG_BIGNUM
- if (JS_IsObject(op1)) {
- JSValue val;
- int ret = js_call_unary_op_fallback(ctx, &val, op1, op);
- if (ret < 0)
- return -1;
- if (ret) {
- JS_FreeValue(ctx, op1);
- sp[-1] = val;
- return 0;
- }
- }
-#endif
op1 = JS_ToNumericFree(ctx, op1);
if (JS_IsException(op1))
goto exception;
@@ -13059,27 +13149,75 @@ static no_inline __exception int js_unary_arith_slow(JSContext *ctx,
sp[-1] = JS_NewInt64(ctx, v64);
}
break;
- case JS_TAG_BIG_INT:
- handle_bigint:
- if (ctx->rt->bigint_ops.unary_arith(ctx, sp - 1, op, op1))
- goto exception;
- break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- if (ctx->rt->bigfloat_ops.unary_arith(ctx, sp - 1, op, op1))
- goto exception;
+ case JS_TAG_SHORT_BIG_INT:
+ {
+ int64_t v;
+ v = JS_VALUE_GET_SHORT_BIG_INT(op1);
+ switch(op) {
+ case OP_plus:
+ JS_ThrowTypeError(ctx, "bigint argument with unary +");
+ goto exception;
+ case OP_inc:
+ if (v == JS_SHORT_BIG_INT_MAX)
+ goto bigint_slow_case;
+ sp[-1] = __JS_NewShortBigInt(ctx, v + 1);
+ break;
+ case OP_dec:
+ if (v == JS_SHORT_BIG_INT_MIN)
+ goto bigint_slow_case;
+ sp[-1] = __JS_NewShortBigInt(ctx, v - 1);
+ break;
+ case OP_neg:
+ v = JS_VALUE_GET_SHORT_BIG_INT(op1);
+ if (v == JS_SHORT_BIG_INT_MIN) {
+ bigint_slow_case:
+ p1 = js_bigint_set_short(&buf1, op1);
+ goto bigint_slow_case1;
+ }
+ sp[-1] = __JS_NewShortBigInt(ctx, -v);
+ break;
+ default:
+ abort();
+ }
+ }
break;
- case JS_TAG_BIG_DECIMAL:
- if (ctx->rt->bigdecimal_ops.unary_arith(ctx, sp - 1, op, op1))
- goto exception;
+ case JS_TAG_BIG_INT:
+ {
+ JSBigInt *r;
+ p1 = JS_VALUE_GET_PTR(op1);
+ bigint_slow_case1:
+ switch(op) {
+ case OP_plus:
+ JS_ThrowTypeError(ctx, "bigint argument with unary +");
+ goto exception;
+ case OP_inc:
+ case OP_dec:
+ {
+ JSBigIntBuf buf2;
+ JSBigInt *p2;
+ p2 = js_bigint_set_si(&buf2, 2 * (op - OP_dec) - 1);
+ r = js_bigint_add(ctx, p1, p2, 0);
+ }
+ break;
+ case OP_neg:
+ r = js_bigint_neg(ctx, p1);
+ break;
+ case OP_not:
+ r = js_bigint_not(ctx, p1);
+ break;
+ default:
+ abort();
+ }
+ JS_FreeValue(ctx, op1);
+ if (!r)
+ goto exception;
+ sp[-1] = JS_CompactBigInt(ctx, r);
+ }
break;
-#endif
default:
handle_float64:
{
double d;
- if (is_math_mode(ctx))
- goto handle_bigint;
d = JS_VALUE_GET_FLOAT64(op1);
switch(op) {
case OP_inc:
@@ -13127,25 +13265,18 @@ static no_inline int js_not_slow(JSContext *ctx, JSValue *sp)
JSValue op1;
op1 = sp[-1];
-#ifdef CONFIG_BIGNUM
- if (JS_IsObject(op1)) {
- JSValue val;
- int ret = js_call_unary_op_fallback(ctx, &val, op1, OP_not);
- if (ret < 0)
- return -1;
- if (ret) {
- JS_FreeValue(ctx, op1);
- sp[-1] = val;
- return 0;
- }
- }
-#endif
op1 = JS_ToNumericFree(ctx, op1);
if (JS_IsException(op1))
goto exception;
- if (is_math_mode(ctx) || JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT) {
- if (ctx->rt->bigint_ops.unary_arith(ctx, sp - 1, OP_not, op1))
+ if (JS_VALUE_GET_TAG(op1) == JS_TAG_SHORT_BIG_INT) {
+ sp[-1] = __JS_NewShortBigInt(ctx, ~JS_VALUE_GET_SHORT_BIG_INT(op1));
+ } else if (JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT) {
+ JSBigInt *r;
+ r = js_bigint_not(ctx, JS_VALUE_GET_PTR(op1));
+ JS_FreeValue(ctx, op1);
+ if (!r)
goto exception;
+ sp[-1] = JS_CompactBigInt(ctx, r);
} else {
int32_t v1;
if (unlikely(JS_ToInt32Free(ctx, &v1, op1)))
@@ -13158,328 +13289,6 @@ static no_inline int js_not_slow(JSContext *ctx, JSValue *sp)
return -1;
}
-static int js_binary_arith_bigint(JSContext *ctx, OPCodeEnum op,
- JSValue *pres, JSValue op1, JSValue op2)
-{
- bf_t a_s, b_s, *r, *a, *b;
- int ret;
- JSValue res;
-
- res = JS_NewBigInt(ctx);
- if (JS_IsException(res))
- goto fail;
- a = JS_ToBigInt(ctx, &a_s, op1);
- if (!a)
- goto fail;
- b = JS_ToBigInt(ctx, &b_s, op2);
- if (!b) {
- JS_FreeBigInt(ctx, a, &a_s);
- goto fail;
- }
- r = JS_GetBigInt(res);
- ret = 0;
- switch(op) {
- case OP_add:
- ret = bf_add(r, a, b, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_sub:
- ret = bf_sub(r, a, b, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_mul:
- ret = bf_mul(r, a, b, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_div:
- if (!is_math_mode(ctx)) {
- bf_t rem_s, *rem = &rem_s;
- bf_init(ctx->bf_ctx, rem);
- ret = bf_divrem(r, rem, a, b, BF_PREC_INF, BF_RNDZ,
- BF_RNDZ);
- bf_delete(rem);
- } else {
- goto math_mode_div_pow;
- }
- break;
-#ifdef CONFIG_BIGNUM
- case OP_math_mod:
- /* Euclidian remainder */
- ret = bf_rem(r, a, b, BF_PREC_INF, BF_RNDZ,
- BF_DIVREM_EUCLIDIAN) & BF_ST_INVALID_OP;
- break;
-#endif
- case OP_mod:
- ret = bf_rem(r, a, b, BF_PREC_INF, BF_RNDZ,
- BF_RNDZ) & BF_ST_INVALID_OP;
- break;
- case OP_pow:
- if (b->sign) {
- if (!is_math_mode(ctx)) {
- ret = BF_ST_INVALID_OP;
- } else {
- math_mode_div_pow:
-#ifdef CONFIG_BIGNUM
- JS_FreeValue(ctx, res);
- ret = js_call_binary_op_simple(ctx, &res, ctx->class_proto[JS_CLASS_BIG_INT], op1, op2, op);
- if (ret != 0) {
- JS_FreeBigInt(ctx, a, &a_s);
- JS_FreeBigInt(ctx, b, &b_s);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (ret < 0) {
- return -1;
- } else {
- *pres = res;
- return 0;
- }
- }
- /* if no BigInt power operator defined, return a
- bigfloat */
- res = JS_NewBigFloat(ctx);
- if (JS_IsException(res)) {
- JS_FreeBigInt(ctx, a, &a_s);
- JS_FreeBigInt(ctx, b, &b_s);
- goto fail;
- }
- r = JS_GetBigFloat(res);
- if (op == OP_div) {
- ret = bf_div(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags) & BF_ST_MEM_ERROR;
- } else {
- ret = bf_pow(r, a, b, ctx->fp_env.prec,
- ctx->fp_env.flags | BF_POW_JS_QUIRKS) & BF_ST_MEM_ERROR;
- }
- JS_FreeBigInt(ctx, a, &a_s);
- JS_FreeBigInt(ctx, b, &b_s);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (unlikely(ret)) {
- JS_FreeValue(ctx, res);
- throw_bf_exception(ctx, ret);
- return -1;
- }
- *pres = res;
- return 0;
-#else
- abort();
-#endif
- }
- } else {
- ret = bf_pow(r, a, b, BF_PREC_INF, BF_RNDZ | BF_POW_JS_QUIRKS);
- }
- break;
-
- /* logical operations */
- case OP_shl:
- case OP_sar:
- {
- slimb_t v2;
-#if LIMB_BITS == 32
- bf_get_int32(&v2, b, 0);
- if (v2 == INT32_MIN)
- v2 = INT32_MIN + 1;
-#else
- bf_get_int64(&v2, b, 0);
- if (v2 == INT64_MIN)
- v2 = INT64_MIN + 1;
-#endif
- if (op == OP_sar)
- v2 = -v2;
- ret = bf_set(r, a);
- ret |= bf_mul_2exp(r, v2, BF_PREC_INF, BF_RNDZ);
- if (v2 < 0) {
- ret |= bf_rint(r, BF_RNDD) & (BF_ST_OVERFLOW | BF_ST_MEM_ERROR);
- }
- }
- break;
- case OP_and:
- ret = bf_logic_and(r, a, b);
- break;
- case OP_or:
- ret = bf_logic_or(r, a, b);
- break;
- case OP_xor:
- ret = bf_logic_xor(r, a, b);
- break;
- default:
- abort();
- }
- JS_FreeBigInt(ctx, a, &a_s);
- JS_FreeBigInt(ctx, b, &b_s);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (unlikely(ret)) {
- JS_FreeValue(ctx, res);
- throw_bf_exception(ctx, ret);
- return -1;
- }
- *pres = JS_CompactBigInt(ctx, res);
- return 0;
- fail:
- JS_FreeValue(ctx, res);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- return -1;
-}
-
-#ifdef CONFIG_BIGNUM
-static int js_binary_arith_bigfloat(JSContext *ctx, OPCodeEnum op,
- JSValue *pres, JSValue op1, JSValue op2)
-{
- bf_t a_s, b_s, *r, *a, *b;
- int ret;
- JSValue res;
-
- res = JS_NewBigFloat(ctx);
- if (JS_IsException(res))
- goto fail;
- r = JS_GetBigFloat(res);
- a = JS_ToBigFloat(ctx, &a_s, op1);
- if (!a) {
- JS_FreeValue(ctx, res);
- goto fail;
- }
- b = JS_ToBigFloat(ctx, &b_s, op2);
- if (!b) {
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, res);
- goto fail;
- }
- bf_init(ctx->bf_ctx, r);
- switch(op) {
- case OP_add:
- ret = bf_add(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- case OP_sub:
- ret = bf_sub(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- case OP_mul:
- ret = bf_mul(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- case OP_div:
- ret = bf_div(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- case OP_math_mod:
- /* Euclidian remainder */
- ret = bf_rem(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags,
- BF_DIVREM_EUCLIDIAN);
- break;
- case OP_mod:
- ret = bf_rem(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags,
- BF_RNDZ);
- break;
- case OP_pow:
- ret = bf_pow(r, a, b, ctx->fp_env.prec,
- ctx->fp_env.flags | BF_POW_JS_QUIRKS);
- break;
- default:
- abort();
- }
- if (a == &a_s)
- bf_delete(a);
- if (b == &b_s)
- bf_delete(b);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (unlikely(ret & BF_ST_MEM_ERROR)) {
- JS_FreeValue(ctx, res);
- throw_bf_exception(ctx, ret);
- return -1;
- }
- *pres = res;
- return 0;
- fail:
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- return -1;
-}
-
-/* b must be a positive integer */
-static int js_bfdec_pow(bfdec_t *r, const bfdec_t *a, const bfdec_t *b)
-{
- bfdec_t b1;
- int32_t b2;
- int ret;
-
- bfdec_init(b->ctx, &b1);
- ret = bfdec_set(&b1, b);
- if (ret) {
- bfdec_delete(&b1);
- return ret;
- }
- ret = bfdec_rint(&b1, BF_RNDZ);
- if (ret) {
- bfdec_delete(&b1);
- return BF_ST_INVALID_OP; /* must be an integer */
- }
- ret = bfdec_get_int32(&b2, &b1);
- bfdec_delete(&b1);
- if (ret)
- return ret; /* overflow */
- if (b2 < 0)
- return BF_ST_INVALID_OP; /* must be positive */
- return bfdec_pow_ui(r, a, b2);
-}
-
-static int js_binary_arith_bigdecimal(JSContext *ctx, OPCodeEnum op,
- JSValue *pres, JSValue op1, JSValue op2)
-{
- bfdec_t *r, *a, *b;
- int ret;
- JSValue res;
-
- res = JS_NewBigDecimal(ctx);
- if (JS_IsException(res))
- goto fail;
- r = JS_GetBigDecimal(res);
-
- a = JS_ToBigDecimal(ctx, op1);
- if (!a)
- goto fail;
- b = JS_ToBigDecimal(ctx, op2);
- if (!b)
- goto fail;
- switch(op) {
- case OP_add:
- ret = bfdec_add(r, a, b, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_sub:
- ret = bfdec_sub(r, a, b, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_mul:
- ret = bfdec_mul(r, a, b, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_div:
- ret = bfdec_div(r, a, b, BF_PREC_INF, BF_RNDZ);
- break;
- case OP_math_mod:
- /* Euclidian remainder */
- ret = bfdec_rem(r, a, b, BF_PREC_INF, BF_RNDZ, BF_DIVREM_EUCLIDIAN);
- break;
- case OP_mod:
- ret = bfdec_rem(r, a, b, BF_PREC_INF, BF_RNDZ, BF_RNDZ);
- break;
- case OP_pow:
- ret = js_bfdec_pow(r, a, b);
- break;
- default:
- abort();
- }
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (unlikely(ret)) {
- JS_FreeValue(ctx, res);
- throw_bf_exception(ctx, ret);
- return -1;
- }
- *pres = res;
- return 0;
- fail:
- JS_FreeValue(ctx, res);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- return -1;
-}
-#endif /* CONFIG_BIGNUM */
-
static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *sp,
OPCodeEnum op)
{
@@ -13497,28 +13306,50 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s
d2 = JS_VALUE_GET_FLOAT64(op2);
goto handle_float64;
}
-
-#ifdef CONFIG_BIGNUM
- /* try to call an overloaded operator */
- if ((tag1 == JS_TAG_OBJECT &&
- (tag2 != JS_TAG_NULL && tag2 != JS_TAG_UNDEFINED)) ||
- (tag2 == JS_TAG_OBJECT &&
- (tag1 != JS_TAG_NULL && tag1 != JS_TAG_UNDEFINED))) {
- JSValue res;
- int ret = js_call_binary_op_fallback(ctx, &res, op1, op2, op, TRUE, 0);
- if (ret != 0) {
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (ret < 0) {
- goto exception;
- } else {
- sp[-2] = res;
- return 0;
+ /* fast path for short big int operations */
+ if (tag1 == JS_TAG_SHORT_BIG_INT && tag2 == JS_TAG_SHORT_BIG_INT) {
+ js_slimb_t v1, v2;
+ js_sdlimb_t v;
+ v1 = JS_VALUE_GET_SHORT_BIG_INT(op1);
+ v2 = JS_VALUE_GET_SHORT_BIG_INT(op2);
+ switch(op) {
+ case OP_sub:
+ v = (js_sdlimb_t)v1 - (js_sdlimb_t)v2;
+ break;
+ case OP_mul:
+ v = (js_sdlimb_t)v1 * (js_sdlimb_t)v2;
+ break;
+ case OP_div:
+ if (v2 == 0 ||
+ ((js_limb_t)v1 == (js_limb_t)1 << (JS_LIMB_BITS - 1) &&
+ v2 == -1)) {
+ goto slow_big_int;
+ }
+ sp[-2] = __JS_NewShortBigInt(ctx, v1 / v2);
+ return 0;
+ case OP_mod:
+ if (v2 == 0 ||
+ ((js_limb_t)v1 == (js_limb_t)1 << (JS_LIMB_BITS - 1) &&
+ v2 == -1)) {
+ goto slow_big_int;
}
+ sp[-2] = __JS_NewShortBigInt(ctx, v1 % v2);
+ return 0;
+ case OP_pow:
+ goto slow_big_int;
+ default:
+ abort();
}
+ if (likely(v >= JS_SHORT_BIG_INT_MIN && v <= JS_SHORT_BIG_INT_MAX)) {
+ sp[-2] = __JS_NewShortBigInt(ctx, v);
+ } else {
+ JSBigInt *r = js_bigint_new_di(ctx, v);
+ if (!r)
+ goto exception;
+ sp[-2] = JS_MKPTR(JS_TAG_BIG_INT, r);
+ }
+ return 0;
}
-#endif
-
op1 = JS_ToNumericFree(ctx, op1);
if (JS_IsException(op1)) {
JS_FreeValue(ctx, op2);
@@ -13543,34 +13374,14 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s
break;
case OP_mul:
v = (int64_t)v1 * (int64_t)v2;
- if (is_math_mode(ctx) &&
- (v < -MAX_SAFE_INTEGER || v > MAX_SAFE_INTEGER))
- goto handle_bigint;
if (v == 0 && (v1 | v2) < 0) {
sp[-2] = __JS_NewFloat64(ctx, -0.0);
return 0;
}
break;
case OP_div:
- if (is_math_mode(ctx))
- goto handle_bigint;
- sp[-2] = __JS_NewFloat64(ctx, (double)v1 / (double)v2);
+ sp[-2] = JS_NewFloat64(ctx, (double)v1 / (double)v2);
return 0;
-#ifdef CONFIG_BIGNUM
- case OP_math_mod:
- if (unlikely(v2 == 0)) {
- throw_bf_exception(ctx, BF_ST_DIVIDE_ZERO);
- goto exception;
- }
- v = (int64_t)v1 % (int64_t)v2;
- if (v < 0) {
- if (v2 < 0)
- v -= v2;
- else
- v += v2;
- }
- break;
-#endif
case OP_mod:
if (v1 < 0 || v2 <= 0) {
sp[-2] = JS_NewFloat64(ctx, fmod(v1, v2));
@@ -13580,31 +13391,53 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s
}
break;
case OP_pow:
- if (!is_math_mode(ctx)) {
- sp[-2] = JS_NewFloat64(ctx, js_pow(v1, v2));
- return 0;
- } else {
- goto handle_bigint;
- }
- break;
+ sp[-2] = JS_NewFloat64(ctx, js_pow(v1, v2));
+ return 0;
default:
abort();
}
sp[-2] = JS_NewInt64(ctx, v);
- } else
-#ifdef CONFIG_BIGNUM
- if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) {
- if (ctx->rt->bigdecimal_ops.binary_arith(ctx, op, sp - 2, op1, op2))
- goto exception;
- } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) {
- if (ctx->rt->bigfloat_ops.binary_arith(ctx, op, sp - 2, op1, op2))
- goto exception;
- } else
-#endif
- if (tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) {
- handle_bigint:
- if (ctx->rt->bigint_ops.binary_arith(ctx, op, sp - 2, op1, op2))
+ } else if ((tag1 == JS_TAG_SHORT_BIG_INT || tag1 == JS_TAG_BIG_INT) &&
+ (tag2 == JS_TAG_SHORT_BIG_INT || tag2 == JS_TAG_BIG_INT)) {
+ JSBigInt *p1, *p2, *r;
+ JSBigIntBuf buf1, buf2;
+ slow_big_int:
+ /* bigint result */
+ if (JS_VALUE_GET_TAG(op1) == JS_TAG_SHORT_BIG_INT)
+ p1 = js_bigint_set_short(&buf1, op1);
+ else
+ p1 = JS_VALUE_GET_PTR(op1);
+ if (JS_VALUE_GET_TAG(op2) == JS_TAG_SHORT_BIG_INT)
+ p2 = js_bigint_set_short(&buf2, op2);
+ else
+ p2 = JS_VALUE_GET_PTR(op2);
+ switch(op) {
+ case OP_add:
+ r = js_bigint_add(ctx, p1, p2, 0);
+ break;
+ case OP_sub:
+ r = js_bigint_add(ctx, p1, p2, 1);
+ break;
+ case OP_mul:
+ r = js_bigint_mul(ctx, p1, p2);
+ break;
+ case OP_div:
+ r = js_bigint_divrem(ctx, p1, p2, FALSE);
+ break;
+ case OP_mod:
+ r = js_bigint_divrem(ctx, p1, p2, TRUE);
+ break;
+ case OP_pow:
+ r = js_bigint_pow(ctx, p1, p2);
+ break;
+ default:
+ abort();
+ }
+ JS_FreeValue(ctx, op1);
+ JS_FreeValue(ctx, op2);
+ if (!r)
goto exception;
+ sp[-2] = JS_CompactBigInt(ctx, r);
} else {
double dr;
/* float64 result */
@@ -13615,8 +13448,6 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s
if (JS_ToFloat64Free(ctx, &d2, op2))
goto exception;
handle_float64:
- if (is_math_mode(ctx) && is_safe_integer(d1) && is_safe_integer(d2))
- goto handle_bigint;
switch(op) {
case OP_sub:
dr = d1 - d2;
@@ -13630,15 +13461,6 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s
case OP_mod:
dr = fmod(d1, d2);
break;
-#ifdef CONFIG_BIGNUM
- case OP_math_mod:
- d2 = fabs(d2);
- dr = fmod(d1, d2);
- /* XXX: loss of accuracy if dr < 0 */
- if (dr < 0)
- dr += d2;
- break;
-#endif
case OP_pow:
dr = js_pow(d1, d2);
break;
@@ -13672,31 +13494,25 @@ static no_inline __exception int js_add_slow(JSContext *ctx, JSValue *sp)
sp[-2] = __JS_NewFloat64(ctx, d1 + d2);
return 0;
}
-
- if (tag1 == JS_TAG_OBJECT || tag2 == JS_TAG_OBJECT) {
-#ifdef CONFIG_BIGNUM
- /* try to call an overloaded operator */
- if ((tag1 == JS_TAG_OBJECT &&
- (tag2 != JS_TAG_NULL && tag2 != JS_TAG_UNDEFINED &&
- tag2 != JS_TAG_STRING)) ||
- (tag2 == JS_TAG_OBJECT &&
- (tag1 != JS_TAG_NULL && tag1 != JS_TAG_UNDEFINED &&
- tag1 != JS_TAG_STRING))) {
- JSValue res;
- int ret = js_call_binary_op_fallback(ctx, &res, op1, op2, OP_add,
- FALSE, HINT_NONE);
- if (ret != 0) {
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (ret < 0) {
- goto exception;
- } else {
- sp[-2] = res;
- return 0;
- }
- }
+ /* fast path for short bigint */
+ if (tag1 == JS_TAG_SHORT_BIG_INT && tag2 == JS_TAG_SHORT_BIG_INT) {
+ js_slimb_t v1, v2;
+ js_sdlimb_t v;
+ v1 = JS_VALUE_GET_SHORT_BIG_INT(op1);
+ v2 = JS_VALUE_GET_SHORT_BIG_INT(op2);
+ v = (js_sdlimb_t)v1 + (js_sdlimb_t)v2;
+ if (likely(v >= JS_SHORT_BIG_INT_MIN && v <= JS_SHORT_BIG_INT_MAX)) {
+ sp[-2] = __JS_NewShortBigInt(ctx, v);
+ } else {
+ JSBigInt *r = js_bigint_new_di(ctx, v);
+ if (!r)
+ goto exception;
+ sp[-2] = JS_MKPTR(JS_TAG_BIG_INT, r);
}
-#endif
+ return 0;
+ }
+
+ if (tag1 == JS_TAG_OBJECT || tag2 == JS_TAG_OBJECT) {
op1 = JS_ToPrimitiveFree(ctx, op1, HINT_NONE);
if (JS_IsException(op1)) {
JS_FreeValue(ctx, op2);
@@ -13739,20 +13555,25 @@ static no_inline __exception int js_add_slow(JSContext *ctx, JSValue *sp)
v2 = JS_VALUE_GET_INT(op2);
v = (int64_t)v1 + (int64_t)v2;
sp[-2] = JS_NewInt64(ctx, v);
- } else
-#ifdef CONFIG_BIGNUM
- if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) {
- if (ctx->rt->bigdecimal_ops.binary_arith(ctx, OP_add, sp - 2, op1, op2))
- goto exception;
- } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) {
- if (ctx->rt->bigfloat_ops.binary_arith(ctx, OP_add, sp - 2, op1, op2))
- goto exception;
- } else
-#endif
- if (tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) {
- handle_bigint:
- if (ctx->rt->bigint_ops.binary_arith(ctx, OP_add, sp - 2, op1, op2))
+ } else if ((tag1 == JS_TAG_BIG_INT || tag1 == JS_TAG_SHORT_BIG_INT) &&
+ (tag2 == JS_TAG_BIG_INT || tag2 == JS_TAG_SHORT_BIG_INT)) {
+ JSBigInt *p1, *p2, *r;
+ JSBigIntBuf buf1, buf2;
+ /* bigint result */
+ if (JS_VALUE_GET_TAG(op1) == JS_TAG_SHORT_BIG_INT)
+ p1 = js_bigint_set_short(&buf1, op1);
+ else
+ p1 = JS_VALUE_GET_PTR(op1);
+ if (JS_VALUE_GET_TAG(op2) == JS_TAG_SHORT_BIG_INT)
+ p2 = js_bigint_set_short(&buf2, op2);
+ else
+ p2 = JS_VALUE_GET_PTR(op2);
+ r = js_bigint_add(ctx, p1, p2, 0);
+ JS_FreeValue(ctx, op1);
+ JS_FreeValue(ctx, op2);
+ if (!r)
goto exception;
+ sp[-2] = JS_CompactBigInt(ctx, r);
} else {
double d1, d2;
/* float64 result */
@@ -13762,8 +13583,6 @@ static no_inline __exception int js_add_slow(JSContext *ctx, JSValue *sp)
}
if (JS_ToFloat64Free(ctx, &d2, op2))
goto exception;
- if (is_math_mode(ctx) && is_safe_integer(d1) && is_safe_integer(d2))
- goto handle_bigint;
sp[-2] = __JS_NewFloat64(ctx, d1 + d2);
}
return 0;
@@ -13786,27 +13605,62 @@ static no_inline __exception int js_binary_logic_slow(JSContext *ctx,
tag1 = JS_VALUE_GET_NORM_TAG(op1);
tag2 = JS_VALUE_GET_NORM_TAG(op2);
-#ifdef CONFIG_BIGNUM
- /* try to call an overloaded operator */
- if ((tag1 == JS_TAG_OBJECT &&
- (tag2 != JS_TAG_NULL && tag2 != JS_TAG_UNDEFINED)) ||
- (tag2 == JS_TAG_OBJECT &&
- (tag1 != JS_TAG_NULL && tag1 != JS_TAG_UNDEFINED))) {
- JSValue res;
- int ret = js_call_binary_op_fallback(ctx, &res, op1, op2, op, TRUE, 0);
- if (ret != 0) {
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (ret < 0) {
- goto exception;
+ if (tag1 == JS_TAG_SHORT_BIG_INT && tag2 == JS_TAG_SHORT_BIG_INT) {
+ js_slimb_t v1, v2, v;
+ js_sdlimb_t vd;
+ v1 = JS_VALUE_GET_SHORT_BIG_INT(op1);
+ v2 = JS_VALUE_GET_SHORT_BIG_INT(op2);
+ /* bigint fast path */
+ switch(op) {
+ case OP_and:
+ v = v1 & v2;
+ break;
+ case OP_or:
+ v = v1 | v2;
+ break;
+ case OP_xor:
+ v = v1 ^ v2;
+ break;
+ case OP_sar:
+ if (v2 > (JS_LIMB_BITS - 1)) {
+ goto slow_big_int;
+ } else if (v2 < 0) {
+ if (v2 < -(JS_LIMB_BITS - 1))
+ goto slow_big_int;
+ v2 = -v2;
+ goto bigint_shl;
+ }
+ bigint_sar:
+ v = v1 >> v2;
+ break;
+ case OP_shl:
+ if (v2 > (JS_LIMB_BITS - 1)) {
+ goto slow_big_int;
+ } else if (v2 < 0) {
+ if (v2 < -(JS_LIMB_BITS - 1))
+ goto slow_big_int;
+ v2 = -v2;
+ goto bigint_sar;
+ }
+ bigint_shl:
+ vd = (js_sdlimb_t)v1 << v2;
+ if (likely(vd >= JS_SHORT_BIG_INT_MIN &&
+ vd <= JS_SHORT_BIG_INT_MAX)) {
+ v = vd;
} else {
- sp[-2] = res;
+ JSBigInt *r = js_bigint_new_di(ctx, vd);
+ if (!r)
+ goto exception;
+ sp[-2] = JS_MKPTR(JS_TAG_BIG_INT, r);
return 0;
}
+ break;
+ default:
+ abort();
}
+ sp[-2] = __JS_NewShortBigInt(ctx, v);
+ return 0;
}
-#endif
-
op1 = JS_ToNumericFree(ctx, op1);
if (JS_IsException(op1)) {
JS_FreeValue(ctx, op2);
@@ -13818,22 +13672,52 @@ static no_inline __exception int js_binary_logic_slow(JSContext *ctx,
goto exception;
}
- if (is_math_mode(ctx))
- goto bigint_op;
-
tag1 = JS_VALUE_GET_TAG(op1);
tag2 = JS_VALUE_GET_TAG(op2);
- if (tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) {
- if (tag1 != tag2) {
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- JS_ThrowTypeError(ctx, "both operands must be bigint");
- goto exception;
- } else {
- bigint_op:
- if (ctx->rt->bigint_ops.binary_arith(ctx, op, sp - 2, op1, op2))
- goto exception;
+ if ((tag1 == JS_TAG_BIG_INT || tag1 == JS_TAG_SHORT_BIG_INT) &&
+ (tag2 == JS_TAG_BIG_INT || tag2 == JS_TAG_SHORT_BIG_INT)) {
+ JSBigInt *p1, *p2, *r;
+ JSBigIntBuf buf1, buf2;
+ slow_big_int:
+ if (JS_VALUE_GET_TAG(op1) == JS_TAG_SHORT_BIG_INT)
+ p1 = js_bigint_set_short(&buf1, op1);
+ else
+ p1 = JS_VALUE_GET_PTR(op1);
+ if (JS_VALUE_GET_TAG(op2) == JS_TAG_SHORT_BIG_INT)
+ p2 = js_bigint_set_short(&buf2, op2);
+ else
+ p2 = JS_VALUE_GET_PTR(op2);
+ switch(op) {
+ case OP_and:
+ case OP_or:
+ case OP_xor:
+ r = js_bigint_logic(ctx, p1, p2, op);
+ break;
+ case OP_shl:
+ case OP_sar:
+ {
+ js_slimb_t shift;
+ shift = js_bigint_get_si_sat(p2);
+ if (shift > INT32_MAX)
+ shift = INT32_MAX;
+ else if (shift < -INT32_MAX)
+ shift = -INT32_MAX;
+ if (op == OP_sar)
+ shift = -shift;
+ if (shift >= 0)
+ r = js_bigint_shl(ctx, p1, shift);
+ else
+ r = js_bigint_shr(ctx, p1, -shift);
+ }
+ break;
+ default:
+ abort();
}
+ JS_FreeValue(ctx, op1);
+ JS_FreeValue(ctx, op2);
+ if (!r)
+ goto exception;
+ sp[-2] = JS_CompactBigInt(ctx, r);
} else {
if (unlikely(JS_ToInt32Free(ctx, (int32_t *)&v1, op1))) {
JS_FreeValue(ctx, op2);
@@ -13869,100 +13753,98 @@ static no_inline __exception int js_binary_logic_slow(JSContext *ctx,
return -1;
}
-/* Note: also used for bigint */
-static int js_compare_bigfloat(JSContext *ctx, OPCodeEnum op,
- JSValue op1, JSValue op2)
+/* op1 must be a bigint or int. */
+static JSBigInt *JS_ToBigIntBuf(JSContext *ctx, JSBigIntBuf *buf1,
+ JSValue op1)
{
- bf_t a_s, b_s, *a, *b;
- int res;
-
- a = JS_ToBigFloat(ctx, &a_s, op1);
- if (!a) {
- JS_FreeValue(ctx, op2);
- return -1;
- }
- b = JS_ToBigFloat(ctx, &b_s, op2);
- if (!b) {
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, op1);
- return -1;
- }
- switch(op) {
- case OP_lt:
- res = bf_cmp_lt(a, b); /* if NaN return false */
- break;
- case OP_lte:
- res = bf_cmp_le(a, b); /* if NaN return false */
- break;
- case OP_gt:
- res = bf_cmp_lt(b, a); /* if NaN return false */
+ JSBigInt *p1;
+
+ switch(JS_VALUE_GET_TAG(op1)) {
+ case JS_TAG_INT:
+ p1 = js_bigint_set_si(buf1, JS_VALUE_GET_INT(op1));
break;
- case OP_gte:
- res = bf_cmp_le(b, a); /* if NaN return false */
+ case JS_TAG_SHORT_BIG_INT:
+ p1 = js_bigint_set_short(buf1, op1);
break;
- case OP_eq:
- res = bf_cmp_eq(a, b); /* if NaN return false */
+ case JS_TAG_BIG_INT:
+ p1 = JS_VALUE_GET_PTR(op1);
break;
default:
abort();
}
- if (a == &a_s)
- bf_delete(a);
- if (b == &b_s)
- bf_delete(b);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- return res;
+ return p1;
}
-#ifdef CONFIG_BIGNUM
-static int js_compare_bigdecimal(JSContext *ctx, OPCodeEnum op,
- JSValue op1, JSValue op2)
+/* op1 and op2 must be numeric types and at least one must be a
+ bigint. No exception is generated. */
+static int js_compare_bigint(JSContext *ctx, OPCodeEnum op,
+ JSValue op1, JSValue op2)
{
- bfdec_t *a, *b;
- int res;
-
- /* Note: binary floats are converted to bigdecimal with
- toString(). It is not mathematically correct but is consistent
- with the BigDecimal() constructor behavior */
- op1 = JS_ToBigDecimalFree(ctx, op1, TRUE);
- if (JS_IsException(op1)) {
- JS_FreeValue(ctx, op2);
- return -1;
- }
- op2 = JS_ToBigDecimalFree(ctx, op2, TRUE);
- if (JS_IsException(op2)) {
+ int res, val, tag1, tag2;
+ JSBigIntBuf buf1, buf2;
+ JSBigInt *p1, *p2;
+
+ tag1 = JS_VALUE_GET_NORM_TAG(op1);
+ tag2 = JS_VALUE_GET_NORM_TAG(op2);
+ if ((tag1 == JS_TAG_SHORT_BIG_INT || tag1 == JS_TAG_INT) &&
+ (tag2 == JS_TAG_SHORT_BIG_INT || tag2 == JS_TAG_INT)) {
+ /* fast path */
+ js_slimb_t v1, v2;
+ if (tag1 == JS_TAG_INT)
+ v1 = JS_VALUE_GET_INT(op1);
+ else
+ v1 = JS_VALUE_GET_SHORT_BIG_INT(op1);
+ if (tag2 == JS_TAG_INT)
+ v2 = JS_VALUE_GET_INT(op2);
+ else
+ v2 = JS_VALUE_GET_SHORT_BIG_INT(op2);
+ val = (v1 > v2) - (v1 < v2);
+ } else {
+ if (tag1 == JS_TAG_FLOAT64) {
+ p2 = JS_ToBigIntBuf(ctx, &buf2, op2);
+ val = js_bigint_float64_cmp(ctx, p2, JS_VALUE_GET_FLOAT64(op1));
+ if (val == 2)
+ goto unordered;
+ val = -val;
+ } else if (tag2 == JS_TAG_FLOAT64) {
+ p1 = JS_ToBigIntBuf(ctx, &buf1, op1);
+ val = js_bigint_float64_cmp(ctx, p1, JS_VALUE_GET_FLOAT64(op2));
+ if (val == 2) {
+ unordered:
+ JS_FreeValue(ctx, op1);
+ JS_FreeValue(ctx, op2);
+ return FALSE;
+ }
+ } else {
+ p1 = JS_ToBigIntBuf(ctx, &buf1, op1);
+ p2 = JS_ToBigIntBuf(ctx, &buf2, op2);
+ val = js_bigint_cmp(ctx, p1, p2);
+ }
JS_FreeValue(ctx, op1);
- return -1;
+ JS_FreeValue(ctx, op2);
}
- a = JS_ToBigDecimal(ctx, op1); /* cannot fail */
- b = JS_ToBigDecimal(ctx, op2); /* cannot fail */
switch(op) {
case OP_lt:
- res = bfdec_cmp_lt(a, b); /* if NaN return false */
+ res = val < 0;
break;
case OP_lte:
- res = bfdec_cmp_le(a, b); /* if NaN return false */
+ res = val <= 0;
break;
case OP_gt:
- res = bfdec_cmp_lt(b, a); /* if NaN return false */
+ res = val > 0;
break;
case OP_gte:
- res = bfdec_cmp_le(b, a); /* if NaN return false */
+ res = val >= 0;
break;
case OP_eq:
- res = bfdec_cmp_eq(a, b); /* if NaN return false */
+ res = val == 0;
break;
default:
abort();
}
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
return res;
}
-#endif /* !CONFIG_BIGNUM */
static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp,
OPCodeEnum op)
@@ -13975,27 +13857,6 @@ static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp,
op2 = sp[-1];
tag1 = JS_VALUE_GET_NORM_TAG(op1);
tag2 = JS_VALUE_GET_NORM_TAG(op2);
-#ifdef CONFIG_BIGNUM
- /* try to call an overloaded operator */
- if ((tag1 == JS_TAG_OBJECT &&
- (tag2 != JS_TAG_NULL && tag2 != JS_TAG_UNDEFINED)) ||
- (tag2 == JS_TAG_OBJECT &&
- (tag1 != JS_TAG_NULL && tag1 != JS_TAG_UNDEFINED))) {
- JSValue ret;
- res = js_call_binary_op_fallback(ctx, &ret, op1, op2, op,
- FALSE, HINT_NUMBER);
- if (res != 0) {
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (res < 0) {
- goto exception;
- } else {
- sp[-2] = ret;
- return 0;
- }
- }
- }
-#endif
op1 = JS_ToPrimitiveFree(ctx, op1, HINT_NUMBER);
if (JS_IsException(op1)) {
JS_FreeValue(ctx, op2);
@@ -14036,17 +13897,20 @@ static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp,
/* fast path for float64/int */
goto float64_compare;
} else {
- if (((tag1 == JS_TAG_BIG_INT && tag2 == JS_TAG_STRING) ||
- (tag2 == JS_TAG_BIG_INT && tag1 == JS_TAG_STRING)) &&
- !is_math_mode(ctx)) {
+ if ((((tag1 == JS_TAG_BIG_INT || tag1 == JS_TAG_SHORT_BIG_INT) &&
+ tag2 == JS_TAG_STRING) ||
+ ((tag2 == JS_TAG_BIG_INT || tag2 == JS_TAG_SHORT_BIG_INT) &&
+ tag1 == JS_TAG_STRING))) {
if (tag1 == JS_TAG_STRING) {
op1 = JS_StringToBigInt(ctx, op1);
- if (JS_VALUE_GET_TAG(op1) != JS_TAG_BIG_INT)
+ if (JS_VALUE_GET_TAG(op1) != JS_TAG_BIG_INT &&
+ JS_VALUE_GET_TAG(op1) != JS_TAG_SHORT_BIG_INT)
goto invalid_bigint_string;
}
if (tag2 == JS_TAG_STRING) {
op2 = JS_StringToBigInt(ctx, op2);
- if (JS_VALUE_GET_TAG(op2) != JS_TAG_BIG_INT) {
+ if (JS_VALUE_GET_TAG(op2) != JS_TAG_BIG_INT &&
+ JS_VALUE_GET_TAG(op2) != JS_TAG_SHORT_BIG_INT) {
invalid_bigint_string:
JS_FreeValue(ctx, op1);
JS_FreeValue(ctx, op2);
@@ -14070,21 +13934,9 @@ static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp,
tag1 = JS_VALUE_GET_NORM_TAG(op1);
tag2 = JS_VALUE_GET_NORM_TAG(op2);
-#ifdef CONFIG_BIGNUM
- if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) {
- res = ctx->rt->bigdecimal_ops.compare(ctx, op, op1, op2);
- if (res < 0)
- goto exception;
- } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) {
- res = ctx->rt->bigfloat_ops.compare(ctx, op, op1, op2);
- if (res < 0)
- goto exception;
- } else
-#endif
- if (tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) {
- res = ctx->rt->bigint_ops.compare(ctx, op, op1, op2);
- if (res < 0)
- goto exception;
+ if (tag1 == JS_TAG_BIG_INT || tag1 == JS_TAG_SHORT_BIG_INT ||
+ tag2 == JS_TAG_BIG_INT || tag2 == JS_TAG_SHORT_BIG_INT) {
+ res = js_compare_bigint(ctx, op, op1, op2);
} else {
double d1, d2;
@@ -14128,21 +13980,15 @@ static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp,
static BOOL tag_is_number(uint32_t tag)
{
- return (tag == JS_TAG_INT || tag == JS_TAG_BIG_INT ||
- tag == JS_TAG_FLOAT64
-#ifdef CONFIG_BIGNUM
- || tag == JS_TAG_BIG_FLOAT || tag == JS_TAG_BIG_DECIMAL
-#endif
- );
+ return (tag == JS_TAG_INT ||
+ tag == JS_TAG_FLOAT64 ||
+ tag == JS_TAG_BIG_INT || tag == JS_TAG_SHORT_BIG_INT);
}
static no_inline __exception int js_eq_slow(JSContext *ctx, JSValue *sp,
BOOL is_neq)
{
JSValue op1, op2;
-#ifdef CONFIG_BIGNUM
- JSValue ret;
-#endif
int res;
uint32_t tag1, tag2;
@@ -14170,42 +14016,10 @@ static no_inline __exception int js_eq_slow(JSContext *ctx, JSValue *sp,
d2 = JS_VALUE_GET_INT(op2);
}
res = (d1 == d2);
- } else
-#ifdef CONFIG_BIGNUM
- if (tag1 == JS_TAG_BIG_DECIMAL || tag2 == JS_TAG_BIG_DECIMAL) {
- res = ctx->rt->bigdecimal_ops.compare(ctx, OP_eq, op1, op2);
- if (res < 0)
- goto exception;
- } else if (tag1 == JS_TAG_BIG_FLOAT || tag2 == JS_TAG_BIG_FLOAT) {
- res = ctx->rt->bigfloat_ops.compare(ctx, OP_eq, op1, op2);
- if (res < 0)
- goto exception;
- } else
-#endif
- {
- res = ctx->rt->bigint_ops.compare(ctx, OP_eq, op1, op2);
- if (res < 0)
- goto exception;
+ } else {
+ res = js_compare_bigint(ctx, OP_eq, op1, op2);
}
} else if (tag1 == tag2) {
-#ifdef CONFIG_BIGNUM
- if (tag1 == JS_TAG_OBJECT) {
- /* try the fallback operator */
- res = js_call_binary_op_fallback(ctx, &ret, op1, op2,
- is_neq ? OP_neq : OP_eq,
- FALSE, HINT_NONE);
- if (res != 0) {
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (res < 0) {
- goto exception;
- } else {
- sp[-2] = ret;
- return 0;
- }
- }
- }
-#endif
res = js_strict_eq2(ctx, op1, op2, JS_EQ_STRICT);
} else if ((tag1 == JS_TAG_NULL && tag2 == JS_TAG_UNDEFINED) ||
(tag2 == JS_TAG_NULL && tag1 == JS_TAG_UNDEFINED)) {
@@ -14213,16 +14027,18 @@ static no_inline __exception int js_eq_slow(JSContext *ctx, JSValue *sp,
} else if ((tag1 == JS_TAG_STRING && tag_is_number(tag2)) ||
(tag2 == JS_TAG_STRING && tag_is_number(tag1))) {
- if ((tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) &&
- !is_math_mode(ctx)) {
+ if (tag1 == JS_TAG_BIG_INT || tag1 == JS_TAG_SHORT_BIG_INT ||
+ tag2 == JS_TAG_BIG_INT || tag2 == JS_TAG_SHORT_BIG_INT) {
if (tag1 == JS_TAG_STRING) {
op1 = JS_StringToBigInt(ctx, op1);
- if (JS_VALUE_GET_TAG(op1) != JS_TAG_BIG_INT)
+ if (JS_VALUE_GET_TAG(op1) != JS_TAG_BIG_INT &&
+ JS_VALUE_GET_TAG(op1) != JS_TAG_SHORT_BIG_INT)
goto invalid_bigint_string;
}
if (tag2 == JS_TAG_STRING) {
op2 = JS_StringToBigInt(ctx, op2);
- if (JS_VALUE_GET_TAG(op2) != JS_TAG_BIG_INT) {
+ if (JS_VALUE_GET_TAG(op2) != JS_TAG_BIG_INT &&
+ JS_VALUE_GET_TAG(op2) != JS_TAG_SHORT_BIG_INT ) {
invalid_bigint_string:
JS_FreeValue(ctx, op1);
JS_FreeValue(ctx, op2);
@@ -14253,22 +14069,6 @@ static no_inline __exception int js_eq_slow(JSContext *ctx, JSValue *sp,
(tag_is_number(tag2) || tag2 == JS_TAG_STRING || tag2 == JS_TAG_SYMBOL)) ||
(tag2 == JS_TAG_OBJECT &&
(tag_is_number(tag1) || tag1 == JS_TAG_STRING || tag1 == JS_TAG_SYMBOL))) {
-#ifdef CONFIG_BIGNUM
- /* try the fallback operator */
- res = js_call_binary_op_fallback(ctx, &ret, op1, op2,
- is_neq ? OP_neq : OP_eq,
- FALSE, HINT_NONE);
- if (res != 0) {
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- if (res < 0) {
- goto exception;
- } else {
- sp[-2] = ret;
- return 0;
- }
- }
-#endif
op1 = JS_ToPrimitiveFree(ctx, op1, HINT_NONE);
if (JS_IsException(op1)) {
JS_FreeValue(ctx, op2);
@@ -14319,10 +14119,10 @@ static no_inline int js_shr_slow(JSContext *ctx, JSValue *sp)
JS_FreeValue(ctx, op1);
goto exception;
}
- /* XXX: could forbid >>> in bignum mode */
- if (!is_math_mode(ctx) &&
- (JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT ||
- JS_VALUE_GET_TAG(op2) == JS_TAG_BIG_INT)) {
+ if (JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT ||
+ JS_VALUE_GET_TAG(op1) == JS_TAG_SHORT_BIG_INT ||
+ JS_VALUE_GET_TAG(op2) == JS_TAG_BIG_INT ||
+ JS_VALUE_GET_TAG(op2) == JS_TAG_SHORT_BIG_INT) {
JS_ThrowTypeError(ctx, "bigint operands are forbidden for >>>");
JS_FreeValue(ctx, op1);
JS_FreeValue(ctx, op2);
@@ -14340,67 +14140,6 @@ static no_inline int js_shr_slow(JSContext *ctx, JSValue *sp)
return -1;
}
-#ifdef CONFIG_BIGNUM
-static JSValue js_mul_pow10_to_float64(JSContext *ctx, const bf_t *a,
- int64_t exponent)
-{
- bf_t r_s, *r = &r_s;
- double d;
- int ret;
-
- /* always convert to Float64 */
- bf_init(ctx->bf_ctx, r);
- ret = bf_mul_pow_radix(r, a, 10, exponent,
- 53, bf_set_exp_bits(11) | BF_RNDN |
- BF_FLAG_SUBNORMAL);
- bf_get_float64(r, &d, BF_RNDN);
- bf_delete(r);
- if (ret & BF_ST_MEM_ERROR)
- return JS_ThrowOutOfMemory(ctx);
- else
- return __JS_NewFloat64(ctx, d);
-}
-
-static no_inline int js_mul_pow10(JSContext *ctx, JSValue *sp)
-{
- bf_t a_s, *a, *r;
- JSValue op1, op2, res;
- int64_t e;
- int ret;
-
- res = JS_NewBigFloat(ctx);
- if (JS_IsException(res))
- return -1;
- r = JS_GetBigFloat(res);
- op1 = sp[-2];
- op2 = sp[-1];
- a = JS_ToBigFloat(ctx, &a_s, op1);
- if (!a) {
- JS_FreeValue(ctx, res);
- return -1;
- }
- if (JS_IsBigInt(ctx, op2)) {
- ret = JS_ToBigInt64(ctx, &e, op2);
- } else {
- ret = JS_ToInt64(ctx, &e, op2);
- }
- if (ret) {
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, res);
- return -1;
- }
-
- bf_mul_pow_radix(r, a, 10, e, ctx->fp_env.prec, ctx->fp_env.flags);
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- sp[-2] = res;
- return 0;
-}
-#endif
-
/* XXX: Should take JSValueConst arguments */
static BOOL js_strict_eq2(JSContext *ctx, JSValue op1, JSValue op2,
JSStrictEqModeEnum eq_mode)
@@ -14493,63 +14232,29 @@ static BOOL js_strict_eq2(JSContext *ctx, JSValue op1, JSValue op2,
res = (d1 == d2); /* if NaN return false and +0 == -0 */
}
goto done_no_free;
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
{
- bf_t a_s, *a, b_s, *b;
- if (tag1 != tag2) {
- res = FALSE;
- break;
- }
- a = JS_ToBigFloat(ctx, &a_s, op1); /* cannot fail */
- b = JS_ToBigFloat(ctx, &b_s, op2); /* cannot fail */
- res = bf_cmp_eq(a, b);
- if (a == &a_s)
- bf_delete(a);
- if (b == &b_s)
- bf_delete(b);
- }
- break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p1, *p2;
- const bf_t *a, *b;
- if (tag1 != tag2) {
- res = FALSE;
- break;
- }
- p1 = JS_VALUE_GET_PTR(op1);
- p2 = JS_VALUE_GET_PTR(op2);
- a = &p1->num;
- b = &p2->num;
- if (unlikely(eq_mode >= JS_EQ_SAME_VALUE)) {
- if (eq_mode == JS_EQ_SAME_VALUE_ZERO &&
- a->expn == BF_EXP_ZERO && b->expn == BF_EXP_ZERO) {
- res = TRUE;
- } else {
- res = (bf_cmp_full(a, b) == 0);
- }
- } else {
- res = bf_cmp_eq(a, b);
- }
- }
- break;
- case JS_TAG_BIG_DECIMAL:
- {
- JSBigDecimal *p1, *p2;
- const bfdec_t *a, *b;
- if (tag1 != tag2) {
+ JSBigIntBuf buf1, buf2;
+ JSBigInt *p1, *p2;
+
+ if (tag2 != JS_TAG_SHORT_BIG_INT &&
+ tag2 != JS_TAG_BIG_INT) {
res = FALSE;
break;
}
- p1 = JS_VALUE_GET_PTR(op1);
- p2 = JS_VALUE_GET_PTR(op2);
- a = &p1->num;
- b = &p2->num;
- res = bfdec_cmp_eq(a, b);
+
+ if (JS_VALUE_GET_TAG(op1) == JS_TAG_SHORT_BIG_INT)
+ p1 = js_bigint_set_short(&buf1, op1);
+ else
+ p1 = JS_VALUE_GET_PTR(op1);
+ if (JS_VALUE_GET_TAG(op2) == JS_TAG_SHORT_BIG_INT)
+ p2 = js_bigint_set_short(&buf2, op2);
+ else
+ p2 = JS_VALUE_GET_PTR(op2);
+ res = (js_bigint_cmp(ctx, p1, p2) == 0);
}
break;
-#endif
default:
res = FALSE;
break;
@@ -14709,17 +14414,10 @@ static __exception int js_operator_typeof(JSContext *ctx, JSValueConst op1)
tag = JS_VALUE_GET_NORM_TAG(op1);
switch(tag) {
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
atom = JS_ATOM_bigint;
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- atom = JS_ATOM_bigfloat;
- break;
- case JS_TAG_BIG_DECIMAL:
- atom = JS_ATOM_bigdecimal;
- break;
-#endif
case JS_TAG_INT:
case JS_TAG_FLOAT64:
atom = JS_ATOM_number;
@@ -15996,17 +15694,7 @@ static JSValue js_call_c_function(JSContext *ctx, JSValueConst func_obj,
sf->prev_frame = prev_sf;
rt->current_stack_frame = sf;
ctx = p->u.cfunc.realm; /* change the current realm */
-
-#ifdef CONFIG_BIGNUM
- /* we only propagate the bignum mode as some runtime functions
- test it */
- if (prev_sf)
- sf->js_mode = prev_sf->js_mode & JS_MODE_MATH;
- else
- sf->js_mode = 0;
-#else
sf->js_mode = 0;
-#endif
sf->cur_func = (JSValue)func_obj;
sf->arg_count = argc;
arg_buf = argv;
@@ -16290,6 +15978,10 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
*sp++ = JS_NewInt32(ctx, get_u32(pc));
pc += 4;
BREAK;
+ CASE(OP_push_bigint_i32):
+ *sp++ = __JS_NewShortBigInt(ctx, (int)get_u32(pc));
+ pc += 4;
+ BREAK;
CASE(OP_push_const):
*sp++ = JS_DupValue(ctx, b->cpool[get_u32(pc)]);
pc += 4;
@@ -18004,11 +17696,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
v2 = JS_VALUE_GET_INT(op2);
r = (int64_t)v1 * v2;
if (unlikely((int)r != r)) {
-#ifdef CONFIG_BIGNUM
- if (unlikely(sf->js_mode & JS_MODE_MATH) &&
- (r < -MAX_SAFE_INTEGER || r > MAX_SAFE_INTEGER))
- goto binary_arith_slow;
-#endif
d = (double)r;
goto mul_fp_res;
}
@@ -18020,10 +17707,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
sp[-2] = JS_NewInt32(ctx, r);
sp--;
} else if (JS_VALUE_IS_BOTH_FLOAT(op1, op2)) {
-#ifdef CONFIG_BIGNUM
- if (unlikely(sf->js_mode & JS_MODE_MATH))
- goto binary_arith_slow;
-#endif
d = JS_VALUE_GET_FLOAT64(op1) * JS_VALUE_GET_FLOAT64(op2);
mul_fp_res:
sp[-2] = __JS_NewFloat64(ctx, d);
@@ -18052,9 +17735,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
}
BREAK;
CASE(OP_mod):
-#ifdef CONFIG_BIGNUM
- CASE(OP_math_mod):
-#endif
{
JSValue op1, op2;
op1 = sp[-2];
@@ -18237,28 +17917,10 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
uint32_t v1, v2;
v1 = JS_VALUE_GET_INT(op1);
v2 = JS_VALUE_GET_INT(op2);
-#ifdef CONFIG_BIGNUM
- {
- int64_t r;
- if (unlikely(sf->js_mode & JS_MODE_MATH)) {
- if (v2 > 0x1f)
- goto shl_slow;
- r = (int64_t)v1 << v2;
- if ((int)r != r)
- goto shl_slow;
- } else {
- v2 &= 0x1f;
- }
- }
-#else
v2 &= 0x1f;
-#endif
sp[-2] = JS_NewInt32(ctx, v1 << v2);
sp--;
} else {
-#ifdef CONFIG_BIGNUM
- shl_slow:
-#endif
if (js_binary_logic_slow(ctx, sp, opcode))
goto exception;
sp--;
@@ -18273,7 +17935,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
if (likely(JS_VALUE_IS_BOTH_INT(op1, op2))) {
uint32_t v2;
v2 = JS_VALUE_GET_INT(op2);
- /* v1 >>> v2 retains its JS semantics if CONFIG_BIGNUM */
v2 &= 0x1f;
sp[-2] = JS_NewUint32(ctx,
(uint32_t)JS_VALUE_GET_INT(op1) >>
@@ -18294,23 +17955,11 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
if (likely(JS_VALUE_IS_BOTH_INT(op1, op2))) {
uint32_t v2;
v2 = JS_VALUE_GET_INT(op2);
-#ifdef CONFIG_BIGNUM
- if (unlikely(v2 > 0x1f)) {
- if (unlikely(sf->js_mode & JS_MODE_MATH))
- goto sar_slow;
- else
- v2 &= 0x1f;
- }
-#else
v2 &= 0x1f;
-#endif
sp[-2] = JS_NewInt32(ctx,
(int)JS_VALUE_GET_INT(op1) >> v2);
sp--;
} else {
-#ifdef CONFIG_BIGNUM
- sar_slow:
-#endif
if (js_binary_logic_slow(ctx, sp, opcode))
goto exception;
sp--;
@@ -18396,13 +18045,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj,
OP_CMP(OP_strict_eq, ==, js_strict_eq_slow(ctx, sp, 0));
OP_CMP(OP_strict_neq, !=, js_strict_eq_slow(ctx, sp, 1));
-#ifdef CONFIG_BIGNUM
- CASE(OP_mul_pow10):
- if (rt->bigfloat_ops.mul_pow10(ctx, sp))
- goto exception;
- sp--;
- BREAK;
-#endif
CASE(OP_in):
if (js_operator_in(ctx, sp))
goto exception;
@@ -19796,9 +19438,6 @@ enum {
TOK_AND_ASSIGN,
TOK_XOR_ASSIGN,
TOK_OR_ASSIGN,
-#ifdef CONFIG_BIGNUM
- TOK_MATH_POW_ASSIGN,
-#endif
TOK_POW_ASSIGN,
TOK_LAND_ASSIGN,
TOK_LOR_ASSIGN,
@@ -19818,9 +19457,6 @@ enum {
TOK_STRICT_NEQ,
TOK_LAND,
TOK_LOR,
-#ifdef CONFIG_BIGNUM
- TOK_MATH_POW,
-#endif
TOK_POW,
TOK_ARROW,
TOK_ELLIPSIS,
@@ -20080,9 +19716,6 @@ typedef struct JSToken {
} str;
struct {
JSValue val;
-#ifdef CONFIG_BIGNUM
- slimb_t exponent; /* may be != 0 only if val is a float */
-#endif
} num;
struct {
JSAtom atom;
@@ -20920,26 +20553,11 @@ static __exception int next_token(JSParseState *s)
{
JSValue ret;
const uint8_t *p1;
- int flags, radix;
+ int flags;
flags = ATOD_ACCEPT_BIN_OCT | ATOD_ACCEPT_LEGACY_OCTAL |
- ATOD_ACCEPT_UNDERSCORES;
- flags |= ATOD_ACCEPT_SUFFIX;
-#ifdef CONFIG_BIGNUM
- if (s->cur_func->js_mode & JS_MODE_MATH) {
- flags |= ATOD_MODE_BIGINT;
- if (s->cur_func->js_mode & JS_MODE_MATH)
- flags |= ATOD_TYPE_BIG_FLOAT;
- }
-#endif
- radix = 0;
-#ifdef CONFIG_BIGNUM
- s->token.u.num.exponent = 0;
- ret = js_atof2(s->ctx, (const char *)p, (const char **)&p, radix,
- flags, &s->token.u.num.exponent);
-#else
- ret = js_atof(s->ctx, (const char *)p, (const char **)&p, radix,
+ ATOD_ACCEPT_UNDERSCORES | ATOD_ACCEPT_SUFFIX;
+ ret = js_atof(s->ctx, (const char *)p, (const char **)&p, 0,
flags);
-#endif
if (JS_IsException(ret))
goto fail;
/* reject `10instanceof Number` */
@@ -21095,33 +20713,6 @@ static __exception int next_token(JSParseState *s)
goto def_token;
}
break;
-#ifdef CONFIG_BIGNUM
- /* in math mode, '^' is the power operator. '^^' is always the
- xor operator and '**' is always the power operator */
- case '^':
- if (p[1] == '=') {
- p += 2;
- if (s->cur_func->js_mode & JS_MODE_MATH)
- s->token.val = TOK_MATH_POW_ASSIGN;
- else
- s->token.val = TOK_XOR_ASSIGN;
- } else if (p[1] == '^') {
- if (p[2] == '=') {
- p += 3;
- s->token.val = TOK_XOR_ASSIGN;
- } else {
- p += 2;
- s->token.val = '^';
- }
- } else {
- p++;
- if (s->cur_func->js_mode & JS_MODE_MATH)
- s->token.val = TOK_MATH_POW;
- else
- s->token.val = '^';
- }
- break;
-#else
case '^':
if (p[1] == '=') {
p += 2;
@@ -21130,7 +20721,6 @@ static __exception int next_token(JSParseState *s)
goto def_token;
}
break;
-#endif
case '|':
if (p[1] == '=') {
p += 2;
@@ -22464,21 +22054,7 @@ static int __exception js_parse_property_name(JSParseState *s,
} else if (s->token.val == TOK_NUMBER) {
JSValue val;
val = s->token.u.num.val;
-#ifdef CONFIG_BIGNUM
- if (JS_VALUE_GET_TAG(val) == JS_TAG_BIG_FLOAT) {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- val = s->ctx->rt->bigfloat_ops.
- mul_pow10_to_float64(s->ctx, &p->num,
- s->token.u.num.exponent);
- if (JS_IsException(val))
- goto fail;
- name = JS_ValueToAtom(s->ctx, val);
- JS_FreeValue(s->ctx, val);
- } else
-#endif
- {
- name = JS_ValueToAtom(s->ctx, val);
- }
+ name = JS_ValueToAtom(s->ctx, val);
if (name == JS_ATOM_NULL)
goto fail;
if (next_token(s))
@@ -24491,34 +24067,17 @@ static __exception int js_parse_postfix_expr(JSParseState *s, int parse_flags)
if (JS_VALUE_GET_TAG(val) == JS_TAG_INT) {
emit_op(s, OP_push_i32);
emit_u32(s, JS_VALUE_GET_INT(val));
- } else
-#ifdef CONFIG_BIGNUM
- if (JS_VALUE_GET_TAG(val) == JS_TAG_BIG_FLOAT) {
- slimb_t e;
- int ret;
-
- /* need a runtime conversion */
- /* XXX: could add a cache and/or do it once at
- the start of the function */
- if (emit_push_const(s, val, 0) < 0)
- return -1;
- e = s->token.u.num.exponent;
- if (e == (int32_t)e) {
- emit_op(s, OP_push_i32);
- emit_u32(s, e);
+ } else if (JS_VALUE_GET_TAG(val) == JS_TAG_SHORT_BIG_INT) {
+ int64_t v;
+ v = JS_VALUE_GET_SHORT_BIG_INT(val);
+ if (v >= INT32_MIN && v <= INT32_MAX) {
+ emit_op(s, OP_push_bigint_i32);
+ emit_u32(s, v);
} else {
- val = JS_NewBigInt64_1(s->ctx, e);
- if (JS_IsException(val))
- return -1;
- ret = emit_push_const(s, val, 0);
- JS_FreeValue(s->ctx, val);
- if (ret < 0)
- return -1;
+ goto large_number;
}
- emit_op(s, OP_mul_pow10);
- } else
-#endif
- {
+ } else {
+ large_number:
if (emit_push_const(s, val, 0) < 0)
return -1;
}
@@ -25344,24 +24903,6 @@ static __exception int js_parse_unary(JSParseState *s, int parse_flags)
break;
}
if (parse_flags & (PF_POW_ALLOWED | PF_POW_FORBIDDEN)) {
-#ifdef CONFIG_BIGNUM
- if (s->token.val == TOK_POW || s->token.val == TOK_MATH_POW) {
- /* Extended exponentiation syntax rules: we extend the ES7
- grammar in order to have more intuitive semantics:
- -2**2 evaluates to -4. */
- if (!(s->cur_func->js_mode & JS_MODE_MATH)) {
- if (parse_flags & PF_POW_FORBIDDEN) {
- JS_ThrowSyntaxError(s->ctx, "unparenthesized unary expression can't appear on the left-hand side of '**'");
- return -1;
- }
- }
- if (next_token(s))
- return -1;
- if (js_parse_unary(s, PF_POW_ALLOWED))
- return -1;
- emit_op(s, OP_pow);
- }
-#else
if (s->token.val == TOK_POW) {
/* Strict ES7 exponentiation syntax rules: To solve
conficting semantics between different implementations
@@ -25378,7 +24919,6 @@ static __exception int js_parse_unary(JSParseState *s, int parse_flags)
return -1;
emit_op(s, OP_pow);
}
-#endif
}
return 0;
}
@@ -25429,12 +24969,7 @@ static __exception int js_parse_expr_binary(JSParseState *s, int level,
opcode = OP_div;
break;
case '%':
-#ifdef CONFIG_BIGNUM
- if (s->cur_func->js_mode & JS_MODE_MATH)
- opcode = OP_math_mod;
- else
-#endif
- opcode = OP_mod;
+ opcode = OP_mod;
break;
default:
return 0;
@@ -25864,18 +25399,9 @@ static __exception int js_parse_assign_expr2(JSParseState *s, int parse_flags)
static const uint8_t assign_opcodes[] = {
OP_mul, OP_div, OP_mod, OP_add, OP_sub,
OP_shl, OP_sar, OP_shr, OP_and, OP_xor, OP_or,
-#ifdef CONFIG_BIGNUM
- OP_pow,
-#endif
OP_pow,
};
op = assign_opcodes[op - TOK_MUL_ASSIGN];
-#ifdef CONFIG_BIGNUM
- if (s->cur_func->js_mode & JS_MODE_MATH) {
- if (op == OP_mod)
- op = OP_math_mod;
- }
-#endif
emit_op(s, op);
}
put_lvalue(s, opcode, scope, name, label, PUT_LVALUE_KEEP_TOP, FALSE);
@@ -29988,10 +29514,6 @@ static __maybe_unused void js_dump_function_bytecode(JSContext *ctx, JSFunctionB
printf(" mode:");
if (b->js_mode & JS_MODE_STRICT)
printf(" strict");
-#ifdef CONFIG_BIGNUM
- if (b->js_mode & JS_MODE_MATH)
- printf(" math");
-#endif
printf("\n");
}
if (b->arg_count && b->vardefs) {
@@ -32562,6 +32084,26 @@ static __exception int resolve_labels(JSContext *ctx, JSFunctionDef *s)
}
goto no_change;
+ case OP_push_bigint_i32:
+ if (OPTIMIZE) {
+ /* transform i32(val) neg -> i32(-val) */
+ val = get_i32(bc_buf + pos + 1);
+ if (val != INT32_MIN
+ && code_match(&cc, pos_next, OP_neg, -1)) {
+ if (cc.line_num >= 0) line_num = cc.line_num;
+ if (code_match(&cc, cc.pos, OP_drop, -1)) {
+ if (cc.line_num >= 0) line_num = cc.line_num;
+ } else {
+ add_pc2line_info(s, bc_out.size, line_num);
+ dbuf_putc(&bc_out, OP_push_bigint_i32);
+ dbuf_put_u32(&bc_out, -val);
+ }
+ pos_next = cc.pos;
+ break;
+ }
+ }
+ goto no_change;
+
#if SHORT_OPCODES
case OP_push_const:
case OP_fclosure:
@@ -33663,11 +33205,6 @@ static __exception int js_parse_directives(JSParseState *s)
s->cur_func->js_mode |= JS_MODE_STRIP;
}
#endif
-#ifdef CONFIG_BIGNUM
- else if (s->ctx->bignum_ext && !strcmp(str, "use math")) {
- s->cur_func->js_mode |= JS_MODE_MATH;
- }
-#endif
}
return js_parse_seek_token(s, &pos);
}
@@ -34738,17 +34275,9 @@ typedef enum BCTagEnum {
BC_TAG_DATE,
BC_TAG_OBJECT_VALUE,
BC_TAG_OBJECT_REFERENCE,
-#ifdef CONFIG_BIGNUM
- BC_TAG_BIG_FLOAT,
- BC_TAG_BIG_DECIMAL,
-#endif
} BCTagEnum;
-#ifdef CONFIG_BIGNUM
-#define BC_VERSION 0x43
-#else
-#define BC_VERSION 3
-#endif
+#define BC_VERSION 4
typedef struct BCWriterState {
JSContext *ctx;
@@ -34791,10 +34320,6 @@ static const char * const bc_tag_str[] = {
"Date",
"ObjectValue",
"ObjectReference",
-#ifdef CONFIG_BIGNUM
- "bigfloat",
- "bigdecimal",
-#endif
};
#endif
@@ -35022,132 +34547,50 @@ static void JS_WriteString(BCWriterState *s, JSString *p)
}
}
-static int JS_WriteBigNum(BCWriterState *s, JSValueConst obj)
+static int JS_WriteBigInt(BCWriterState *s, JSValueConst obj)
{
- uint32_t tag, tag1;
- int64_t e;
- JSBigFloat *bf = JS_VALUE_GET_PTR(obj);
- bf_t *a = &bf->num;
- size_t len, i, n1, j;
- limb_t v;
-
- tag = JS_VALUE_GET_TAG(obj);
- switch(tag) {
- case JS_TAG_BIG_INT:
- tag1 = BC_TAG_BIG_INT;
- break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- tag1 = BC_TAG_BIG_FLOAT;
- break;
- case JS_TAG_BIG_DECIMAL:
- tag1 = BC_TAG_BIG_DECIMAL;
- break;
-#endif
- default:
- abort();
- }
- bc_put_u8(s, tag1);
+ JSBigIntBuf buf;
+ JSBigInt *p;
+ uint32_t len, i;
+ js_limb_t v, b;
+ int shift;
+
+ bc_put_u8(s, BC_TAG_BIG_INT);
- /* sign + exponent */
- if (a->expn == BF_EXP_ZERO)
- e = 0;
- else if (a->expn == BF_EXP_INF)
- e = 1;
- else if (a->expn == BF_EXP_NAN)
- e = 2;
- else if (a->expn >= 0)
- e = a->expn + 3;
+ if (JS_VALUE_GET_TAG(obj) == JS_TAG_SHORT_BIG_INT)
+ p = js_bigint_set_short(&buf, obj);
else
- e = a->expn;
- e = (e * 2) | a->sign;
- if (e < INT32_MIN || e > INT32_MAX) {
- JS_ThrowInternalError(s->ctx, "bignum exponent is too large");
- return -1;
+ p = JS_VALUE_GET_PTR(obj);
+ if (p->len == 1 && p->tab[0] == 0) {
+ /* zero case */
+ len = 0;
+ } else {
+ /* compute the length of the two's complement representation
+ in bytes */
+ len = p->len * (JS_LIMB_BITS / 8);
+ v = p->tab[p->len - 1];
+ shift = JS_LIMB_BITS - 8;
+ while (shift > 0) {
+ b = (v >> shift) & 0xff;
+ if (b != 0x00 && b != 0xff)
+ break;
+ if ((b & 1) != ((v >> (shift - 1)) & 1))
+ break;
+ shift -= 8;
+ len--;
+ }
}
- bc_put_sleb128(s, e);
-
- /* mantissa */
- if (a->len != 0) {
- if (tag != JS_TAG_BIG_DECIMAL) {
- i = 0;
- while (i < a->len && a->tab[i] == 0)
- i++;
- assert(i < a->len);
- v = a->tab[i];
- n1 = sizeof(limb_t);
- while ((v & 0xff) == 0) {
- n1--;
- v >>= 8;
- }
- i++;
- len = (a->len - i) * sizeof(limb_t) + n1;
- if (len > INT32_MAX) {
- JS_ThrowInternalError(s->ctx, "bignum is too large");
- return -1;
- }
- bc_put_leb128(s, len);
- /* always saved in byte based little endian representation */
- for(j = 0; j < n1; j++) {
- bc_put_u8(s, v >> (j * 8));
- }
- for(; i < a->len; i++) {
- limb_t v = a->tab[i];
-#if LIMB_BITS == 32
- bc_put_u32(s, v);
+ bc_put_leb128(s, len);
+ if (len > 0) {
+ for(i = 0; i < (len / (JS_LIMB_BITS / 8)); i++) {
+#if JS_LIMB_BITS == 32
+ bc_put_u32(s, p->tab[i]);
#else
- bc_put_u64(s, v);
+ bc_put_u64(s, p->tab[i]);
#endif
- }
- } else {
- int bpos, d;
- uint8_t v8;
- size_t i0;
-
- /* little endian BCD */
- i = 0;
- while (i < a->len && a->tab[i] == 0)
- i++;
- assert(i < a->len);
- len = a->len * LIMB_DIGITS;
- v = a->tab[i];
- j = 0;
- while ((v % 10) == 0) {
- j++;
- v /= 10;
- }
- len -= j;
- assert(len > 0);
- if (len > INT32_MAX) {
- JS_ThrowInternalError(s->ctx, "bignum is too large");
- return -1;
- }
- bc_put_leb128(s, len);
-
- bpos = 0;
- v8 = 0;
- i0 = i;
- for(; i < a->len; i++) {
- if (i != i0) {
- v = a->tab[i];
- j = 0;
- }
- for(; j < LIMB_DIGITS; j++) {
- d = v % 10;
- v /= 10;
- if (bpos == 0) {
- v8 = d;
- bpos = 1;
- } else {
- bc_put_u8(s, v8 | (d << 4));
- bpos = 0;
- }
- }
- }
- /* flush the last digit */
- if (bpos) {
- bc_put_u8(s, v8);
- }
+ }
+ for(i = 0; i < len % (JS_LIMB_BITS / 8); i++) {
+ bc_put_u8(s, (p->tab[p->len - 1] >> (i * 8)) & 0xff);
}
}
return 0;
@@ -35512,10 +34955,6 @@ static int JS_WriteObjectRec(BCWriterState *s, JSValueConst obj)
case JS_CLASS_STRING:
case JS_CLASS_BOOLEAN:
case JS_CLASS_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_CLASS_BIG_FLOAT:
- case JS_CLASS_BIG_DECIMAL:
-#endif
bc_put_u8(s, BC_TAG_OBJECT_VALUE);
ret = JS_WriteObjectRec(s, p->u.object_data);
break;
@@ -35534,12 +34973,9 @@ static int JS_WriteObjectRec(BCWriterState *s, JSValueConst obj)
goto fail;
}
break;
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- case JS_TAG_BIG_DECIMAL:
-#endif
- if (JS_WriteBigNum(s, obj))
+ if (JS_WriteBigInt(s, obj))
goto fail;
break;
default:
@@ -35947,138 +35383,54 @@ static int JS_ReadFunctionBytecode(BCReaderState *s, JSFunctionBytecode *b,
return 0;
}
-static JSValue JS_ReadBigNum(BCReaderState *s, int tag)
+static JSValue JS_ReadBigInt(BCReaderState *s)
{
JSValue obj = JS_UNDEFINED;
+ uint32_t len, i, n;
+ JSBigInt *p;
+ js_limb_t v;
uint8_t v8;
- int32_t e;
- uint32_t len;
- limb_t l, i, n;
- JSBigFloat *p;
- limb_t v;
- bf_t *a;
-
- p = js_new_bf(s->ctx);
- if (!p)
+
+ if (bc_get_leb128(s, &len))
goto fail;
- switch(tag) {
- case BC_TAG_BIG_INT:
- obj = JS_MKPTR(JS_TAG_BIG_INT, p);
- break;
-#ifdef CONFIG_BIGNUM
- case BC_TAG_BIG_FLOAT:
- obj = JS_MKPTR(JS_TAG_BIG_FLOAT, p);
- break;
- case BC_TAG_BIG_DECIMAL:
- obj = JS_MKPTR(JS_TAG_BIG_DECIMAL, p);
- break;
-#endif
- default:
- abort();
+ bc_read_trace(s, "len=%" PRId64 "\n", (int64_t)len);
+ if (len == 0) {
+ /* zero case */
+ bc_read_trace(s, "}\n");
+ return __JS_NewShortBigInt(s->ctx, 0);
}
-
- /* sign + exponent */
- if (bc_get_sleb128(s, &e))
+ p = js_bigint_new(s->ctx,
+ (len + (JS_LIMB_BITS / 8) - 1) / (JS_LIMB_BITS / 8));
+ if (!p)
goto fail;
-
- a = &p->num;
- a->sign = e & 1;
- e >>= 1;
- if (e == 0)
- a->expn = BF_EXP_ZERO;
- else if (e == 1)
- a->expn = BF_EXP_INF;
- else if (e == 2)
- a->expn = BF_EXP_NAN;
- else if (e >= 3)
- a->expn = e - 3;
- else
- a->expn = e;
-
- /* mantissa */
- if (a->expn != BF_EXP_ZERO &&
- a->expn != BF_EXP_INF &&
- a->expn != BF_EXP_NAN) {
- if (bc_get_leb128(s, &len))
+ for(i = 0; i < len / (JS_LIMB_BITS / 8); i++) {
+#if JS_LIMB_BITS == 32
+ if (bc_get_u32(s, &v))
goto fail;
- bc_read_trace(s, "len=%" PRId64 "\n", (int64_t)len);
- if (len == 0) {
- JS_ThrowInternalError(s->ctx, "invalid bignum length");
+#else
+ if (bc_get_u64(s, &v))
goto fail;
- }
-#ifdef CONFIG_BIGNUM
- if (tag == BC_TAG_BIG_DECIMAL) {
- l = (len + LIMB_DIGITS - 1) / LIMB_DIGITS;
- } else
#endif
- {
- l = (len + sizeof(limb_t) - 1) / sizeof(limb_t);
- }
- if (bf_resize(a, l)) {
- JS_ThrowOutOfMemory(s->ctx);
- goto fail;
+ p->tab[i] = v;
+ }
+ n = len % (JS_LIMB_BITS / 8);
+ if (n != 0) {
+ int shift;
+ v = 0;
+ for(i = 0; i < n; i++) {
+ if (bc_get_u8(s, &v8))
+ goto fail;
+ v |= (js_limb_t)v8 << (i * 8);
}
-#ifdef CONFIG_BIGNUM
- if (tag == BC_TAG_BIG_DECIMAL) {
- limb_t j;
- int bpos, d;
-
- bpos = 0;
- for(i = 0; i < l; i++) {
- if (i == 0 && (n = len % LIMB_DIGITS) != 0) {
- j = LIMB_DIGITS - n;
- } else {
- j = 0;
- }
- v = 0;
- for(; j < LIMB_DIGITS; j++) {
- if (bpos == 0) {
- if (bc_get_u8(s, &v8))
- goto fail;
- d = v8 & 0xf;
- bpos = 1;
- } else {
- d = v8 >> 4;
- bpos = 0;
- }
- if (d >= 10) {
- JS_ThrowInternalError(s->ctx, "invalid digit");
- goto fail;
- }
- v += mp_pow_dec[j] * d;
- }
- a->tab[i] = v;
- }
- } else
-#endif /* CONFIG_BIGNUM */
- {
- n = len & (sizeof(limb_t) - 1);
- if (n != 0) {
- v = 0;
- for(i = 0; i < n; i++) {
- if (bc_get_u8(s, &v8))
- goto fail;
- v |= (limb_t)v8 << ((sizeof(limb_t) - n + i) * 8);
- }
- a->tab[0] = v;
- i = 1;
- } else {
- i = 0;
- }
- for(; i < l; i++) {
-#if LIMB_BITS == 32
- if (bc_get_u32(s, &v))
- goto fail;
-#else
- if (bc_get_u64(s, &v))
- goto fail;
-#endif
- a->tab[i] = v;
- }
+ shift = JS_LIMB_BITS - n * 8;
+ /* extend the sign */
+ if (shift != 0) {
+ v = (js_slimb_t)(v << shift) >> shift;
}
+ p->tab[p->len - 1] = v;
}
bc_read_trace(s, "}\n");
- return obj;
+ return JS_CompactBigInt(s->ctx, p);
fail:
JS_FreeValue(s->ctx, obj);
return JS_EXCEPTION;
@@ -36713,11 +36065,7 @@ static JSValue JS_ReadObjectRec(BCReaderState *s)
obj = JS_ReadObjectValue(s);
break;
case BC_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case BC_TAG_BIG_FLOAT:
- case BC_TAG_BIG_DECIMAL:
-#endif
- obj = JS_ReadBigNum(s, tag);
+ obj = JS_ReadBigInt(s);
break;
case BC_TAG_OBJECT_REFERENCE:
{
@@ -37147,17 +36495,10 @@ static JSValue JS_ToObject(JSContext *ctx, JSValueConst val)
case JS_TAG_OBJECT:
case JS_TAG_EXCEPTION:
return JS_DupValue(ctx, val);
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
obj = JS_NewObjectClass(ctx, JS_CLASS_BIG_INT);
goto set_value;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- obj = JS_NewObjectClass(ctx, JS_CLASS_BIG_FLOAT);
- goto set_value;
- case JS_TAG_BIG_DECIMAL:
- obj = JS_NewObjectClass(ctx, JS_CLASS_BIG_DECIMAL);
- goto set_value;
-#endif
case JS_TAG_INT:
case JS_TAG_FLOAT64:
obj = JS_NewObjectClass(ctx, JS_CLASS_NUMBER);
@@ -40964,28 +40305,20 @@ static JSValue js_number_constructor(JSContext *ctx, JSValueConst new_target,
if (JS_IsException(val))
return val;
switch(JS_VALUE_GET_TAG(val)) {
+ case JS_TAG_SHORT_BIG_INT:
+ val = JS_NewInt64(ctx, JS_VALUE_GET_SHORT_BIG_INT(val));
+ if (JS_IsException(val))
+ return val;
+ break;
case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
-#endif
{
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
+ JSBigInt *p = JS_VALUE_GET_PTR(val);
double d;
- bf_get_float64(&p->num, &d, BF_RNDN);
+ d = js_bigint_to_float64(ctx, p);
JS_FreeValue(ctx, val);
- val = __JS_NewFloat64(ctx, d);
+ val = JS_NewFloat64(ctx, d);
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_DECIMAL:
- val = JS_ToStringFree(ctx, val);
- if (JS_IsException(val))
- return val;
- val = JS_ToNumberFree(ctx, val);
- if (JS_IsException(val))
- return val;
- break;
-#endif
default:
break;
}
@@ -45334,11 +44667,7 @@ static JSValue js_json_check(JSContext *ctx, JSONStringifyContext *jsc,
/* check for object.toJSON method */
/* ECMA specifies this is done only for Object and BigInt */
/* we do it for BigFloat and BigDecimal as an extension */
- if (JS_IsObject(val) || JS_IsBigInt(ctx, val)
-#ifdef CONFIG_BIGNUM
- || JS_IsBigFloat(val) || JS_IsBigDecimal(val)
-#endif
- ) {
+ if (JS_IsObject(val) || JS_IsBigInt(ctx, val)) {
JSValue f = JS_GetProperty(ctx, val, JS_ATOM_toJSON);
if (JS_IsException(f))
goto exception;
@@ -45372,11 +44701,8 @@ static JSValue js_json_check(JSContext *ctx, JSONStringifyContext *jsc,
case JS_TAG_FLOAT64:
case JS_TAG_BOOL:
case JS_TAG_NULL:
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- case JS_TAG_BIG_DECIMAL:
-#endif
case JS_TAG_EXCEPTION:
return val;
default:
@@ -45424,12 +44750,7 @@ static int js_json_to_str(JSContext *ctx, JSONStringifyContext *jsc,
if (JS_IsException(val))
goto exception;
goto concat_primitive;
- } else if (cl == JS_CLASS_BOOLEAN || cl == JS_CLASS_BIG_INT
-#ifdef CONFIG_BIGNUM
- || cl == JS_CLASS_BIG_FLOAT
- || cl == JS_CLASS_BIG_DECIMAL
-#endif
- )
+ } else if (cl == JS_CLASS_BOOLEAN || cl == JS_CLASS_BIG_INT)
{
/* This will thow the same error as for the primitive object */
set_value(ctx, &val, JS_DupValue(ctx, p->u.object_data));
@@ -45564,11 +44885,8 @@ static int js_json_to_str(JSContext *ctx, JSONStringifyContext *jsc,
case JS_TAG_NULL:
concat_value:
return string_buffer_concat_value_free(jsc->b, val);
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
- case JS_TAG_BIG_DECIMAL:
-#endif
/* reject big numbers: use toJSON method to override */
JS_ThrowTypeError(ctx, "Do not know how to serialize a BigInt");
goto exception;
@@ -50661,307 +49979,6 @@ void JS_AddIntrinsicEval(JSContext *ctx)
ctx->eval_internal = __JS_EvalInternal;
}
-#ifdef CONFIG_BIGNUM
-
-/* Operators */
-
-static void js_operator_set_finalizer(JSRuntime *rt, JSValue val)
-{
- JSOperatorSetData *opset = JS_GetOpaque(val, JS_CLASS_OPERATOR_SET);
- int i, j;
- JSBinaryOperatorDefEntry *ent;
-
- if (opset) {
- for(i = 0; i < JS_OVOP_COUNT; i++) {
- if (opset->self_ops[i])
- JS_FreeValueRT(rt, JS_MKPTR(JS_TAG_OBJECT, opset->self_ops[i]));
- }
- for(j = 0; j < opset->left.count; j++) {
- ent = &opset->left.tab[j];
- for(i = 0; i < JS_OVOP_BINARY_COUNT; i++) {
- if (ent->ops[i])
- JS_FreeValueRT(rt, JS_MKPTR(JS_TAG_OBJECT, ent->ops[i]));
- }
- }
- js_free_rt(rt, opset->left.tab);
- for(j = 0; j < opset->right.count; j++) {
- ent = &opset->right.tab[j];
- for(i = 0; i < JS_OVOP_BINARY_COUNT; i++) {
- if (ent->ops[i])
- JS_FreeValueRT(rt, JS_MKPTR(JS_TAG_OBJECT, ent->ops[i]));
- }
- }
- js_free_rt(rt, opset->right.tab);
- js_free_rt(rt, opset);
- }
-}
-
-static void js_operator_set_mark(JSRuntime *rt, JSValueConst val,
- JS_MarkFunc *mark_func)
-{
- JSOperatorSetData *opset = JS_GetOpaque(val, JS_CLASS_OPERATOR_SET);
- int i, j;
- JSBinaryOperatorDefEntry *ent;
-
- if (opset) {
- for(i = 0; i < JS_OVOP_COUNT; i++) {
- if (opset->self_ops[i])
- JS_MarkValue(rt, JS_MKPTR(JS_TAG_OBJECT, opset->self_ops[i]),
- mark_func);
- }
- for(j = 0; j < opset->left.count; j++) {
- ent = &opset->left.tab[j];
- for(i = 0; i < JS_OVOP_BINARY_COUNT; i++) {
- if (ent->ops[i])
- JS_MarkValue(rt, JS_MKPTR(JS_TAG_OBJECT, ent->ops[i]),
- mark_func);
- }
- }
- for(j = 0; j < opset->right.count; j++) {
- ent = &opset->right.tab[j];
- for(i = 0; i < JS_OVOP_BINARY_COUNT; i++) {
- if (ent->ops[i])
- JS_MarkValue(rt, JS_MKPTR(JS_TAG_OBJECT, ent->ops[i]),
- mark_func);
- }
- }
- }
-}
-
-
-/* create an OperatorSet object */
-static JSValue js_operators_create_internal(JSContext *ctx,
- int argc, JSValueConst *argv,
- BOOL is_primitive)
-{
- JSValue opset_obj, prop, obj;
- JSOperatorSetData *opset, *opset1;
- JSBinaryOperatorDef *def;
- JSValueConst arg;
- int i, j;
- JSBinaryOperatorDefEntry *new_tab;
- JSBinaryOperatorDefEntry *ent;
- uint32_t op_count;
-
- if (ctx->rt->operator_count == UINT32_MAX) {
- return JS_ThrowTypeError(ctx, "too many operators");
- }
- opset_obj = JS_NewObjectProtoClass(ctx, JS_NULL, JS_CLASS_OPERATOR_SET);
- if (JS_IsException(opset_obj))
- goto fail;
- opset = js_mallocz(ctx, sizeof(*opset));
- if (!opset)
- goto fail;
- JS_SetOpaque(opset_obj, opset);
- if (argc >= 1) {
- arg = argv[0];
- /* self operators */
- for(i = 0; i < JS_OVOP_COUNT; i++) {
- prop = JS_GetPropertyStr(ctx, arg, js_overloadable_operator_names[i]);
- if (JS_IsException(prop))
- goto fail;
- if (!JS_IsUndefined(prop)) {
- if (check_function(ctx, prop)) {
- JS_FreeValue(ctx, prop);
- goto fail;
- }
- opset->self_ops[i] = JS_VALUE_GET_OBJ(prop);
- }
- }
- }
- /* left & right operators */
- for(j = 1; j < argc; j++) {
- arg = argv[j];
- prop = JS_GetPropertyStr(ctx, arg, "left");
- if (JS_IsException(prop))
- goto fail;
- def = &opset->right;
- if (JS_IsUndefined(prop)) {
- prop = JS_GetPropertyStr(ctx, arg, "right");
- if (JS_IsException(prop))
- goto fail;
- if (JS_IsUndefined(prop)) {
- JS_ThrowTypeError(ctx, "left or right property must be present");
- goto fail;
- }
- def = &opset->left;
- }
- /* get the operator set */
- obj = JS_GetProperty(ctx, prop, JS_ATOM_prototype);
- JS_FreeValue(ctx, prop);
- if (JS_IsException(obj))
- goto fail;
- prop = JS_GetProperty(ctx, obj, JS_ATOM_Symbol_operatorSet);
- JS_FreeValue(ctx, obj);
- if (JS_IsException(prop))
- goto fail;
- opset1 = JS_GetOpaque2(ctx, prop, JS_CLASS_OPERATOR_SET);
- if (!opset1) {
- JS_FreeValue(ctx, prop);
- goto fail;
- }
- op_count = opset1->operator_counter;
- JS_FreeValue(ctx, prop);
-
- /* we assume there are few entries */
- new_tab = js_realloc(ctx, def->tab,
- (def->count + 1) * sizeof(def->tab[0]));
- if (!new_tab)
- goto fail;
- def->tab = new_tab;
- def->count++;
- ent = def->tab + def->count - 1;
- memset(ent, 0, sizeof(def->tab[0]));
- ent->operator_index = op_count;
-
- for(i = 0; i < JS_OVOP_BINARY_COUNT; i++) {
- prop = JS_GetPropertyStr(ctx, arg,
- js_overloadable_operator_names[i]);
- if (JS_IsException(prop))
- goto fail;
- if (!JS_IsUndefined(prop)) {
- if (check_function(ctx, prop)) {
- JS_FreeValue(ctx, prop);
- goto fail;
- }
- ent->ops[i] = JS_VALUE_GET_OBJ(prop);
- }
- }
- }
- opset->is_primitive = is_primitive;
- opset->operator_counter = ctx->rt->operator_count++;
- return opset_obj;
- fail:
- JS_FreeValue(ctx, opset_obj);
- return JS_EXCEPTION;
-}
-
-static JSValue js_operators_create(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- return js_operators_create_internal(ctx, argc, argv, FALSE);
-}
-
-static JSValue js_operators_updateBigIntOperators(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue opset_obj, prop;
- JSOperatorSetData *opset;
- const JSOverloadableOperatorEnum ops[2] = { JS_OVOP_DIV, JS_OVOP_POW };
- JSOverloadableOperatorEnum op;
- int i;
-
- opset_obj = JS_GetProperty(ctx, ctx->class_proto[JS_CLASS_BIG_INT],
- JS_ATOM_Symbol_operatorSet);
- if (JS_IsException(opset_obj))
- goto fail;
- opset = JS_GetOpaque2(ctx, opset_obj, JS_CLASS_OPERATOR_SET);
- if (!opset)
- goto fail;
- for(i = 0; i < countof(ops); i++) {
- op = ops[i];
- prop = JS_GetPropertyStr(ctx, argv[0],
- js_overloadable_operator_names[op]);
- if (JS_IsException(prop))
- goto fail;
- if (!JS_IsUndefined(prop)) {
- if (!JS_IsNull(prop) && check_function(ctx, prop)) {
- JS_FreeValue(ctx, prop);
- goto fail;
- }
- if (opset->self_ops[op])
- JS_FreeValue(ctx, JS_MKPTR(JS_TAG_OBJECT, opset->self_ops[op]));
- if (JS_IsNull(prop)) {
- opset->self_ops[op] = NULL;
- } else {
- opset->self_ops[op] = JS_VALUE_GET_PTR(prop);
- }
- }
- }
- JS_FreeValue(ctx, opset_obj);
- return JS_UNDEFINED;
- fail:
- JS_FreeValue(ctx, opset_obj);
- return JS_EXCEPTION;
-}
-
-static int js_operators_set_default(JSContext *ctx, JSValueConst obj)
-{
- JSValue opset_obj;
-
- if (!JS_IsObject(obj)) /* in case the prototype is not defined */
- return 0;
- opset_obj = js_operators_create_internal(ctx, 0, NULL, TRUE);
- if (JS_IsException(opset_obj))
- return -1;
- /* cannot be modified by the user */
- JS_DefinePropertyValue(ctx, obj, JS_ATOM_Symbol_operatorSet,
- opset_obj, 0);
- return 0;
-}
-
-static JSValue js_dummy_operators_ctor(JSContext *ctx, JSValueConst new_target,
- int argc, JSValueConst *argv)
-{
- return js_create_from_ctor(ctx, new_target, JS_CLASS_OBJECT);
-}
-
-static JSValue js_global_operators(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue func_obj, proto, opset_obj;
-
- func_obj = JS_UNDEFINED;
- proto = JS_NewObject(ctx);
- if (JS_IsException(proto))
- return JS_EXCEPTION;
- opset_obj = js_operators_create_internal(ctx, argc, argv, FALSE);
- if (JS_IsException(opset_obj))
- goto fail;
- JS_DefinePropertyValue(ctx, proto, JS_ATOM_Symbol_operatorSet,
- opset_obj, JS_PROP_WRITABLE | JS_PROP_CONFIGURABLE);
- func_obj = JS_NewCFunction2(ctx, js_dummy_operators_ctor, "Operators",
- 0, JS_CFUNC_constructor, 0);
- if (JS_IsException(func_obj))
- goto fail;
- JS_SetConstructor2(ctx, func_obj, proto,
- 0, JS_PROP_WRITABLE | JS_PROP_CONFIGURABLE);
- JS_FreeValue(ctx, proto);
- return func_obj;
- fail:
- JS_FreeValue(ctx, proto);
- JS_FreeValue(ctx, func_obj);
- return JS_EXCEPTION;
-}
-
-static const JSCFunctionListEntry js_operators_funcs[] = {
- JS_CFUNC_DEF("create", 1, js_operators_create ),
- JS_CFUNC_DEF("updateBigIntOperators", 2, js_operators_updateBigIntOperators ),
-};
-
-/* must be called after all overloadable base types are initialized */
-void JS_AddIntrinsicOperators(JSContext *ctx)
-{
- JSValue obj;
-
- ctx->allow_operator_overloading = TRUE;
- obj = JS_NewCFunction(ctx, js_global_operators, "Operators", 1);
- JS_SetPropertyFunctionList(ctx, obj,
- js_operators_funcs,
- countof(js_operators_funcs));
- JS_DefinePropertyValue(ctx, ctx->global_obj, JS_ATOM_Operators,
- obj,
- JS_PROP_WRITABLE | JS_PROP_CONFIGURABLE);
- /* add default operatorSets */
- js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_BOOLEAN]);
- js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_NUMBER]);
- js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_STRING]);
- js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_BIG_INT]);
- js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_BIG_FLOAT]);
- js_operators_set_default(ctx, ctx->class_proto[JS_CLASS_BIG_DECIMAL]);
-}
-#endif /* CONFIG_BIGNUM */
-
/* BigInt */
static JSValue JS_ToBigIntCtorFree(JSContext *ctx, JSValue val)
@@ -50975,56 +49992,27 @@ static JSValue JS_ToBigIntCtorFree(JSContext *ctx, JSValue val)
case JS_TAG_BOOL:
val = JS_NewBigInt64(ctx, JS_VALUE_GET_INT(val));
break;
+ case JS_TAG_SHORT_BIG_INT:
case JS_TAG_BIG_INT:
break;
case JS_TAG_FLOAT64:
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_FLOAT:
-#endif
{
- bf_t *a, a_s;
-
- a = JS_ToBigFloat(ctx, &a_s, val);
- if (!a) {
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
- }
- if (!bf_is_finite(a)) {
- JS_FreeValue(ctx, val);
- val = JS_ThrowRangeError(ctx, "cannot convert NaN or Infinity to BigInt");
- } else {
- JSValue val1 = JS_NewBigInt(ctx);
- bf_t *r;
- int ret;
- if (JS_IsException(val1)) {
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
- }
- r = JS_GetBigInt(val1);
- ret = bf_set(r, a);
- ret |= bf_rint(r, BF_RNDZ);
- JS_FreeValue(ctx, val);
- if (ret & BF_ST_MEM_ERROR) {
- JS_FreeValue(ctx, val1);
- val = JS_ThrowOutOfMemory(ctx);
- } else if (ret & BF_ST_INEXACT) {
- JS_FreeValue(ctx, val1);
+ double d = JS_VALUE_GET_FLOAT64(val);
+ JSBigInt *r;
+ int res;
+ r = js_bigint_from_float64(ctx, &res, d);
+ if (!r) {
+ if (res == 0) {
+ val = JS_EXCEPTION;
+ } else if (res == 1) {
val = JS_ThrowRangeError(ctx, "cannot convert to BigInt: not an integer");
} else {
- val = JS_CompactBigInt(ctx, val1);
- }
+ val = JS_ThrowRangeError(ctx, "cannot convert NaN or Infinity to BigInt"); }
+ } else {
+ val = JS_CompactBigInt(ctx, r);
}
- if (a == &a_s)
- bf_delete(a);
}
break;
-#ifdef CONFIG_BIGNUM
- case JS_TAG_BIG_DECIMAL:
- val = JS_ToStringFree(ctx, val);
- if (JS_IsException(val))
- break;
- goto redo;
-#endif
case JS_TAG_STRING:
val = JS_StringToBigIntErr(ctx, val);
break;
@@ -51097,195 +50085,72 @@ static JSValue js_bigint_valueOf(JSContext *ctx, JSValueConst this_val,
return js_thisBigIntValue(ctx, this_val);
}
-#ifdef CONFIG_BIGNUM
-static JSValue js_bigint_div(JSContext *ctx,
- JSValueConst this_val,
- int argc, JSValueConst *argv, int magic)
-{
- bf_t a_s, b_s, *a, *b, *r, *q;
- int status;
- JSValue q_val, r_val;
-
- q_val = JS_NewBigInt(ctx);
- if (JS_IsException(q_val))
- return JS_EXCEPTION;
- r_val = JS_NewBigInt(ctx);
- if (JS_IsException(r_val))
- goto fail;
- b = NULL;
- a = JS_ToBigInt(ctx, &a_s, argv[0]);
- if (!a)
- goto fail;
- b = JS_ToBigInt(ctx, &b_s, argv[1]);
- if (!b) {
- JS_FreeBigInt(ctx, a, &a_s);
- goto fail;
- }
- q = JS_GetBigInt(q_val);
- r = JS_GetBigInt(r_val);
- status = bf_divrem(q, r, a, b, BF_PREC_INF, BF_RNDZ, magic & 0xf);
- JS_FreeBigInt(ctx, a, &a_s);
- JS_FreeBigInt(ctx, b, &b_s);
- if (unlikely(status)) {
- throw_bf_exception(ctx, status);
- goto fail;
- }
- q_val = JS_CompactBigInt(ctx, q_val);
- if (magic & 0x10) {
- JSValue ret;
- ret = JS_NewArray(ctx);
- if (JS_IsException(ret))
- goto fail;
- JS_SetPropertyUint32(ctx, ret, 0, q_val);
- JS_SetPropertyUint32(ctx, ret, 1, JS_CompactBigInt(ctx, r_val));
- return ret;
- } else {
- JS_FreeValue(ctx, r_val);
- return q_val;
- }
- fail:
- JS_FreeValue(ctx, q_val);
- JS_FreeValue(ctx, r_val);
- return JS_EXCEPTION;
-}
-
-static JSValue js_bigint_sqrt(JSContext *ctx,
- JSValueConst this_val,
- int argc, JSValueConst *argv, int magic)
-{
- bf_t a_s, *a, *r, *rem;
- int status;
- JSValue r_val, rem_val;
-
- r_val = JS_NewBigInt(ctx);
- if (JS_IsException(r_val))
- return JS_EXCEPTION;
- rem_val = JS_NewBigInt(ctx);
- if (JS_IsException(rem_val))
- return JS_EXCEPTION;
- r = JS_GetBigInt(r_val);
- rem = JS_GetBigInt(rem_val);
-
- a = JS_ToBigInt(ctx, &a_s, argv[0]);
- if (!a)
- goto fail;
- status = bf_sqrtrem(r, rem, a);
- JS_FreeBigInt(ctx, a, &a_s);
- if (unlikely(status & ~BF_ST_INEXACT)) {
- throw_bf_exception(ctx, status);
- goto fail;
- }
- r_val = JS_CompactBigInt(ctx, r_val);
- if (magic) {
- JSValue ret;
- ret = JS_NewArray(ctx);
- if (JS_IsException(ret))
- goto fail;
- JS_SetPropertyUint32(ctx, ret, 0, r_val);
- JS_SetPropertyUint32(ctx, ret, 1, JS_CompactBigInt(ctx, rem_val));
- return ret;
- } else {
- JS_FreeValue(ctx, rem_val);
- return r_val;
- }
- fail:
- JS_FreeValue(ctx, r_val);
- JS_FreeValue(ctx, rem_val);
- return JS_EXCEPTION;
-}
-
-static JSValue js_bigint_op1(JSContext *ctx,
- JSValueConst this_val,
- int argc, JSValueConst *argv,
- int magic)
-{
- bf_t a_s, *a;
- int64_t res;
-
- a = JS_ToBigInt(ctx, &a_s, argv[0]);
- if (!a)
- return JS_EXCEPTION;
- switch(magic) {
- case 0: /* floorLog2 */
- if (a->sign || a->expn <= 0) {
- res = -1;
- } else {
- res = a->expn - 1;
- }
- break;
- case 1: /* ctz */
- if (bf_is_zero(a)) {
- res = -1;
- } else {
- res = bf_get_exp_min(a);
- }
- break;
- default:
- abort();
- }
- JS_FreeBigInt(ctx, a, &a_s);
- return JS_NewBigInt64(ctx, res);
-}
-#endif
-
static JSValue js_bigint_asUintN(JSContext *ctx,
JSValueConst this_val,
int argc, JSValueConst *argv, int asIntN)
{
uint64_t bits;
- bf_t a_s, *a = &a_s, *r, mask_s, *mask = &mask_s;
- JSValue res;
-
+ JSValue res, a;
+
if (JS_ToIndex(ctx, &bits, argv[0]))
return JS_EXCEPTION;
- res = JS_NewBigInt(ctx);
- if (JS_IsException(res))
- return JS_EXCEPTION;
- r = JS_GetBigInt(res);
- a = JS_ToBigInt(ctx, &a_s, argv[1]);
- if (!a) {
- JS_FreeValue(ctx, res);
+ a = JS_ToBigInt(ctx, argv[1]);
+ if (JS_IsException(a))
return JS_EXCEPTION;
+ if (bits == 0) {
+ JS_FreeValue(ctx, a);
+ res = __JS_NewShortBigInt(ctx, 0);
+ } else if (JS_VALUE_GET_TAG(a) == JS_TAG_SHORT_BIG_INT) {
+ /* fast case */
+ if (bits >= JS_SHORT_BIG_INT_BITS) {
+ res = a;
+ } else {
+ uint64_t v;
+ int shift;
+ shift = 64 - bits;
+ v = JS_VALUE_GET_SHORT_BIG_INT(a);
+ v = v << shift;
+ if (asIntN)
+ v = (int64_t)v >> shift;
+ else
+ v = v >> shift;
+ res = __JS_NewShortBigInt(ctx, v);
+ }
+ } else {
+ JSBigInt *r, *p = JS_VALUE_GET_PTR(a);
+ if (bits >= p->len * JS_LIMB_BITS) {
+ res = a;
+ } else {
+ int len, shift, i;
+ js_limb_t v;
+ len = (bits + JS_LIMB_BITS - 1) / JS_LIMB_BITS;
+ r = js_bigint_new(ctx, len);
+ if (!r) {
+ JS_FreeValue(ctx, a);
+ return JS_EXCEPTION;
+ }
+ r->len = len;
+ for(i = 0; i < len - 1; i++)
+ r->tab[i] = p->tab[i];
+ shift = (-bits) & (JS_LIMB_BITS - 1);
+ /* 0 <= shift <= JS_LIMB_BITS - 1 */
+ v = p->tab[len - 1] << shift;
+ if (asIntN)
+ v = (js_slimb_t)v >> shift;
+ else
+ v = v >> shift;
+ r->tab[len - 1] = v;
+ r = js_bigint_normalize(ctx, r);
+ JS_FreeValue(ctx, a);
+ res = JS_CompactBigInt(ctx, r);
+ }
}
- /* XXX: optimize */
- r = JS_GetBigInt(res);
- bf_init(ctx->bf_ctx, mask);
- bf_set_ui(mask, 1);
- bf_mul_2exp(mask, bits, BF_PREC_INF, BF_RNDZ);
- bf_add_si(mask, mask, -1, BF_PREC_INF, BF_RNDZ);
- bf_logic_and(r, a, mask);
- if (asIntN && bits != 0) {
- bf_set_ui(mask, 1);
- bf_mul_2exp(mask, bits - 1, BF_PREC_INF, BF_RNDZ);
- if (bf_cmpu(r, mask) >= 0) {
- bf_set_ui(mask, 1);
- bf_mul_2exp(mask, bits, BF_PREC_INF, BF_RNDZ);
- bf_sub(r, r, mask, BF_PREC_INF, BF_RNDZ);
- }
- }
- bf_delete(mask);
- JS_FreeBigInt(ctx, a, &a_s);
- return JS_CompactBigInt(ctx, res);
+ return res;
}
static const JSCFunctionListEntry js_bigint_funcs[] = {
JS_CFUNC_MAGIC_DEF("asUintN", 2, js_bigint_asUintN, 0 ),
JS_CFUNC_MAGIC_DEF("asIntN", 2, js_bigint_asUintN, 1 ),
-#ifdef CONFIG_BIGNUM
- /* QuickJS extensions */
- JS_CFUNC_MAGIC_DEF("tdiv", 2, js_bigint_div, BF_RNDZ ),
- JS_CFUNC_MAGIC_DEF("fdiv", 2, js_bigint_div, BF_RNDD ),
- JS_CFUNC_MAGIC_DEF("cdiv", 2, js_bigint_div, BF_RNDU ),
- JS_CFUNC_MAGIC_DEF("ediv", 2, js_bigint_div, BF_DIVREM_EUCLIDIAN ),
- JS_CFUNC_MAGIC_DEF("tdivrem", 2, js_bigint_div, BF_RNDZ | 0x10 ),
- JS_CFUNC_MAGIC_DEF("fdivrem", 2, js_bigint_div, BF_RNDD | 0x10 ),
- JS_CFUNC_MAGIC_DEF("cdivrem", 2, js_bigint_div, BF_RNDU | 0x10 ),
- JS_CFUNC_MAGIC_DEF("edivrem", 2, js_bigint_div, BF_DIVREM_EUCLIDIAN | 0x10 ),
- JS_CFUNC_MAGIC_DEF("sqrt", 1, js_bigint_sqrt, 0 ),
- JS_CFUNC_MAGIC_DEF("sqrtrem", 1, js_bigint_sqrt, 1 ),
- JS_CFUNC_MAGIC_DEF("floorLog2", 1, js_bigint_op1, 0 ),
- JS_CFUNC_MAGIC_DEF("ctz", 1, js_bigint_op1, 1 ),
-#endif
};
static const JSCFunctionListEntry js_bigint_proto_funcs[] = {
@@ -51296,15 +50161,8 @@ static const JSCFunctionListEntry js_bigint_proto_funcs[] = {
void JS_AddIntrinsicBigInt(JSContext *ctx)
{
- JSRuntime *rt = ctx->rt;
JSValueConst obj1;
- rt->bigint_ops.to_string = js_bigint_to_string;
- rt->bigint_ops.from_string = js_string_to_bigint;
- rt->bigint_ops.unary_arith = js_unary_arith_bigint;
- rt->bigint_ops.binary_arith = js_binary_arith_bigint;
- rt->bigint_ops.compare = js_compare_bigfloat;
-
ctx->class_proto[JS_CLASS_BIG_INT] = JS_NewObject(ctx);
JS_SetPropertyFunctionList(ctx, ctx->class_proto[JS_CLASS_BIG_INT],
js_bigint_proto_funcs,
@@ -51315,1413 +50173,6 @@ void JS_AddIntrinsicBigInt(JSContext *ctx)
countof(js_bigint_funcs));
}
-#ifdef CONFIG_BIGNUM
-
-/* BigFloat */
-
-static JSValue js_thisBigFloatValue(JSContext *ctx, JSValueConst this_val)
-{
- if (JS_IsBigFloat(this_val))
- return JS_DupValue(ctx, this_val);
-
- if (JS_VALUE_GET_TAG(this_val) == JS_TAG_OBJECT) {
- JSObject *p = JS_VALUE_GET_OBJ(this_val);
- if (p->class_id == JS_CLASS_BIG_FLOAT) {
- if (JS_IsBigFloat(p->u.object_data))
- return JS_DupValue(ctx, p->u.object_data);
- }
- }
- return JS_ThrowTypeError(ctx, "not a bigfloat");
-}
-
-static JSValue js_bigfloat_toString(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val;
- int base;
- JSValue ret;
-
- val = js_thisBigFloatValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- if (argc == 0 || JS_IsUndefined(argv[0])) {
- base = 10;
- } else {
- base = js_get_radix(ctx, argv[0]);
- if (base < 0)
- goto fail;
- }
- ret = js_ftoa(ctx, val, base, 0, BF_RNDN | BF_FTOA_FORMAT_FREE_MIN);
- JS_FreeValue(ctx, val);
- return ret;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static JSValue js_bigfloat_valueOf(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- return js_thisBigFloatValue(ctx, this_val);
-}
-
-static int bigfloat_get_rnd_mode(JSContext *ctx, JSValueConst val)
-{
- int rnd_mode;
- if (JS_ToInt32Sat(ctx, &rnd_mode, val))
- return -1;
- if (rnd_mode < BF_RNDN || rnd_mode > BF_RNDF) {
- JS_ThrowRangeError(ctx, "invalid rounding mode");
- return -1;
- }
- return rnd_mode;
-}
-
-static JSValue js_bigfloat_toFixed(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val, ret;
- int64_t f;
- int rnd_mode, radix;
-
- val = js_thisBigFloatValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- if (JS_ToInt64Sat(ctx, &f, argv[0]))
- goto fail;
- if (f < 0 || f > BF_PREC_MAX) {
- JS_ThrowRangeError(ctx, "invalid number of digits");
- goto fail;
- }
- rnd_mode = BF_RNDNA;
- radix = 10;
- /* XXX: swap parameter order for rounding mode and radix */
- if (argc > 1) {
- rnd_mode = bigfloat_get_rnd_mode(ctx, argv[1]);
- if (rnd_mode < 0)
- goto fail;
- }
- if (argc > 2) {
- radix = js_get_radix(ctx, argv[2]);
- if (radix < 0)
- goto fail;
- }
- ret = js_ftoa(ctx, val, radix, f, rnd_mode | BF_FTOA_FORMAT_FRAC);
- JS_FreeValue(ctx, val);
- return ret;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static BOOL js_bigfloat_is_finite(JSContext *ctx, JSValueConst val)
-{
- BOOL res;
- uint32_t tag;
-
- tag = JS_VALUE_GET_NORM_TAG(val);
- switch(tag) {
- case JS_TAG_BIG_FLOAT:
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- res = bf_is_finite(&p->num);
- }
- break;
- default:
- res = FALSE;
- break;
- }
- return res;
-}
-
-static JSValue js_bigfloat_toExponential(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val, ret;
- int64_t f;
- int rnd_mode, radix;
-
- val = js_thisBigFloatValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- if (JS_ToInt64Sat(ctx, &f, argv[0]))
- goto fail;
- if (!js_bigfloat_is_finite(ctx, val)) {
- ret = JS_ToString(ctx, val);
- } else if (JS_IsUndefined(argv[0])) {
- ret = js_ftoa(ctx, val, 10, 0,
- BF_RNDN | BF_FTOA_FORMAT_FREE_MIN | BF_FTOA_FORCE_EXP);
- } else {
- if (f < 0 || f > BF_PREC_MAX) {
- JS_ThrowRangeError(ctx, "invalid number of digits");
- goto fail;
- }
- rnd_mode = BF_RNDNA;
- radix = 10;
- if (argc > 1) {
- rnd_mode = bigfloat_get_rnd_mode(ctx, argv[1]);
- if (rnd_mode < 0)
- goto fail;
- }
- if (argc > 2) {
- radix = js_get_radix(ctx, argv[2]);
- if (radix < 0)
- goto fail;
- }
- ret = js_ftoa(ctx, val, radix, f + 1,
- rnd_mode | BF_FTOA_FORMAT_FIXED | BF_FTOA_FORCE_EXP);
- }
- JS_FreeValue(ctx, val);
- return ret;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static JSValue js_bigfloat_toPrecision(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val, ret;
- int64_t p;
- int rnd_mode, radix;
-
- val = js_thisBigFloatValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- if (JS_IsUndefined(argv[0]))
- goto to_string;
- if (JS_ToInt64Sat(ctx, &p, argv[0]))
- goto fail;
- if (!js_bigfloat_is_finite(ctx, val)) {
- to_string:
- ret = JS_ToString(ctx, this_val);
- } else {
- if (p < 1 || p > BF_PREC_MAX) {
- JS_ThrowRangeError(ctx, "invalid number of digits");
- goto fail;
- }
- rnd_mode = BF_RNDNA;
- radix = 10;
- if (argc > 1) {
- rnd_mode = bigfloat_get_rnd_mode(ctx, argv[1]);
- if (rnd_mode < 0)
- goto fail;
- }
- if (argc > 2) {
- radix = js_get_radix(ctx, argv[2]);
- if (radix < 0)
- goto fail;
- }
- ret = js_ftoa(ctx, val, radix, p, rnd_mode | BF_FTOA_FORMAT_FIXED);
- }
- JS_FreeValue(ctx, val);
- return ret;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static const JSCFunctionListEntry js_bigfloat_proto_funcs[] = {
- JS_CFUNC_DEF("toString", 0, js_bigfloat_toString ),
- JS_CFUNC_DEF("valueOf", 0, js_bigfloat_valueOf ),
- JS_CFUNC_DEF("toPrecision", 1, js_bigfloat_toPrecision ),
- JS_CFUNC_DEF("toFixed", 1, js_bigfloat_toFixed ),
- JS_CFUNC_DEF("toExponential", 1, js_bigfloat_toExponential ),
-};
-
-static JSValue js_bigfloat_constructor(JSContext *ctx,
- JSValueConst new_target,
- int argc, JSValueConst *argv)
-{
- JSValue val;
- if (!JS_IsUndefined(new_target))
- return JS_ThrowTypeError(ctx, "not a constructor");
- if (argc == 0) {
- bf_t *r;
- val = JS_NewBigFloat(ctx);
- if (JS_IsException(val))
- return val;
- r = JS_GetBigFloat(val);
- bf_set_zero(r, 0);
- } else {
- val = JS_DupValue(ctx, argv[0]);
- redo:
- switch(JS_VALUE_GET_NORM_TAG(val)) {
- case JS_TAG_BIG_FLOAT:
- break;
- case JS_TAG_FLOAT64:
- {
- bf_t *r;
- double d = JS_VALUE_GET_FLOAT64(val);
- val = JS_NewBigFloat(ctx);
- if (JS_IsException(val))
- break;
- r = JS_GetBigFloat(val);
- if (bf_set_float64(r, d))
- goto fail;
- }
- break;
- case JS_TAG_INT:
- {
- bf_t *r;
- int32_t v = JS_VALUE_GET_INT(val);
- val = JS_NewBigFloat(ctx);
- if (JS_IsException(val))
- break;
- r = JS_GetBigFloat(val);
- if (bf_set_si(r, v))
- goto fail;
- }
- break;
- case JS_TAG_BIG_INT:
- /* We keep the full precision of the integer */
- {
- JSBigFloat *p = JS_VALUE_GET_PTR(val);
- val = JS_MKPTR(JS_TAG_BIG_FLOAT, p);
- }
- break;
- case JS_TAG_BIG_DECIMAL:
- val = JS_ToStringFree(ctx, val);
- if (JS_IsException(val))
- break;
- goto redo;
- case JS_TAG_STRING:
- {
- const char *str, *p;
- size_t len;
- int err;
-
- str = JS_ToCStringLen(ctx, &len, val);
- JS_FreeValue(ctx, val);
- if (!str)
- return JS_EXCEPTION;
- p = str;
- p += skip_spaces(p);
- if ((p - str) == len) {
- bf_t *r;
- val = JS_NewBigFloat(ctx);
- if (JS_IsException(val))
- break;
- r = JS_GetBigFloat(val);
- bf_set_zero(r, 0);
- err = 0;
- } else {
- val = js_atof(ctx, p, &p, 0, ATOD_ACCEPT_BIN_OCT |
- ATOD_TYPE_BIG_FLOAT |
- ATOD_ACCEPT_PREFIX_AFTER_SIGN);
- if (JS_IsException(val)) {
- JS_FreeCString(ctx, str);
- return JS_EXCEPTION;
- }
- p += skip_spaces(p);
- err = ((p - str) != len);
- }
- JS_FreeCString(ctx, str);
- if (err) {
- JS_FreeValue(ctx, val);
- return JS_ThrowSyntaxError(ctx, "invalid bigfloat literal");
- }
- }
- break;
- case JS_TAG_OBJECT:
- val = JS_ToPrimitiveFree(ctx, val, HINT_NUMBER);
- if (JS_IsException(val))
- break;
- goto redo;
- case JS_TAG_NULL:
- case JS_TAG_UNDEFINED:
- default:
- JS_FreeValue(ctx, val);
- return JS_ThrowTypeError(ctx, "cannot convert to bigfloat");
- }
- }
- return val;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static JSValue js_bigfloat_get_const(JSContext *ctx,
- JSValueConst this_val, int magic)
-{
- bf_t *r;
- JSValue val;
- val = JS_NewBigFloat(ctx);
- if (JS_IsException(val))
- return val;
- r = JS_GetBigFloat(val);
- switch(magic) {
- case 0: /* PI */
- bf_const_pi(r, ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- case 1: /* LN2 */
- bf_const_log2(r, ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- case 2: /* MIN_VALUE */
- case 3: /* MAX_VALUE */
- {
- slimb_t e_range, e;
- e_range = (limb_t)1 << (bf_get_exp_bits(ctx->fp_env.flags) - 1);
- bf_set_ui(r, 1);
- if (magic == 2) {
- e = -e_range + 2;
- if (ctx->fp_env.flags & BF_FLAG_SUBNORMAL)
- e -= ctx->fp_env.prec - 1;
- bf_mul_2exp(r, e, ctx->fp_env.prec, ctx->fp_env.flags);
- } else {
- bf_mul_2exp(r, ctx->fp_env.prec, ctx->fp_env.prec,
- ctx->fp_env.flags);
- bf_add_si(r, r, -1, ctx->fp_env.prec, ctx->fp_env.flags);
- bf_mul_2exp(r, e_range - ctx->fp_env.prec, ctx->fp_env.prec,
- ctx->fp_env.flags);
- }
- }
- break;
- case 4: /* EPSILON */
- bf_set_ui(r, 1);
- bf_mul_2exp(r, 1 - ctx->fp_env.prec,
- ctx->fp_env.prec, ctx->fp_env.flags);
- break;
- default:
- abort();
- }
- return val;
-}
-
-static JSValue js_bigfloat_parseFloat(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- bf_t *a;
- const char *str;
- JSValue ret;
- int radix;
- JSFloatEnv *fe;
-
- str = JS_ToCString(ctx, argv[0]);
- if (!str)
- return JS_EXCEPTION;
- if (JS_ToInt32(ctx, &radix, argv[1])) {
- fail:
- JS_FreeCString(ctx, str);
- return JS_EXCEPTION;
- }
- if (radix != 0 && (radix < 2 || radix > 36)) {
- JS_ThrowRangeError(ctx, "radix must be between 2 and 36");
- goto fail;
- }
- fe = &ctx->fp_env;
- if (argc > 2) {
- fe = JS_GetOpaque2(ctx, argv[2], JS_CLASS_FLOAT_ENV);
- if (!fe)
- goto fail;
- }
- ret = JS_NewBigFloat(ctx);
- if (JS_IsException(ret))
- goto done;
- a = JS_GetBigFloat(ret);
- /* XXX: use js_atof() */
- bf_atof(a, str, NULL, radix, fe->prec, fe->flags);
- done:
- JS_FreeCString(ctx, str);
- return ret;
-}
-
-static JSValue js_bigfloat_isFinite(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValueConst val = argv[0];
- JSBigFloat *p;
-
- if (JS_VALUE_GET_NORM_TAG(val) != JS_TAG_BIG_FLOAT)
- return JS_FALSE;
- p = JS_VALUE_GET_PTR(val);
- return JS_NewBool(ctx, bf_is_finite(&p->num));
-}
-
-static JSValue js_bigfloat_isNaN(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValueConst val = argv[0];
- JSBigFloat *p;
-
- if (JS_VALUE_GET_NORM_TAG(val) != JS_TAG_BIG_FLOAT)
- return JS_FALSE;
- p = JS_VALUE_GET_PTR(val);
- return JS_NewBool(ctx, bf_is_nan(&p->num));
-}
-
-enum {
- MATH_OP_ABS,
- MATH_OP_FLOOR,
- MATH_OP_CEIL,
- MATH_OP_ROUND,
- MATH_OP_TRUNC,
- MATH_OP_SQRT,
- MATH_OP_FPROUND,
- MATH_OP_ACOS,
- MATH_OP_ASIN,
- MATH_OP_ATAN,
- MATH_OP_ATAN2,
- MATH_OP_COS,
- MATH_OP_EXP,
- MATH_OP_LOG,
- MATH_OP_POW,
- MATH_OP_SIN,
- MATH_OP_TAN,
- MATH_OP_FMOD,
- MATH_OP_REM,
- MATH_OP_SIGN,
-
- MATH_OP_ADD,
- MATH_OP_SUB,
- MATH_OP_MUL,
- MATH_OP_DIV,
-};
-
-static JSValue js_bigfloat_fop(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv, int magic)
-{
- bf_t a_s, *a, *r;
- JSFloatEnv *fe;
- int rnd_mode;
- JSValue op1, res;
-
- op1 = JS_ToNumeric(ctx, argv[0]);
- if (JS_IsException(op1))
- return op1;
- a = JS_ToBigFloat(ctx, &a_s, op1);
- if (!a) {
- JS_FreeValue(ctx, op1);
- return JS_EXCEPTION;
- }
- fe = &ctx->fp_env;
- if (argc > 1) {
- fe = JS_GetOpaque2(ctx, argv[1], JS_CLASS_FLOAT_ENV);
- if (!fe)
- goto fail;
- }
- res = JS_NewBigFloat(ctx);
- if (JS_IsException(res)) {
- fail:
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, op1);
- return JS_EXCEPTION;
- }
- r = JS_GetBigFloat(res);
- switch (magic) {
- case MATH_OP_ABS:
- bf_set(r, a);
- r->sign = 0;
- break;
- case MATH_OP_FLOOR:
- rnd_mode = BF_RNDD;
- goto rint;
- case MATH_OP_CEIL:
- rnd_mode = BF_RNDU;
- goto rint;
- case MATH_OP_ROUND:
- rnd_mode = BF_RNDNA;
- goto rint;
- case MATH_OP_TRUNC:
- rnd_mode = BF_RNDZ;
- rint:
- bf_set(r, a);
- fe->status |= bf_rint(r, rnd_mode);
- break;
- case MATH_OP_SQRT:
- fe->status |= bf_sqrt(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_FPROUND:
- bf_set(r, a);
- fe->status |= bf_round(r, fe->prec, fe->flags);
- break;
- case MATH_OP_ACOS:
- fe->status |= bf_acos(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_ASIN:
- fe->status |= bf_asin(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_ATAN:
- fe->status |= bf_atan(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_COS:
- fe->status |= bf_cos(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_EXP:
- fe->status |= bf_exp(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_LOG:
- fe->status |= bf_log(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_SIN:
- fe->status |= bf_sin(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_TAN:
- fe->status |= bf_tan(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_SIGN:
- if (bf_is_nan(a) || bf_is_zero(a)) {
- bf_set(r, a);
- } else {
- bf_set_si(r, 1 - 2 * a->sign);
- }
- break;
- default:
- abort();
- }
- if (a == &a_s)
- bf_delete(a);
- JS_FreeValue(ctx, op1);
- return res;
-}
-
-static JSValue js_bigfloat_fop2(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv, int magic)
-{
- bf_t a_s, *a, b_s, *b, r_s, *r = &r_s;
- JSFloatEnv *fe;
- JSValue op1, op2, res;
-
- op1 = JS_ToNumeric(ctx, argv[0]);
- if (JS_IsException(op1))
- return op1;
- op2 = JS_ToNumeric(ctx, argv[1]);
- if (JS_IsException(op2)) {
- JS_FreeValue(ctx, op1);
- return op2;
- }
- a = JS_ToBigFloat(ctx, &a_s, op1);
- if (!a)
- goto fail1;
- b = JS_ToBigFloat(ctx, &b_s, op2);
- if (!b)
- goto fail2;
- fe = &ctx->fp_env;
- if (argc > 2) {
- fe = JS_GetOpaque2(ctx, argv[2], JS_CLASS_FLOAT_ENV);
- if (!fe)
- goto fail;
- }
- res = JS_NewBigFloat(ctx);
- if (JS_IsException(res)) {
- fail:
- if (b == &b_s)
- bf_delete(b);
- fail2:
- if (a == &a_s)
- bf_delete(a);
- fail1:
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- return JS_EXCEPTION;
- }
- r = JS_GetBigFloat(res);
- switch (magic) {
- case MATH_OP_ATAN2:
- fe->status |= bf_atan2(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_POW:
- fe->status |= bf_pow(r, a, b, fe->prec, fe->flags | BF_POW_JS_QUIRKS);
- break;
- case MATH_OP_FMOD:
- fe->status |= bf_rem(r, a, b, fe->prec, fe->flags, BF_RNDZ);
- break;
- case MATH_OP_REM:
- fe->status |= bf_rem(r, a, b, fe->prec, fe->flags, BF_RNDN);
- break;
- case MATH_OP_ADD:
- fe->status |= bf_add(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_SUB:
- fe->status |= bf_sub(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_MUL:
- fe->status |= bf_mul(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_DIV:
- fe->status |= bf_div(r, a, b, fe->prec, fe->flags);
- break;
- default:
- abort();
- }
- if (a == &a_s)
- bf_delete(a);
- if (b == &b_s)
- bf_delete(b);
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- return res;
-}
-
-static const JSCFunctionListEntry js_bigfloat_funcs[] = {
- JS_CGETSET_MAGIC_DEF("PI", js_bigfloat_get_const, NULL, 0 ),
- JS_CGETSET_MAGIC_DEF("LN2", js_bigfloat_get_const, NULL, 1 ),
- JS_CGETSET_MAGIC_DEF("MIN_VALUE", js_bigfloat_get_const, NULL, 2 ),
- JS_CGETSET_MAGIC_DEF("MAX_VALUE", js_bigfloat_get_const, NULL, 3 ),
- JS_CGETSET_MAGIC_DEF("EPSILON", js_bigfloat_get_const, NULL, 4 ),
- JS_CFUNC_DEF("parseFloat", 1, js_bigfloat_parseFloat ),
- JS_CFUNC_DEF("isFinite", 1, js_bigfloat_isFinite ),
- JS_CFUNC_DEF("isNaN", 1, js_bigfloat_isNaN ),
- JS_CFUNC_MAGIC_DEF("abs", 1, js_bigfloat_fop, MATH_OP_ABS ),
- JS_CFUNC_MAGIC_DEF("fpRound", 1, js_bigfloat_fop, MATH_OP_FPROUND ),
- JS_CFUNC_MAGIC_DEF("floor", 1, js_bigfloat_fop, MATH_OP_FLOOR ),
- JS_CFUNC_MAGIC_DEF("ceil", 1, js_bigfloat_fop, MATH_OP_CEIL ),
- JS_CFUNC_MAGIC_DEF("round", 1, js_bigfloat_fop, MATH_OP_ROUND ),
- JS_CFUNC_MAGIC_DEF("trunc", 1, js_bigfloat_fop, MATH_OP_TRUNC ),
- JS_CFUNC_MAGIC_DEF("sqrt", 1, js_bigfloat_fop, MATH_OP_SQRT ),
- JS_CFUNC_MAGIC_DEF("acos", 1, js_bigfloat_fop, MATH_OP_ACOS ),
- JS_CFUNC_MAGIC_DEF("asin", 1, js_bigfloat_fop, MATH_OP_ASIN ),
- JS_CFUNC_MAGIC_DEF("atan", 1, js_bigfloat_fop, MATH_OP_ATAN ),
- JS_CFUNC_MAGIC_DEF("atan2", 2, js_bigfloat_fop2, MATH_OP_ATAN2 ),
- JS_CFUNC_MAGIC_DEF("cos", 1, js_bigfloat_fop, MATH_OP_COS ),
- JS_CFUNC_MAGIC_DEF("exp", 1, js_bigfloat_fop, MATH_OP_EXP ),
- JS_CFUNC_MAGIC_DEF("log", 1, js_bigfloat_fop, MATH_OP_LOG ),
- JS_CFUNC_MAGIC_DEF("pow", 2, js_bigfloat_fop2, MATH_OP_POW ),
- JS_CFUNC_MAGIC_DEF("sin", 1, js_bigfloat_fop, MATH_OP_SIN ),
- JS_CFUNC_MAGIC_DEF("tan", 1, js_bigfloat_fop, MATH_OP_TAN ),
- JS_CFUNC_MAGIC_DEF("sign", 1, js_bigfloat_fop, MATH_OP_SIGN ),
- JS_CFUNC_MAGIC_DEF("add", 2, js_bigfloat_fop2, MATH_OP_ADD ),
- JS_CFUNC_MAGIC_DEF("sub", 2, js_bigfloat_fop2, MATH_OP_SUB ),
- JS_CFUNC_MAGIC_DEF("mul", 2, js_bigfloat_fop2, MATH_OP_MUL ),
- JS_CFUNC_MAGIC_DEF("div", 2, js_bigfloat_fop2, MATH_OP_DIV ),
- JS_CFUNC_MAGIC_DEF("fmod", 2, js_bigfloat_fop2, MATH_OP_FMOD ),
- JS_CFUNC_MAGIC_DEF("remainder", 2, js_bigfloat_fop2, MATH_OP_REM ),
-};
-
-/* FloatEnv */
-
-static JSValue js_float_env_constructor(JSContext *ctx,
- JSValueConst new_target,
- int argc, JSValueConst *argv)
-{
- JSValue obj;
- JSFloatEnv *fe;
- int64_t prec;
- int flags, rndmode;
-
- prec = ctx->fp_env.prec;
- flags = ctx->fp_env.flags;
- if (!JS_IsUndefined(argv[0])) {
- if (JS_ToInt64Sat(ctx, &prec, argv[0]))
- return JS_EXCEPTION;
- if (prec < BF_PREC_MIN || prec > BF_PREC_MAX)
- return JS_ThrowRangeError(ctx, "invalid precision");
- flags = BF_RNDN; /* RNDN, max exponent size, no subnormal */
- if (argc > 1 && !JS_IsUndefined(argv[1])) {
- if (JS_ToInt32Sat(ctx, &rndmode, argv[1]))
- return JS_EXCEPTION;
- if (rndmode < BF_RNDN || rndmode > BF_RNDF)
- return JS_ThrowRangeError(ctx, "invalid rounding mode");
- flags = rndmode;
- }
- }
-
- obj = JS_NewObjectClass(ctx, JS_CLASS_FLOAT_ENV);
- if (JS_IsException(obj))
- return JS_EXCEPTION;
- fe = js_malloc(ctx, sizeof(*fe));
- if (!fe)
- return JS_EXCEPTION;
- fe->prec = prec;
- fe->flags = flags;
- fe->status = 0;
- JS_SetOpaque(obj, fe);
- return obj;
-}
-
-static void js_float_env_finalizer(JSRuntime *rt, JSValue val)
-{
- JSFloatEnv *fe = JS_GetOpaque(val, JS_CLASS_FLOAT_ENV);
- js_free_rt(rt, fe);
-}
-
-static JSValue js_float_env_get_prec(JSContext *ctx, JSValueConst this_val)
-{
- return JS_NewInt64(ctx, ctx->fp_env.prec);
-}
-
-static JSValue js_float_env_get_expBits(JSContext *ctx, JSValueConst this_val)
-{
- return JS_NewInt32(ctx, bf_get_exp_bits(ctx->fp_env.flags));
-}
-
-static JSValue js_float_env_setPrec(JSContext *ctx,
- JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValueConst func;
- int exp_bits, flags, saved_flags;
- JSValue ret;
- limb_t saved_prec;
- int64_t prec;
-
- func = argv[0];
- if (JS_ToInt64Sat(ctx, &prec, argv[1]))
- return JS_EXCEPTION;
- if (prec < BF_PREC_MIN || prec > BF_PREC_MAX)
- return JS_ThrowRangeError(ctx, "invalid precision");
- exp_bits = BF_EXP_BITS_MAX;
-
- if (argc > 2 && !JS_IsUndefined(argv[2])) {
- if (JS_ToInt32Sat(ctx, &exp_bits, argv[2]))
- return JS_EXCEPTION;
- if (exp_bits < BF_EXP_BITS_MIN || exp_bits > BF_EXP_BITS_MAX)
- return JS_ThrowRangeError(ctx, "invalid number of exponent bits");
- }
-
- flags = BF_RNDN | BF_FLAG_SUBNORMAL | bf_set_exp_bits(exp_bits);
-
- saved_prec = ctx->fp_env.prec;
- saved_flags = ctx->fp_env.flags;
-
- ctx->fp_env.prec = prec;
- ctx->fp_env.flags = flags;
-
- ret = JS_Call(ctx, func, JS_UNDEFINED, 0, NULL);
- /* always restore the floating point precision */
- ctx->fp_env.prec = saved_prec;
- ctx->fp_env.flags = saved_flags;
- return ret;
-}
-
-#define FE_PREC (-1)
-#define FE_EXP (-2)
-#define FE_RNDMODE (-3)
-#define FE_SUBNORMAL (-4)
-
-static JSValue js_float_env_proto_get_status(JSContext *ctx, JSValueConst this_val, int magic)
-{
- JSFloatEnv *fe;
- fe = JS_GetOpaque2(ctx, this_val, JS_CLASS_FLOAT_ENV);
- if (!fe)
- return JS_EXCEPTION;
- switch(magic) {
- case FE_PREC:
- return JS_NewInt64(ctx, fe->prec);
- case FE_EXP:
- return JS_NewInt32(ctx, bf_get_exp_bits(fe->flags));
- case FE_RNDMODE:
- return JS_NewInt32(ctx, fe->flags & BF_RND_MASK);
- case FE_SUBNORMAL:
- return JS_NewBool(ctx, fe->flags & BF_FLAG_SUBNORMAL);
- default:
- return JS_NewBool(ctx, fe->status & magic);
- }
-}
-
-static JSValue js_float_env_proto_set_status(JSContext *ctx, JSValueConst this_val, JSValueConst val, int magic)
-{
- JSFloatEnv *fe;
- int b;
- int64_t prec;
-
- fe = JS_GetOpaque2(ctx, this_val, JS_CLASS_FLOAT_ENV);
- if (!fe)
- return JS_EXCEPTION;
- switch(magic) {
- case FE_PREC:
- if (JS_ToInt64Sat(ctx, &prec, val))
- return JS_EXCEPTION;
- if (prec < BF_PREC_MIN || prec > BF_PREC_MAX)
- return JS_ThrowRangeError(ctx, "invalid precision");
- fe->prec = prec;
- break;
- case FE_EXP:
- if (JS_ToInt32Sat(ctx, &b, val))
- return JS_EXCEPTION;
- if (b < BF_EXP_BITS_MIN || b > BF_EXP_BITS_MAX)
- return JS_ThrowRangeError(ctx, "invalid number of exponent bits");
- fe->flags = (fe->flags & ~(BF_EXP_BITS_MASK << BF_EXP_BITS_SHIFT)) |
- bf_set_exp_bits(b);
- break;
- case FE_RNDMODE:
- b = bigfloat_get_rnd_mode(ctx, val);
- if (b < 0)
- return JS_EXCEPTION;
- fe->flags = (fe->flags & ~BF_RND_MASK) | b;
- break;
- case FE_SUBNORMAL:
- b = JS_ToBool(ctx, val);
- fe->flags = (fe->flags & ~BF_FLAG_SUBNORMAL) | (b ? BF_FLAG_SUBNORMAL: 0);
- break;
- default:
- b = JS_ToBool(ctx, val);
- fe->status = (fe->status & ~magic) & ((-b) & magic);
- break;
- }
- return JS_UNDEFINED;
-}
-
-static JSValue js_float_env_clearStatus(JSContext *ctx,
- JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSFloatEnv *fe = JS_GetOpaque2(ctx, this_val, JS_CLASS_FLOAT_ENV);
- if (!fe)
- return JS_EXCEPTION;
- fe->status = 0;
- return JS_UNDEFINED;
-}
-
-static const JSCFunctionListEntry js_float_env_funcs[] = {
- JS_CGETSET_DEF("prec", js_float_env_get_prec, NULL ),
- JS_CGETSET_DEF("expBits", js_float_env_get_expBits, NULL ),
- JS_CFUNC_DEF("setPrec", 2, js_float_env_setPrec ),
- JS_PROP_INT32_DEF("RNDN", BF_RNDN, 0 ),
- JS_PROP_INT32_DEF("RNDZ", BF_RNDZ, 0 ),
- JS_PROP_INT32_DEF("RNDU", BF_RNDU, 0 ),
- JS_PROP_INT32_DEF("RNDD", BF_RNDD, 0 ),
- JS_PROP_INT32_DEF("RNDNA", BF_RNDNA, 0 ),
- JS_PROP_INT32_DEF("RNDA", BF_RNDA, 0 ),
- JS_PROP_INT32_DEF("RNDF", BF_RNDF, 0 ),
- JS_PROP_INT32_DEF("precMin", BF_PREC_MIN, 0 ),
- JS_PROP_INT64_DEF("precMax", BF_PREC_MAX, 0 ),
- JS_PROP_INT32_DEF("expBitsMin", BF_EXP_BITS_MIN, 0 ),
- JS_PROP_INT32_DEF("expBitsMax", BF_EXP_BITS_MAX, 0 ),
-};
-
-static const JSCFunctionListEntry js_float_env_proto_funcs[] = {
- JS_CGETSET_MAGIC_DEF("prec", js_float_env_proto_get_status,
- js_float_env_proto_set_status, FE_PREC ),
- JS_CGETSET_MAGIC_DEF("expBits", js_float_env_proto_get_status,
- js_float_env_proto_set_status, FE_EXP ),
- JS_CGETSET_MAGIC_DEF("rndMode", js_float_env_proto_get_status,
- js_float_env_proto_set_status, FE_RNDMODE ),
- JS_CGETSET_MAGIC_DEF("subnormal", js_float_env_proto_get_status,
- js_float_env_proto_set_status, FE_SUBNORMAL ),
- JS_CGETSET_MAGIC_DEF("invalidOperation", js_float_env_proto_get_status,
- js_float_env_proto_set_status, BF_ST_INVALID_OP ),
- JS_CGETSET_MAGIC_DEF("divideByZero", js_float_env_proto_get_status,
- js_float_env_proto_set_status, BF_ST_DIVIDE_ZERO ),
- JS_CGETSET_MAGIC_DEF("overflow", js_float_env_proto_get_status,
- js_float_env_proto_set_status, BF_ST_OVERFLOW ),
- JS_CGETSET_MAGIC_DEF("underflow", js_float_env_proto_get_status,
- js_float_env_proto_set_status, BF_ST_UNDERFLOW ),
- JS_CGETSET_MAGIC_DEF("inexact", js_float_env_proto_get_status,
- js_float_env_proto_set_status, BF_ST_INEXACT ),
- JS_CFUNC_DEF("clearStatus", 0, js_float_env_clearStatus ),
-};
-
-void JS_AddIntrinsicBigFloat(JSContext *ctx)
-{
- JSRuntime *rt = ctx->rt;
- JSValueConst obj1;
-
- rt->bigfloat_ops.to_string = js_bigfloat_to_string;
- rt->bigfloat_ops.from_string = js_string_to_bigfloat;
- rt->bigfloat_ops.unary_arith = js_unary_arith_bigfloat;
- rt->bigfloat_ops.binary_arith = js_binary_arith_bigfloat;
- rt->bigfloat_ops.compare = js_compare_bigfloat;
- rt->bigfloat_ops.mul_pow10_to_float64 = js_mul_pow10_to_float64;
- rt->bigfloat_ops.mul_pow10 = js_mul_pow10;
-
- ctx->class_proto[JS_CLASS_BIG_FLOAT] = JS_NewObject(ctx);
- JS_SetPropertyFunctionList(ctx, ctx->class_proto[JS_CLASS_BIG_FLOAT],
- js_bigfloat_proto_funcs,
- countof(js_bigfloat_proto_funcs));
- obj1 = JS_NewGlobalCConstructor(ctx, "BigFloat", js_bigfloat_constructor, 1,
- ctx->class_proto[JS_CLASS_BIG_FLOAT]);
- JS_SetPropertyFunctionList(ctx, obj1, js_bigfloat_funcs,
- countof(js_bigfloat_funcs));
-
- ctx->class_proto[JS_CLASS_FLOAT_ENV] = JS_NewObject(ctx);
- JS_SetPropertyFunctionList(ctx, ctx->class_proto[JS_CLASS_FLOAT_ENV],
- js_float_env_proto_funcs,
- countof(js_float_env_proto_funcs));
- obj1 = JS_NewGlobalCConstructorOnly(ctx, "BigFloatEnv",
- js_float_env_constructor, 1,
- ctx->class_proto[JS_CLASS_FLOAT_ENV]);
- JS_SetPropertyFunctionList(ctx, obj1, js_float_env_funcs,
- countof(js_float_env_funcs));
-}
-
-/* BigDecimal */
-
-static JSValue JS_ToBigDecimalFree(JSContext *ctx, JSValue val,
- BOOL allow_null_or_undefined)
-{
- redo:
- switch(JS_VALUE_GET_NORM_TAG(val)) {
- case JS_TAG_BIG_DECIMAL:
- break;
- case JS_TAG_NULL:
- if (!allow_null_or_undefined)
- goto fail;
- /* fall thru */
- case JS_TAG_BOOL:
- case JS_TAG_INT:
- {
- bfdec_t *r;
- int32_t v = JS_VALUE_GET_INT(val);
-
- val = JS_NewBigDecimal(ctx);
- if (JS_IsException(val))
- break;
- r = JS_GetBigDecimal(val);
- if (bfdec_set_si(r, v)) {
- JS_FreeValue(ctx, val);
- val = JS_EXCEPTION;
- break;
- }
- }
- break;
- case JS_TAG_FLOAT64:
- case JS_TAG_BIG_INT:
- case JS_TAG_BIG_FLOAT:
- val = JS_ToStringFree(ctx, val);
- if (JS_IsException(val))
- break;
- goto redo;
- case JS_TAG_STRING:
- {
- const char *str, *p;
- size_t len;
- int err;
-
- str = JS_ToCStringLen(ctx, &len, val);
- JS_FreeValue(ctx, val);
- if (!str)
- return JS_EXCEPTION;
- p = str;
- p += skip_spaces(p);
- if ((p - str) == len) {
- bfdec_t *r;
- val = JS_NewBigDecimal(ctx);
- if (JS_IsException(val))
- break;
- r = JS_GetBigDecimal(val);
- bfdec_set_zero(r, 0);
- err = 0;
- } else {
- val = js_atof(ctx, p, &p, 0, ATOD_TYPE_BIG_DECIMAL);
- if (JS_IsException(val)) {
- JS_FreeCString(ctx, str);
- return JS_EXCEPTION;
- }
- p += skip_spaces(p);
- err = ((p - str) != len);
- }
- JS_FreeCString(ctx, str);
- if (err) {
- JS_FreeValue(ctx, val);
- return JS_ThrowSyntaxError(ctx, "invalid bigdecimal literal");
- }
- }
- break;
- case JS_TAG_OBJECT:
- val = JS_ToPrimitiveFree(ctx, val, HINT_NUMBER);
- if (JS_IsException(val))
- break;
- goto redo;
- case JS_TAG_UNDEFINED:
- {
- bfdec_t *r;
- if (!allow_null_or_undefined)
- goto fail;
- val = JS_NewBigDecimal(ctx);
- if (JS_IsException(val))
- break;
- r = JS_GetBigDecimal(val);
- bfdec_set_nan(r);
- }
- break;
- default:
- fail:
- JS_FreeValue(ctx, val);
- return JS_ThrowTypeError(ctx, "cannot convert to bigdecimal");
- }
- return val;
-}
-
-static JSValue js_bigdecimal_constructor(JSContext *ctx,
- JSValueConst new_target,
- int argc, JSValueConst *argv)
-{
- JSValue val;
- if (!JS_IsUndefined(new_target))
- return JS_ThrowTypeError(ctx, "not a constructor");
- if (argc == 0) {
- bfdec_t *r;
- val = JS_NewBigDecimal(ctx);
- if (JS_IsException(val))
- return val;
- r = JS_GetBigDecimal(val);
- bfdec_set_zero(r, 0);
- } else {
- val = JS_ToBigDecimalFree(ctx, JS_DupValue(ctx, argv[0]), FALSE);
- }
- return val;
-}
-
-static JSValue js_thisBigDecimalValue(JSContext *ctx, JSValueConst this_val)
-{
- if (JS_IsBigDecimal(this_val))
- return JS_DupValue(ctx, this_val);
-
- if (JS_VALUE_GET_TAG(this_val) == JS_TAG_OBJECT) {
- JSObject *p = JS_VALUE_GET_OBJ(this_val);
- if (p->class_id == JS_CLASS_BIG_DECIMAL) {
- if (JS_IsBigDecimal(p->u.object_data))
- return JS_DupValue(ctx, p->u.object_data);
- }
- }
- return JS_ThrowTypeError(ctx, "not a bigdecimal");
-}
-
-static JSValue js_bigdecimal_toString(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val;
-
- val = js_thisBigDecimalValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- return JS_ToStringFree(ctx, val);
-}
-
-static JSValue js_bigdecimal_valueOf(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- return js_thisBigDecimalValue(ctx, this_val);
-}
-
-static int js_bigdecimal_get_rnd_mode(JSContext *ctx, JSValueConst obj)
-{
- const char *str;
- size_t size;
- int rnd_mode;
-
- str = JS_ToCStringLen(ctx, &size, obj);
- if (!str)
- return -1;
- if (strlen(str) != size)
- goto invalid_rounding_mode;
- if (!strcmp(str, "floor")) {
- rnd_mode = BF_RNDD;
- } else if (!strcmp(str, "ceiling")) {
- rnd_mode = BF_RNDU;
- } else if (!strcmp(str, "down")) {
- rnd_mode = BF_RNDZ;
- } else if (!strcmp(str, "up")) {
- rnd_mode = BF_RNDA;
- } else if (!strcmp(str, "half-even")) {
- rnd_mode = BF_RNDN;
- } else if (!strcmp(str, "half-up")) {
- rnd_mode = BF_RNDNA;
- } else {
- invalid_rounding_mode:
- JS_FreeCString(ctx, str);
- JS_ThrowTypeError(ctx, "invalid rounding mode");
- return -1;
- }
- JS_FreeCString(ctx, str);
- return rnd_mode;
-}
-
-typedef struct {
- int64_t prec;
- bf_flags_t flags;
-} BigDecimalEnv;
-
-static int js_bigdecimal_get_env(JSContext *ctx, BigDecimalEnv *fe,
- JSValueConst obj)
-{
- JSValue prop;
- int64_t val;
- BOOL has_prec;
- int rnd_mode;
-
- if (!JS_IsObject(obj)) {
- JS_ThrowTypeErrorNotAnObject(ctx);
- return -1;
- }
- prop = JS_GetProperty(ctx, obj, JS_ATOM_roundingMode);
- if (JS_IsException(prop))
- return -1;
- rnd_mode = js_bigdecimal_get_rnd_mode(ctx, prop);
- JS_FreeValue(ctx, prop);
- if (rnd_mode < 0)
- return -1;
- fe->flags = rnd_mode;
-
- prop = JS_GetProperty(ctx, obj, JS_ATOM_maximumSignificantDigits);
- if (JS_IsException(prop))
- return -1;
- has_prec = FALSE;
- if (!JS_IsUndefined(prop)) {
- if (JS_ToInt64SatFree(ctx, &val, prop))
- return -1;
- if (val < 1 || val > BF_PREC_MAX)
- goto invalid_precision;
- fe->prec = val;
- has_prec = TRUE;
- }
-
- prop = JS_GetProperty(ctx, obj, JS_ATOM_maximumFractionDigits);
- if (JS_IsException(prop))
- return -1;
- if (!JS_IsUndefined(prop)) {
- if (has_prec) {
- JS_FreeValue(ctx, prop);
- JS_ThrowTypeError(ctx, "cannot provide both maximumSignificantDigits and maximumFractionDigits");
- return -1;
- }
- if (JS_ToInt64SatFree(ctx, &val, prop))
- return -1;
- if (val < 0 || val > BF_PREC_MAX) {
- invalid_precision:
- JS_ThrowTypeError(ctx, "invalid precision");
- return -1;
- }
- fe->prec = val;
- fe->flags |= BF_FLAG_RADPNT_PREC;
- has_prec = TRUE;
- }
- if (!has_prec) {
- JS_ThrowTypeError(ctx, "precision must be present");
- return -1;
- }
- return 0;
-}
-
-
-static JSValue js_bigdecimal_fop(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv, int magic)
-{
- bfdec_t *a, *b, r_s, *r = &r_s;
- JSValue op1, op2, res;
- BigDecimalEnv fe_s, *fe = &fe_s;
- int op_count, ret;
-
- if (magic == MATH_OP_SQRT ||
- magic == MATH_OP_ROUND)
- op_count = 1;
- else
- op_count = 2;
-
- op1 = JS_ToNumeric(ctx, argv[0]);
- if (JS_IsException(op1))
- return op1;
- a = JS_ToBigDecimal(ctx, op1);
- if (!a) {
- JS_FreeValue(ctx, op1);
- return JS_EXCEPTION;
- }
- if (op_count >= 2) {
- op2 = JS_ToNumeric(ctx, argv[1]);
- if (JS_IsException(op2)) {
- JS_FreeValue(ctx, op1);
- return op2;
- }
- b = JS_ToBigDecimal(ctx, op2);
- if (!b)
- goto fail;
- } else {
- op2 = JS_UNDEFINED;
- b = NULL;
- }
- fe->flags = BF_RNDZ;
- fe->prec = BF_PREC_INF;
- if (op_count < argc) {
- if (js_bigdecimal_get_env(ctx, fe, argv[op_count]))
- goto fail;
- }
-
- res = JS_NewBigDecimal(ctx);
- if (JS_IsException(res)) {
- fail:
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- return JS_EXCEPTION;
- }
- r = JS_GetBigDecimal(res);
- switch (magic) {
- case MATH_OP_ADD:
- ret = bfdec_add(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_SUB:
- ret = bfdec_sub(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_MUL:
- ret = bfdec_mul(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_DIV:
- ret = bfdec_div(r, a, b, fe->prec, fe->flags);
- break;
- case MATH_OP_FMOD:
- ret = bfdec_rem(r, a, b, fe->prec, fe->flags, BF_RNDZ);
- break;
- case MATH_OP_SQRT:
- ret = bfdec_sqrt(r, a, fe->prec, fe->flags);
- break;
- case MATH_OP_ROUND:
- ret = bfdec_set(r, a);
- if (!(ret & BF_ST_MEM_ERROR))
- ret = bfdec_round(r, fe->prec, fe->flags);
- break;
- default:
- abort();
- }
- JS_FreeValue(ctx, op1);
- JS_FreeValue(ctx, op2);
- ret &= BF_ST_MEM_ERROR | BF_ST_DIVIDE_ZERO | BF_ST_INVALID_OP |
- BF_ST_OVERFLOW;
- if (ret != 0) {
- JS_FreeValue(ctx, res);
- return throw_bf_exception(ctx, ret);
- } else {
- return res;
- }
-}
-
-static JSValue js_bigdecimal_toFixed(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val, ret;
- int64_t f;
- int rnd_mode;
-
- val = js_thisBigDecimalValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- if (JS_ToInt64Sat(ctx, &f, argv[0]))
- goto fail;
- if (f < 0 || f > BF_PREC_MAX) {
- JS_ThrowRangeError(ctx, "invalid number of digits");
- goto fail;
- }
- rnd_mode = BF_RNDNA;
- if (argc > 1) {
- rnd_mode = js_bigdecimal_get_rnd_mode(ctx, argv[1]);
- if (rnd_mode < 0)
- goto fail;
- }
- ret = js_bigdecimal_to_string1(ctx, val, f, rnd_mode | BF_FTOA_FORMAT_FRAC);
- JS_FreeValue(ctx, val);
- return ret;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static JSValue js_bigdecimal_toExponential(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val, ret;
- int64_t f;
- int rnd_mode;
-
- val = js_thisBigDecimalValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- if (JS_ToInt64Sat(ctx, &f, argv[0]))
- goto fail;
- if (JS_IsUndefined(argv[0])) {
- ret = js_bigdecimal_to_string1(ctx, val, 0,
- BF_RNDN | BF_FTOA_FORMAT_FREE_MIN | BF_FTOA_FORCE_EXP);
- } else {
- if (f < 0 || f > BF_PREC_MAX) {
- JS_ThrowRangeError(ctx, "invalid number of digits");
- goto fail;
- }
- rnd_mode = BF_RNDNA;
- if (argc > 1) {
- rnd_mode = js_bigdecimal_get_rnd_mode(ctx, argv[1]);
- if (rnd_mode < 0)
- goto fail;
- }
- ret = js_bigdecimal_to_string1(ctx, val, f + 1,
- rnd_mode | BF_FTOA_FORMAT_FIXED | BF_FTOA_FORCE_EXP);
- }
- JS_FreeValue(ctx, val);
- return ret;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static JSValue js_bigdecimal_toPrecision(JSContext *ctx, JSValueConst this_val,
- int argc, JSValueConst *argv)
-{
- JSValue val, ret;
- int64_t p;
- int rnd_mode;
-
- val = js_thisBigDecimalValue(ctx, this_val);
- if (JS_IsException(val))
- return val;
- if (JS_IsUndefined(argv[0])) {
- return JS_ToStringFree(ctx, val);
- }
- if (JS_ToInt64Sat(ctx, &p, argv[0]))
- goto fail;
- if (p < 1 || p > BF_PREC_MAX) {
- JS_ThrowRangeError(ctx, "invalid number of digits");
- goto fail;
- }
- rnd_mode = BF_RNDNA;
- if (argc > 1) {
- rnd_mode = js_bigdecimal_get_rnd_mode(ctx, argv[1]);
- if (rnd_mode < 0)
- goto fail;
- }
- ret = js_bigdecimal_to_string1(ctx, val, p,
- rnd_mode | BF_FTOA_FORMAT_FIXED);
- JS_FreeValue(ctx, val);
- return ret;
- fail:
- JS_FreeValue(ctx, val);
- return JS_EXCEPTION;
-}
-
-static const JSCFunctionListEntry js_bigdecimal_proto_funcs[] = {
- JS_CFUNC_DEF("toString", 0, js_bigdecimal_toString ),
- JS_CFUNC_DEF("valueOf", 0, js_bigdecimal_valueOf ),
- JS_CFUNC_DEF("toPrecision", 1, js_bigdecimal_toPrecision ),
- JS_CFUNC_DEF("toFixed", 1, js_bigdecimal_toFixed ),
- JS_CFUNC_DEF("toExponential", 1, js_bigdecimal_toExponential ),
-};
-
-static const JSCFunctionListEntry js_bigdecimal_funcs[] = {
- JS_CFUNC_MAGIC_DEF("add", 2, js_bigdecimal_fop, MATH_OP_ADD ),
- JS_CFUNC_MAGIC_DEF("sub", 2, js_bigdecimal_fop, MATH_OP_SUB ),
- JS_CFUNC_MAGIC_DEF("mul", 2, js_bigdecimal_fop, MATH_OP_MUL ),
- JS_CFUNC_MAGIC_DEF("div", 2, js_bigdecimal_fop, MATH_OP_DIV ),
- JS_CFUNC_MAGIC_DEF("mod", 2, js_bigdecimal_fop, MATH_OP_FMOD ),
- JS_CFUNC_MAGIC_DEF("round", 1, js_bigdecimal_fop, MATH_OP_ROUND ),
- JS_CFUNC_MAGIC_DEF("sqrt", 1, js_bigdecimal_fop, MATH_OP_SQRT ),
-};
-
-void JS_AddIntrinsicBigDecimal(JSContext *ctx)
-{
- JSRuntime *rt = ctx->rt;
- JSValueConst obj1;
-
- rt->bigdecimal_ops.to_string = js_bigdecimal_to_string;
- rt->bigdecimal_ops.from_string = js_string_to_bigdecimal;
- rt->bigdecimal_ops.unary_arith = js_unary_arith_bigdecimal;
- rt->bigdecimal_ops.binary_arith = js_binary_arith_bigdecimal;
- rt->bigdecimal_ops.compare = js_compare_bigdecimal;
-
- ctx->class_proto[JS_CLASS_BIG_DECIMAL] = JS_NewObject(ctx);
- JS_SetPropertyFunctionList(ctx, ctx->class_proto[JS_CLASS_BIG_DECIMAL],
- js_bigdecimal_proto_funcs,
- countof(js_bigdecimal_proto_funcs));
- obj1 = JS_NewGlobalCConstructor(ctx, "BigDecimal",
- js_bigdecimal_constructor, 1,
- ctx->class_proto[JS_CLASS_BIG_DECIMAL]);
- JS_SetPropertyFunctionList(ctx, obj1, js_bigdecimal_funcs,
- countof(js_bigdecimal_funcs));
-}
-
-void JS_EnableBignumExt(JSContext *ctx, BOOL enable)
-{
- ctx->bignum_ext = enable;
-}
-
-#endif /* CONFIG_BIGNUM */
-
static const char * const native_error_name[JS_NATIVE_ERROR_COUNT] = {
"EvalError", "RangeError", "ReferenceError",
"SyntaxError", "TypeError", "URIError",
@@ -54141,18 +51592,33 @@ static JSValue js_typed_array_indexOf(JSContext *ctx, JSValueConst this_val,
v64 = d;
is_int = (v64 == d);
}
- } else if (tag == JS_TAG_BIG_INT) {
- JSBigFloat *p1 = JS_VALUE_GET_PTR(argv[0]);
-
+ } else if (tag == JS_TAG_BIG_INT || tag == JS_TAG_SHORT_BIG_INT) {
+ JSBigIntBuf buf1;
+ JSBigInt *p1;
+ int sz = (64 / JS_LIMB_BITS);
+ if (tag == JS_TAG_SHORT_BIG_INT)
+ p1 = js_bigint_set_short(&buf1, argv[0]);
+ else
+ p1 = JS_VALUE_GET_PTR(argv[0]);
+
if (p->class_id == JS_CLASS_BIG_INT64_ARRAY) {
- if (bf_get_int64(&v64, &p1->num, 0) != 0)
- goto done;
+ if (p1->len > sz)
+ goto done; /* does not fit an int64 : cannot be found */
} else if (p->class_id == JS_CLASS_BIG_UINT64_ARRAY) {
- if (bf_get_uint64((uint64_t *)&v64, &p1->num) != 0)
+ if (js_bigint_sign(p1))
+ goto done; /* v < 0 */
+ if (p1->len <= sz) {
+ /* OK */
+ } else if (p1->len == sz + 1 && p1->tab[sz] == 0) {
+ /* 2^63 <= v <= 2^64-1 */
+ } else {
goto done;
+ }
} else {
goto done;
}
+ if (JS_ToBigInt64(ctx, &v64, argv[0]))
+ goto exception;
d = 0;
is_bigint = 1;
} else {
@@ -54273,15 +51739,12 @@ static JSValue js_typed_array_indexOf(JSContext *ctx, JSValueConst this_val,
}
break;
case JS_CLASS_BIG_INT64_ARRAY:
- if (is_bigint || (is_math_mode(ctx) && is_int &&
- v64 >= -MAX_SAFE_INTEGER &&
- v64 <= MAX_SAFE_INTEGER)) {
+ if (is_bigint) {
goto scan64;
}
break;
case JS_CLASS_BIG_UINT64_ARRAY:
- if (is_bigint || (is_math_mode(ctx) && is_int &&
- v64 >= 0 && v64 <= MAX_SAFE_INTEGER)) {
+ if (is_bigint) {
const uint64_t *pv;
uint64_t v;
scan64:
@@ -55701,7 +53164,7 @@ static JSValue js_atomics_store(JSContext *ctx,
return JS_EXCEPTION;
if (size_log2 == 3) {
int64_t v64;
- ret = JS_ToBigIntValueFree(ctx, JS_DupValue(ctx, argv[2]));
+ ret = JS_ToBigIntFree(ctx, JS_DupValue(ctx, argv[2]));
if (JS_IsException(ret))
return ret;
if (JS_ToBigInt64(ctx, &v64, ret)) {
diff --git a/quickjs.h b/quickjs.h
index edc7b47..e908885 100644
--- a/quickjs.h
+++ b/quickjs.h
@@ -64,6 +64,14 @@ typedef uint32_t JSAtom;
#define JS_NAN_BOXING
#endif
+#if defined(__SIZEOF_INT128__) && (INTPTR_MAX >= INT64_MAX)
+#define JS_LIMB_BITS 64
+#else
+#define JS_LIMB_BITS 32
+#endif
+
+#define JS_SHORT_BIG_INT_BITS JS_LIMB_BITS
+
enum {
/* all tags with a reference count are negative */
JS_TAG_FIRST = -11, /* first negative tag */
@@ -83,7 +91,8 @@ enum {
JS_TAG_UNINITIALIZED = 4,
JS_TAG_CATCH_OFFSET = 5,
JS_TAG_EXCEPTION = 6,
- JS_TAG_FLOAT64 = 7,
+ JS_TAG_SHORT_BIG_INT = 7,
+ JS_TAG_FLOAT64 = 8,
/* any larger tag is FLOAT64 if JS_NAN_BOXING */
};
@@ -108,6 +117,7 @@ typedef const struct __JSValue *JSValueConst;
#define JS_VALUE_GET_INT(v) (int)((intptr_t)(v) >> 4)
#define JS_VALUE_GET_BOOL(v) JS_VALUE_GET_INT(v)
#define JS_VALUE_GET_FLOAT64(v) (double)JS_VALUE_GET_INT(v)
+#define JS_VALUE_GET_SHORT_BIG_INT(v) JS_VALUE_GET_INT(v)
#define JS_VALUE_GET_PTR(v) (void *)((intptr_t)(v) & ~0xf)
#define JS_MKVAL(tag, val) (JSValue)(intptr_t)(((val) << 4) | (tag))
@@ -127,6 +137,11 @@ static inline JS_BOOL JS_VALUE_IS_NAN(JSValue v)
return 0;
}
+static inline JSValue __JS_NewShortBigInt(JSContext *ctx, int32_t d)
+{
+ return JS_MKVAL(JS_TAG_SHORT_BIG_INT, d);
+}
+
#elif defined(JS_NAN_BOXING)
typedef uint64_t JSValue;
@@ -136,6 +151,7 @@ typedef uint64_t JSValue;
#define JS_VALUE_GET_TAG(v) (int)((v) >> 32)
#define JS_VALUE_GET_INT(v) (int)(v)
#define JS_VALUE_GET_BOOL(v) (int)(v)
+#define JS_VALUE_GET_SHORT_BIG_INT(v) (int)(v)
#define JS_VALUE_GET_PTR(v) (void *)(intptr_t)(v)
#define JS_MKVAL(tag, val) (((uint64_t)(tag) << 32) | (uint32_t)(val))
@@ -192,12 +208,22 @@ static inline JS_BOOL JS_VALUE_IS_NAN(JSValue v)
return tag == (JS_NAN >> 32);
}
+static inline JSValue __JS_NewShortBigInt(JSContext *ctx, int32_t d)
+{
+ return JS_MKVAL(JS_TAG_SHORT_BIG_INT, d);
+}
+
#else /* !JS_NAN_BOXING */
typedef union JSValueUnion {
int32_t int32;
double float64;
void *ptr;
+#if JS_SHORT_BIG_INT_BITS == 32
+ int32_t short_big_int;
+#else
+ int64_t short_big_int;
+#endif
} JSValueUnion;
typedef struct JSValue {
@@ -213,6 +239,7 @@ typedef struct JSValue {
#define JS_VALUE_GET_INT(v) ((v).u.int32)
#define JS_VALUE_GET_BOOL(v) ((v).u.int32)
#define JS_VALUE_GET_FLOAT64(v) ((v).u.float64)
+#define JS_VALUE_GET_SHORT_BIG_INT(v) ((v).u.short_big_int)
#define JS_VALUE_GET_PTR(v) ((v).u.ptr)
#define JS_MKVAL(tag, val) (JSValue){ (JSValueUnion){ .int32 = val }, tag }
@@ -242,6 +269,14 @@ static inline JS_BOOL JS_VALUE_IS_NAN(JSValue v)
return (u.u64 & 0x7fffffffffffffff) > 0x7ff0000000000000;
}
+static inline JSValue __JS_NewShortBigInt(JSContext *ctx, int64_t d)
+{
+ JSValue v;
+ v.tag = JS_TAG_SHORT_BIG_INT;
+ v.u.short_big_int = d;
+ return v;
+}
+
#endif /* !JS_NAN_BOXING */
#define JS_VALUE_IS_BOTH_INT(v1, v2) ((JS_VALUE_GET_TAG(v1) | JS_VALUE_GET_TAG(v2)) == 0)
@@ -576,7 +611,7 @@ static inline JS_BOOL JS_IsNumber(JSValueConst v)
static inline JS_BOOL JS_IsBigInt(JSContext *ctx, JSValueConst v)
{
int tag = JS_VALUE_GET_TAG(v);
- return tag == JS_TAG_BIG_INT;
+ return tag == JS_TAG_BIG_INT || tag == JS_TAG_SHORT_BIG_INT;
}
static inline JS_BOOL JS_IsBigFloat(JSValueConst v)
diff --git a/tests/microbench.js b/tests/microbench.js
index 63790b6..871770e 100644
--- a/tests/microbench.js
+++ b/tests/microbench.js
@@ -687,29 +687,6 @@ function float_arith(n)
return n * 1000;
}
-function bigfloat_arith(n)
-{
- var i, j, sum, a, incr, a0;
- global_res = 0;
- a0 = BigFloat("0.1");
- incr = BigFloat("1.1");
- for(j = 0; j < n; j++) {
- sum = 0;
- a = a0;
- for(i = 0; i < 1000; i++) {
- sum += a * a;
- a += incr;
- }
- global_res += sum;
- }
- return n * 1000;
-}
-
-function float256_arith(n)
-{
- return BigFloatEnv.setPrec(bigfloat_arith.bind(null, n), 237, 19);
-}
-
function bigint_arith(n, bits)
{
var i, j, sum, a, incr, a0, sum0;
@@ -728,6 +705,11 @@ function bigint_arith(n, bits)
return n * 1000;
}
+function bigint32_arith(n)
+{
+ return bigint_arith(n, 32);
+}
+
function bigint64_arith(n)
{
return bigint_arith(n, 64);
@@ -1231,13 +1213,10 @@ function main(argc, argv, g)
if (typeof BigInt === "function") {
/* BigInt test */
+ test_list.push(bigint32_arith);
test_list.push(bigint64_arith);
test_list.push(bigint256_arith);
}
- if (typeof BigFloat === "function") {
- /* BigFloat test */
- test_list.push(float256_arith);
- }
test_list.push(sort_bench);
for (i = 1; i < argc;) {
diff --git a/tests/test_bigfloat.js b/tests/test_bigfloat.js
deleted file mode 100644
index c35fb72..0000000
--- a/tests/test_bigfloat.js
+++ /dev/null
@@ -1,279 +0,0 @@
-"use strict";
-
-function assert(actual, expected, message) {
- if (arguments.length == 1)
- expected = true;
-
- if (actual === expected)
- return;
-
- if (actual !== null && expected !== null
- && typeof actual == 'object' && typeof expected == 'object'
- && actual.toString() === expected.toString())
- return;
-
- throw Error("assertion failed: got |" + actual + "|" +
- ", expected |" + expected + "|" +
- (message ? " (" + message + ")" : ""));
-}
-
-function assertThrows(err, func)
-{
- var ex;
- ex = false;
- try {
- func();
- } catch(e) {
- ex = true;
- assert(e instanceof err);
- }
- assert(ex, true, "exception expected");
-}
-
-// load more elaborate version of assert if available
-try { __loadScript("test_assert.js"); } catch(e) {}
-
-/*----------------*/
-
-/* a must be < b */
-function test_less(a, b)
-{
- assert(a < b);
- assert(!(b < a));
- assert(a <= b);
- assert(!(b <= a));
- assert(b > a);
- assert(!(a > b));
- assert(b >= a);
- assert(!(a >= b));
- assert(a != b);
- assert(!(a == b));
-}
-
-/* a must be numerically equal to b */
-function test_eq(a, b)
-{
- assert(a == b);
- assert(b == a);
- assert(!(a != b));
- assert(!(b != a));
- assert(a <= b);
- assert(b <= a);
- assert(!(a < b));
- assert(a >= b);
- assert(b >= a);
- assert(!(a > b));
-}
-
-function test_divrem(div1, a, b, q)
-{
- var div, divrem, t;
- div = BigInt[div1];
- divrem = BigInt[div1 + "rem"];
- assert(div(a, b) == q);
- t = divrem(a, b);
- assert(t[0] == q);
- assert(a == b * q + t[1]);
-}
-
-function test_idiv1(div, a, b, r)
-{
- test_divrem(div, a, b, r[0]);
- test_divrem(div, -a, b, r[1]);
- test_divrem(div, a, -b, r[2]);
- test_divrem(div, -a, -b, r[3]);
-}
-
-/* QuickJS BigInt extensions */
-function test_bigint_ext()
-{
- var r;
- assert(BigInt.floorLog2(0n) === -1n);
- assert(BigInt.floorLog2(7n) === 2n);
-
- assert(BigInt.sqrt(0xffffffc000000000000000n) === 17592185913343n);
- r = BigInt.sqrtrem(0xffffffc000000000000000n);
- assert(r[0] === 17592185913343n);
- assert(r[1] === 35167191957503n);
-
- test_idiv1("tdiv", 3n, 2n, [1n, -1n, -1n, 1n]);
- test_idiv1("fdiv", 3n, 2n, [1n, -2n, -2n, 1n]);
- test_idiv1("cdiv", 3n, 2n, [2n, -1n, -1n, 2n]);
- test_idiv1("ediv", 3n, 2n, [1n, -2n, -1n, 2n]);
-}
-
-function test_bigfloat()
-{
- var e, a, b, sqrt2;
-
- assert(typeof 1n === "bigint");
- assert(typeof 1l === "bigfloat");
- assert(1 == 1.0l);
- assert(1 !== 1.0l);
-
- test_less(2l, 3l);
- test_eq(3l, 3l);
-
- test_less(2, 3l);
- test_eq(3, 3l);
-
- test_less(2.1, 3l);
- test_eq(Math.sqrt(9), 3l);
-
- test_less(2n, 3l);
- test_eq(3n, 3l);
-
- e = new BigFloatEnv(128);
- assert(e.prec == 128);
- a = BigFloat.sqrt(2l, e);
- assert(a === BigFloat.parseFloat("0x1.6a09e667f3bcc908b2fb1366ea957d3e", 0, e));
- assert(e.inexact === true);
- assert(BigFloat.fpRound(a) == 0x1.6a09e667f3bcc908b2fb1366ea95l);
-
- b = BigFloatEnv.setPrec(BigFloat.sqrt.bind(null, 2), 128);
- assert(a === b);
-
- assert(BigFloat.isNaN(BigFloat(NaN)));
- assert(BigFloat.isFinite(1l));
- assert(!BigFloat.isFinite(1l/0l));
-
- assert(BigFloat.abs(-3l) === 3l);
- assert(BigFloat.sign(-3l) === -1l);
-
- assert(BigFloat.exp(0.2l) === 1.2214027581601698339210719946396742l);
- assert(BigFloat.log(3l) === 1.0986122886681096913952452369225256l);
- assert(BigFloat.pow(2.1l, 1.6l) === 3.277561666451861947162828744873745l);
-
- assert(BigFloat.sin(-1l) === -0.841470984807896506652502321630299l);
- assert(BigFloat.cos(1l) === 0.5403023058681397174009366074429766l);
- assert(BigFloat.tan(0.1l) === 0.10033467208545054505808004578111154l);
-
- assert(BigFloat.asin(0.3l) === 0.30469265401539750797200296122752915l);
- assert(BigFloat.acos(0.4l) === 1.1592794807274085998465837940224159l);
- assert(BigFloat.atan(0.7l) === 0.610725964389208616543758876490236l);
- assert(BigFloat.atan2(7.1l, -5.1l) === 2.1937053809751415549388104628759813l);
-
- assert(BigFloat.floor(2.5l) === 2l);
- assert(BigFloat.ceil(2.5l) === 3l);
- assert(BigFloat.trunc(-2.5l) === -2l);
- assert(BigFloat.round(2.5l) === 3l);
-
- assert(BigFloat.fmod(3l,2l) === 1l);
- assert(BigFloat.remainder(3l,2l) === -1l);
-
- /* string conversion */
- assert((1234.125l).toString(), "1234.125");
- assert((1234.125l).toFixed(2), "1234.13");
- assert((1234.125l).toFixed(2, "down"), "1234.12");
- assert((1234.125l).toExponential(), "1.234125e+3");
- assert((1234.125l).toExponential(5), "1.23413e+3");
- assert((1234.125l).toExponential(5, BigFloatEnv.RNDZ), "1.23412e+3");
- assert((1234.125l).toPrecision(6), "1234.13");
- assert((1234.125l).toPrecision(6, BigFloatEnv.RNDZ), "1234.12");
-
- /* string conversion with binary base */
- assert((0x123.438l).toString(16), "123.438");
- assert((0x323.438l).toString(16), "323.438");
- assert((0x723.438l).toString(16), "723.438");
- assert((0xf23.438l).toString(16), "f23.438");
- assert((0x123.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "123.44");
- assert((0x323.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "323.44");
- assert((0x723.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "723.44");
- assert((0xf23.438l).toFixed(2, BigFloatEnv.RNDNA, 16), "f23.44");
- assert((0x0.0000438l).toFixed(6, BigFloatEnv.RNDNA, 16), "0.000044");
- assert((0x1230000000l).toFixed(1, BigFloatEnv.RNDNA, 16), "1230000000.0");
- assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "123.44");
- assert((0x123.438l).toPrecision(5, BigFloatEnv.RNDZ, 16), "123.43");
- assert((0x323.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "323.44");
- assert((0x723.438l).toPrecision(5, BigFloatEnv.RNDNA, 16), "723.44");
- assert((-0xf23.438l).toPrecision(5, BigFloatEnv.RNDD, 16), "-f23.44");
- assert((0x123.438l).toExponential(4, BigFloatEnv.RNDNA, 16), "1.2344p+8");
-}
-
-function test_bigdecimal()
-{
- assert(1m === 1m);
- assert(1m !== 2m);
- test_less(1m, 2m);
- test_eq(2m, 2m);
-
- test_less(1, 2m);
- test_eq(2, 2m);
-
- test_less(1.1, 2m);
- test_eq(Math.sqrt(4), 2m);
-
- test_less(2n, 3m);
- test_eq(3n, 3m);
-
- assert(BigDecimal("1234.1") === 1234.1m);
- assert(BigDecimal(" 1234.1") === 1234.1m);
- assert(BigDecimal(" 1234.1 ") === 1234.1m);
-
- assert(BigDecimal(0.1) === 0.1m);
- assert(BigDecimal(123) === 123m);
- assert(BigDecimal(true) === 1m);
-
- assert(123m + 1m === 124m);
- assert(123m - 1m === 122m);
-
- assert(3.2m * 3m === 9.6m);
- assert(10m / 2m === 5m);
- assertThrows(RangeError, () => { 10m / 3m } );
-
- assert(10m % 3m === 1m);
- assert(-10m % 3m === -1m);
-
- assert(1234.5m ** 3m === 1881365963.625m);
- assertThrows(RangeError, () => { 2m ** 3.1m } );
- assertThrows(RangeError, () => { 2m ** -3m } );
-
- assert(BigDecimal.sqrt(2m,
- { roundingMode: "half-even",
- maximumSignificantDigits: 4 }) === 1.414m);
- assert(BigDecimal.sqrt(101m,
- { roundingMode: "half-even",
- maximumFractionDigits: 3 }) === 10.050m);
- assert(BigDecimal.sqrt(0.002m,
- { roundingMode: "half-even",
- maximumFractionDigits: 3 }) === 0.045m);
-
- assert(BigDecimal.round(3.14159m,
- { roundingMode: "half-even",
- maximumFractionDigits: 3 }) === 3.142m);
-
- assert(BigDecimal.add(3.14159m, 0.31212m,
- { roundingMode: "half-even",
- maximumFractionDigits: 2 }) === 3.45m);
- assert(BigDecimal.sub(3.14159m, 0.31212m,
- { roundingMode: "down",
- maximumFractionDigits: 2 }) === 2.82m);
- assert(BigDecimal.mul(3.14159m, 0.31212m,
- { roundingMode: "half-even",
- maximumFractionDigits: 3 }) === 0.981m);
- assert(BigDecimal.mod(3.14159m, 0.31211m,
- { roundingMode: "half-even",
- maximumFractionDigits: 4 }) === 0.0205m);
- assert(BigDecimal.div(20m, 3m,
- { roundingMode: "half-even",
- maximumSignificantDigits: 3 }) === 6.67m);
- assert(BigDecimal.div(20m, 3m,
- { roundingMode: "half-even",
- maximumFractionDigits: 50 }) ===
- 6.66666666666666666666666666666666666666666666666667m);
-
- /* string conversion */
- assert((1234.125m).toString(), "1234.125");
- assert((1234.125m).toFixed(2), "1234.13");
- assert((1234.125m).toFixed(2, "down"), "1234.12");
- assert((1234.125m).toExponential(), "1.234125e+3");
- assert((1234.125m).toExponential(5), "1.23413e+3");
- assert((1234.125m).toExponential(5, "down"), "1.23412e+3");
- assert((1234.125m).toPrecision(6), "1234.13");
- assert((1234.125m).toPrecision(6, "down"), "1234.12");
- assert((-1234.125m).toPrecision(6, "floor"), "-1234.13");
-}
-
-test_bigint_ext();
-test_bigfloat();
-test_bigdecimal();
diff --git a/tests/test_bigint.js b/tests/test_bigint.js
new file mode 100644
index 0000000..a0d028c
--- /dev/null
+++ b/tests/test_bigint.js
@@ -0,0 +1,249 @@
+"use strict";
+
+function assert(actual, expected, message) {
+ if (arguments.length == 1)
+ expected = true;
+
+ if (actual === expected)
+ return;
+
+ if (actual !== null && expected !== null
+ && typeof actual == 'object' && typeof expected == 'object'
+ && actual.toString() === expected.toString())
+ return;
+
+ throw Error("assertion failed: got |" + actual + "|" +
+ ", expected |" + expected + "|" +
+ (message ? " (" + message + ")" : ""));
+}
+
+function assertThrows(err, func)
+{
+ var ex;
+ ex = false;
+ try {
+ func();
+ } catch(e) {
+ ex = true;
+ assert(e instanceof err);
+ }
+ assert(ex, true, "exception expected");
+}
+
+// load more elaborate version of assert if available
+try { __loadScript("test_assert.js"); } catch(e) {}
+
+/*----------------*/
+
+function bigint_pow(a, n)
+{
+ var r, i;
+ r = 1n;
+ for(i = 0n; i < n; i++)
+ r *= a;
+ return r;
+}
+
+/* a must be < b */
+function test_less(a, b)
+{
+ assert(a < b);
+ assert(!(b < a));
+ assert(a <= b);
+ assert(!(b <= a));
+ assert(b > a);
+ assert(!(a > b));
+ assert(b >= a);
+ assert(!(a >= b));
+ assert(a != b);
+ assert(!(a == b));
+}
+
+/* a must be numerically equal to b */
+function test_eq(a, b)
+{
+ assert(a == b);
+ assert(b == a);
+ assert(!(a != b));
+ assert(!(b != a));
+ assert(a <= b);
+ assert(b <= a);
+ assert(!(a < b));
+ assert(a >= b);
+ assert(b >= a);
+ assert(!(a > b));
+}
+
+function test_bigint1()
+{
+ var a, r;
+
+ test_less(2n, 3n);
+ test_eq(3n, 3n);
+
+ test_less(2, 3n);
+ test_eq(3, 3n);
+
+ test_less(2.1, 3n);
+ test_eq(Math.sqrt(4), 2n);
+
+ a = bigint_pow(3n, 100n);
+ assert((a - 1n) != a);
+ assert(a == 515377520732011331036461129765621272702107522001n);
+ assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1n);
+
+ r = 1n << 31n;
+ assert(r, 2147483648n, "1 << 31n === 2147483648n");
+
+ r = 1n << 32n;
+ assert(r, 4294967296n, "1 << 32n === 4294967296n");
+}
+
+function test_bigint2()
+{
+ assert(BigInt(""), 0n);
+ assert(BigInt(" 123"), 123n);
+ assert(BigInt(" 123 "), 123n);
+ assertThrows(SyntaxError, () => { BigInt("+") } );
+ assertThrows(SyntaxError, () => { BigInt("-") } );
+ assertThrows(SyntaxError, () => { BigInt("\x00a") } );
+ assertThrows(SyntaxError, () => { BigInt(" 123 r") } );
+}
+
+function test_bigint3()
+{
+ assert(Number(0xffffffffffffffffn), 18446744073709552000);
+ assert(Number(-0xffffffffffffffffn), -18446744073709552000);
+ assert(100000000000000000000n == 1e20, true);
+ assert(100000000000000000001n == 1e20, false);
+ assert((1n << 100n).toString(10), "1267650600228229401496703205376");
+ assert((-1n << 100n).toString(36), "-3ewfdnca0n6ld1ggvfgg");
+ assert((1n << 100n).toString(8), "2000000000000000000000000000000000");
+
+ assert(0x5a4653ca673768565b41f775n << 78n, 8443945299673273647701379149826607537748959488376832n);
+ assert(-0x5a4653ca673768565b41f775n << 78n, -8443945299673273647701379149826607537748959488376832n);
+ assert(0x5a4653ca673768565b41f775n >> 78n, 92441n);
+ assert(-0x5a4653ca673768565b41f775n >> 78n, -92442n);
+
+ assert(~0x5a653ca6n, -1516584103n);
+ assert(0x5a463ca6n | 0x67376856n, 2138537206n);
+ assert(0x5a463ca6n & 0x67376856n, 1107699718n);
+ assert(0x5a463ca6n ^ 0x67376856n, 1030837488n);
+
+ assert(3213213213213213432453243n / 123434343439n, 26031760073331n);
+ assert(-3213213213213213432453243n / 123434343439n, -26031760073331n);
+ assert(-3213213213213213432453243n % -123434343439n, -26953727934n);
+ assert(3213213213213213432453243n % 123434343439n, 26953727934n);
+
+ assert((-2n) ** 127n, -170141183460469231731687303715884105728n);
+ assert((2n) ** 127n, 170141183460469231731687303715884105728n);
+ assert((-256n) ** 11n, -309485009821345068724781056n);
+ assert((7n) ** 20n, 79792266297612001n);
+}
+
+/* pi computation */
+
+/* return floor(log2(a)) for a > 0 and 0 for a = 0 */
+function floor_log2(a)
+{
+ var k_max, a1, k, i;
+ k_max = 0n;
+ while ((a >> (2n ** k_max)) != 0n) {
+ k_max++;
+ }
+ k = 0n;
+ a1 = a;
+ for(i = k_max - 1n; i >= 0n; i--) {
+ a1 = a >> (2n ** i);
+ if (a1 != 0n) {
+ a = a1;
+ k |= (1n << i);
+ }
+ }
+ return k;
+}
+
+/* return ceil(log2(a)) for a > 0 */
+function ceil_log2(a)
+{
+ return floor_log2(a - 1n) + 1n;
+}
+
+/* return floor(sqrt(a)) (not efficient but simple) */
+function int_sqrt(a)
+{
+ var l, u, s;
+ if (a == 0n)
+ return a;
+ l = ceil_log2(a);
+ u = 1n << ((l + 1n) / 2n);
+ /* u >= floor(sqrt(a)) */
+ for(;;) {
+ s = u;
+ u = ((a / s) + s) / 2n;
+ if (u >= s)
+ break;
+ }
+ return s;
+}
+
+/* return pi * 2**prec */
+function calc_pi(prec) {
+ const CHUD_A = 13591409n;
+ const CHUD_B = 545140134n;
+ const CHUD_C = 640320n;
+ const CHUD_C3 = 10939058860032000n; /* C^3/24 */
+ const CHUD_BITS_PER_TERM = 47.11041313821584202247; /* log2(C/12)*3 */
+
+ /* return [P, Q, G] */
+ function chud_bs(a, b, need_G) {
+ var c, P, Q, G, P1, Q1, G1, P2, Q2, G2;
+ if (a == (b - 1n)) {
+ G = (2n * b - 1n) * (6n * b - 1n) * (6n * b - 5n);
+ P = G * (CHUD_B * b + CHUD_A);
+ if (b & 1n)
+ P = -P;
+ Q = b * b * b * CHUD_C3;
+ } else {
+ c = (a + b) >> 1n;
+ [P1, Q1, G1] = chud_bs(a, c, true);
+ [P2, Q2, G2] = chud_bs(c, b, need_G);
+ P = P1 * Q2 + P2 * G1;
+ Q = Q1 * Q2;
+ if (need_G)
+ G = G1 * G2;
+ else
+ G = 0n;
+ }
+ return [P, Q, G];
+ }
+
+ var n, P, Q, G;
+ /* number of serie terms */
+ n = BigInt(Math.ceil(Number(prec) / CHUD_BITS_PER_TERM)) + 10n;
+ [P, Q, G] = chud_bs(0n, n, false);
+ Q = (CHUD_C / 12n) * (Q << prec) / (P + Q * CHUD_A);
+ G = int_sqrt(CHUD_C << (2n * prec));
+ return (Q * G) >> prec;
+}
+
+function compute_pi(n_digits) {
+ var r, n_digits, n_bits, out;
+ /* we add more bits to reduce the probability of bad rounding for
+ the last digits */
+ n_bits = BigInt(Math.ceil(n_digits * Math.log2(10))) + 32n;
+ r = calc_pi(n_bits);
+ r = ((10n ** BigInt(n_digits)) * r) >> n_bits;
+ out = r.toString();
+ return out[0] + "." + out.slice(1);
+}
+
+function test_pi()
+{
+ assert(compute_pi(2000), "3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744944825537977472684710404753464620804668425906949129331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992458631503028618297455570674983850549458858692699569092721079750930295532116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179049460165346680498862723279178608578438382796797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009");
+}
+
+test_bigint1();
+test_bigint2();
+test_bigint3();
+test_pi();
diff --git a/tests/test_bignum.js b/tests/test_bignum.js
deleted file mode 100644
index 1520d82..0000000
--- a/tests/test_bignum.js
+++ /dev/null
@@ -1,114 +0,0 @@
-"use strict";
-
-function assert(actual, expected, message) {
- if (arguments.length == 1)
- expected = true;
-
- if (actual === expected)
- return;
-
- if (actual !== null && expected !== null
- && typeof actual == 'object' && typeof expected == 'object'
- && actual.toString() === expected.toString())
- return;
-
- throw Error("assertion failed: got |" + actual + "|" +
- ", expected |" + expected + "|" +
- (message ? " (" + message + ")" : ""));
-}
-
-function assertThrows(err, func)
-{
- var ex;
- ex = false;
- try {
- func();
- } catch(e) {
- ex = true;
- assert(e instanceof err);
- }
- assert(ex, true, "exception expected");
-}
-
-// load more elaborate version of assert if available
-try { __loadScript("test_assert.js"); } catch(e) {}
-
-/*----------------*/
-
-function bigint_pow(a, n)
-{
- var r, i;
- r = 1n;
- for(i = 0n; i < n; i++)
- r *= a;
- return r;
-}
-
-/* a must be < b */
-function test_less(a, b)
-{
- assert(a < b);
- assert(!(b < a));
- assert(a <= b);
- assert(!(b <= a));
- assert(b > a);
- assert(!(a > b));
- assert(b >= a);
- assert(!(a >= b));
- assert(a != b);
- assert(!(a == b));
-}
-
-/* a must be numerically equal to b */
-function test_eq(a, b)
-{
- assert(a == b);
- assert(b == a);
- assert(!(a != b));
- assert(!(b != a));
- assert(a <= b);
- assert(b <= a);
- assert(!(a < b));
- assert(a >= b);
- assert(b >= a);
- assert(!(a > b));
-}
-
-function test_bigint1()
-{
- var a, r;
-
- test_less(2n, 3n);
- test_eq(3n, 3n);
-
- test_less(2, 3n);
- test_eq(3, 3n);
-
- test_less(2.1, 3n);
- test_eq(Math.sqrt(4), 2n);
-
- a = bigint_pow(3n, 100n);
- assert((a - 1n) != a);
- assert(a == 515377520732011331036461129765621272702107522001n);
- assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1n);
-
- r = 1n << 31n;
- assert(r, 2147483648n, "1 << 31n === 2147483648n");
-
- r = 1n << 32n;
- assert(r, 4294967296n, "1 << 32n === 4294967296n");
-}
-
-function test_bigint2()
-{
- assert(BigInt(""), 0n);
- assert(BigInt(" 123"), 123n);
- assert(BigInt(" 123 "), 123n);
- assertThrows(SyntaxError, () => { BigInt("+") } );
- assertThrows(SyntaxError, () => { BigInt("-") } );
- assertThrows(SyntaxError, () => { BigInt("\x00a") } );
- assertThrows(SyntaxError, () => { BigInt(" 123 r") } );
-}
-
-test_bigint1();
-test_bigint2();
diff --git a/tests/test_op_overloading.js b/tests/test_op_overloading.js
deleted file mode 100644
index 269abb2..0000000
--- a/tests/test_op_overloading.js
+++ /dev/null
@@ -1,207 +0,0 @@
-"use strict";
-
-function assert(actual, expected, message) {
- if (arguments.length == 1)
- expected = true;
-
- if (actual === expected)
- return;
-
- if (actual !== null && expected !== null
- && typeof actual == 'object' && typeof expected == 'object'
- && actual.toString() === expected.toString())
- return;
-
- throw Error("assertion failed: got |" + actual + "|" +
- ", expected |" + expected + "|" +
- (message ? " (" + message + ")" : ""));
-}
-
-/* operators overloading with Operators.create() */
-function test_operators_create() {
- class Vec2
- {
- constructor(x, y) {
- this.x = x;
- this.y = y;
- }
- static mul_scalar(p1, a) {
- var r = new Vec2();
- r.x = p1.x * a;
- r.y = p1.y * a;
- return r;
- }
- toString() {
- return "Vec2(" + this.x + "," + this.y + ")";
- }
- }
-
- Vec2.prototype[Symbol.operatorSet] = Operators.create(
- {
- "+"(p1, p2) {
- var r = new Vec2();
- r.x = p1.x + p2.x;
- r.y = p1.y + p2.y;
- return r;
- },
- "-"(p1, p2) {
- var r = new Vec2();
- r.x = p1.x - p2.x;
- r.y = p1.y - p2.y;
- return r;
- },
- "=="(a, b) {
- return a.x == b.x && a.y == b.y;
- },
- "<"(a, b) {
- var r;
- /* lexicographic order */
- if (a.x == b.x)
- r = (a.y < b.y);
- else
- r = (a.x < b.x);
- return r;
- },
- "++"(a) {
- var r = new Vec2();
- r.x = a.x + 1;
- r.y = a.y + 1;
- return r;
- }
- },
- {
- left: Number,
- "*"(a, b) {
- return Vec2.mul_scalar(b, a);
- }
- },
- {
- right: Number,
- "*"(a, b) {
- return Vec2.mul_scalar(a, b);
- }
- });
-
- var a = new Vec2(1, 2);
- var b = new Vec2(3, 4);
- var r;
-
- r = a * 2 + 3 * b;
- assert(r.x === 11 && r.y === 16);
- assert(a == a, true);
- assert(a == b, false);
- assert(a != a, false);
- assert(a < b, true);
- assert(a <= b, true);
- assert(b < a, false);
- assert(b <= a, false);
- assert(a <= a, true);
- assert(a >= a, true);
- a++;
- assert(a.x === 2 && a.y === 3);
- r = ++a;
- assert(a.x === 3 && a.y === 4);
- assert(r === a);
-}
-
-/* operators overloading thru inheritance */
-function test_operators()
-{
- var Vec2;
-
- function mul_scalar(p1, a) {
- var r = new Vec2();
- r.x = p1.x * a;
- r.y = p1.y * a;
- return r;
- }
-
- var vec2_ops = Operators({
- "+"(p1, p2) {
- var r = new Vec2();
- r.x = p1.x + p2.x;
- r.y = p1.y + p2.y;
- return r;
- },
- "-"(p1, p2) {
- var r = new Vec2();
- r.x = p1.x - p2.x;
- r.y = p1.y - p2.y;
- return r;
- },
- "=="(a, b) {
- return a.x == b.x && a.y == b.y;
- },
- "<"(a, b) {
- var r;
- /* lexicographic order */
- if (a.x == b.x)
- r = (a.y < b.y);
- else
- r = (a.x < b.x);
- return r;
- },
- "++"(a) {
- var r = new Vec2();
- r.x = a.x + 1;
- r.y = a.y + 1;
- return r;
- }
- },
- {
- left: Number,
- "*"(a, b) {
- return mul_scalar(b, a);
- }
- },
- {
- right: Number,
- "*"(a, b) {
- return mul_scalar(a, b);
- }
- });
-
- Vec2 = class Vec2 extends vec2_ops
- {
- constructor(x, y) {
- super();
- this.x = x;
- this.y = y;
- }
- toString() {
- return "Vec2(" + this.x + "," + this.y + ")";
- }
- }
-
- var a = new Vec2(1, 2);
- var b = new Vec2(3, 4);
- var r;
-
- r = a * 2 + 3 * b;
- assert(r.x === 11 && r.y === 16);
- assert(a == a, true);
- assert(a == b, false);
- assert(a != a, false);
- assert(a < b, true);
- assert(a <= b, true);
- assert(b < a, false);
- assert(b <= a, false);
- assert(a <= a, true);
- assert(a >= a, true);
- a++;
- assert(a.x === 2 && a.y === 3);
- r = ++a;
- assert(a.x === 3 && a.y === 4);
- assert(r === a);
-}
-
-function test_default_op()
-{
- assert(Object(1) + 2, 3);
- assert(Object(1) + true, 2);
- assert(-Object(1), -1);
-}
-
-test_operators_create();
-test_operators();
-test_default_op();
diff --git a/tests/test_qjscalc.js b/tests/test_qjscalc.js
deleted file mode 100644
index e97dd31..0000000
--- a/tests/test_qjscalc.js
+++ /dev/null
@@ -1,256 +0,0 @@
-"use math";
-"use strict";
-
-function assert(actual, expected, message) {
- if (arguments.length == 1)
- expected = true;
-
- if (actual === expected)
- return;
-
- if (actual !== null && expected !== null
- && typeof actual == 'object' && typeof expected == 'object'
- && actual.toString() === expected.toString())
- return;
-
- throw Error("assertion failed: got |" + actual + "|" +
- ", expected |" + expected + "|" +
- (message ? " (" + message + ")" : ""));
-}
-
-function assertThrows(err, func)
-{
- var ex;
- ex = false;
- try {
- func();
- } catch(e) {
- ex = true;
- assert(e instanceof err);
- }
- assert(ex, true, "exception expected");
-}
-
-// load more elaborate version of assert if available
-try { __loadScript("test_assert.js"); } catch(e) {}
-
-/*----------------*/
-
-function pow(a, n)
-{
- var r, i;
- r = 1;
- for(i = 0; i < n; i++)
- r *= a;
- return r;
-}
-
-function test_integer()
-{
- var a, r;
- a = pow(3, 100);
- assert((a - 1) != a);
- assert(a == 515377520732011331036461129765621272702107522001);
- assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1);
- assert(Integer.isInteger(1) === true);
- assert(Integer.isInteger(1.0) === false);
-
- assert(Integer.floorLog2(0) === -1);
- assert(Integer.floorLog2(7) === 2);
-
- r = 1 << 31;
- assert(r, 2147483648, "1 << 31 === 2147483648");
-
- r = 1 << 32;
- assert(r, 4294967296, "1 << 32 === 4294967296");
-
- r = (1 << 31) < 0;
- assert(r, false, "(1 << 31) < 0 === false");
-
- assert(typeof 1 === "number");
- assert(typeof 9007199254740991 === "number");
- assert(typeof 9007199254740992 === "bigint");
-}
-
-function test_float()
-{
- assert(typeof 1.0 === "bigfloat");
- assert(1 == 1.0);
- assert(1 !== 1.0);
-}
-
-/* jscalc tests */
-
-function test_modulo()
-{
- var i, p, a, b;
-
- /* Euclidian modulo operator */
- assert((-3) % 2 == 1);
- assert(3 % (-2) == 1);
-
- p = 101;
- for(i = 1; i < p; i++) {
- a = Integer.invmod(i, p);
- assert(a >= 0 && a < p);
- assert((i * a) % p == 1);
- }
-
- assert(Integer.isPrime(2^107-1));
- assert(!Integer.isPrime((2^107-1) * (2^89-1)));
- a = Integer.factor((2^89-1)*2^3*11*13^2*1009);
- assert(a == [ 2,2,2,11,13,13,1009,618970019642690137449562111 ]);
-}
-
-function test_fraction()
-{
- assert((1/3 + 1).toString(), "4/3")
- assert((2/3)^30, 1073741824/205891132094649);
- assert(1/3 < 2/3);
- assert(1/3 < 1);
- assert(1/3 == 1.0/3);
- assert(1.0/3 < 2/3);
-}
-
-function test_mod()
-{
- var a, b, p;
-
- a = Mod(3, 101);
- b = Mod(-1, 101);
- assert((a + b) == Mod(2, 101));
- assert(a ^ 100 == Mod(1, 101));
-
- p = 2 ^ 607 - 1; /* mersenne prime */
- a = Mod(3, p) ^ (p - 1);
- assert(a == Mod(1, p));
-}
-
-function test_polynomial()
-{
- var a, b, q, r, t, i;
- a = (1 + X) ^ 4;
- assert(a == X^4+4*X^3+6*X^2+4*X+1);
-
- r = (1 + X);
- q = (1+X+X^2);
- b = (1 - X^2);
- a = q * b + r;
- t = Polynomial.divrem(a, b);
- assert(t[0] == q);
- assert(t[1] == r);
-
- a = 1 + 2*X + 3*X^2;
- assert(a.apply(0.1) == 1.23);
-
- a = 1-2*X^2+2*X^3;
- assert(deriv(a) == (6*X^2-4*X));
- assert(deriv(integ(a)) == a);
-
- a = (X-1)*(X-2)*(X-3)*(X-4)*(X-0.1);
- r = polroots(a);
- for(i = 0; i < r.length; i++) {
- b = abs(a.apply(r[i]));
- assert(b <= 1e-13);
- }
-}
-
-function test_poly_mod()
-{
- var a, p;
-
- /* modulo using polynomials */
- p = X^2 + X + 1;
- a = PolyMod(3+X, p) ^ 10;
- assert(a == PolyMod(-3725*X-18357, p));
-
- a = PolyMod(1/X, 1+X^2);
- assert(a == PolyMod(-X, X^2+1));
-}
-
-function test_rfunc()
-{
- var a;
- a = (X+1)/((X+1)*(X-1));
- assert(a == 1/(X-1));
- a = (X + 2) / (X - 2);
- assert(a.apply(1/3) == -7/5);
-
- assert(deriv((X^2-X+1)/(X-1)) == (X^2-2*X)/(X^2-2*X+1));
-}
-
-function test_series()
-{
- var a, b;
- a = 1+X+O(X^5);
- b = a.inverse();
- assert(b == 1-X+X^2-X^3+X^4+O(X^5));
- assert(deriv(b) == -1+2*X-3*X^2+4*X^3+O(X^4));
- assert(deriv(integ(b)) == b);
-
- a = Series(1/(1-X), 5);
- assert(a == 1+X+X^2+X^3+X^4+O(X^5));
- b = a.apply(0.1);
- assert(b == 1.1111);
-
- assert(exp(3*X^2+O(X^10)) == 1+3*X^2+9/2*X^4+9/2*X^6+27/8*X^8+O(X^10));
- assert(sin(X+O(X^6)) == X-1/6*X^3+1/120*X^5+O(X^6));
- assert(cos(X+O(X^6)) == 1-1/2*X^2+1/24*X^4+O(X^6));
- assert(tan(X+O(X^8)) == X+1/3*X^3+2/15*X^5+17/315*X^7+O(X^8));
- assert((1+X+O(X^6))^(2+X) == 1+2*X+2*X^2+3/2*X^3+5/6*X^4+5/12*X^5+O(X^6));
-}
-
-function test_matrix()
-{
- var a, b, r;
- a = [[1, 2],[3, 4]];
- b = [3, 4];
- r = a * b;
- assert(r == [11, 25]);
- r = (a^-1) * 2;
- assert(r == [[-4, 2],[3, -1]]);
-
- assert(norm2([1,2,3]) == 14);
-
- assert(diag([1,2,3]) == [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]);
- assert(trans(a) == [ [ 1, 3 ], [ 2, 4 ] ]);
- assert(trans([1,2,3]) == [[1,2,3]]);
- assert(trace(a) == 5);
-
- assert(charpoly(Matrix.hilbert(4)) == X^4-176/105*X^3+3341/12600*X^2-41/23625*X+1/6048000);
- assert(det(Matrix.hilbert(4)) == 1/6048000);
-
- a = [[1,2,1],[-2,-3,1],[3,5,0]];
- assert(rank(a) == 2);
- assert(ker(a) == [ [ 5 ], [ -3 ], [ 1 ] ]);
-
- assert(dp([1, 2, 3], [3, -4, -7]) === -26);
- assert(cp([1, 2, 3], [3, -4, -7]) == [ -2, 16, -10 ]);
-}
-
-function assert_eq(a, ref)
-{
- assert(abs(a / ref - 1.0) <= 1e-15);
-}
-
-function test_trig()
-{
- assert_eq(sin(1/2), 0.479425538604203);
- assert_eq(sin(2+3*I), 9.154499146911428-4.168906959966565*I);
- assert_eq(cos(2+3*I), -4.189625690968807-9.109227893755337*I);
- assert_eq((2+0.5*I)^(1.1-0.5*I), 2.494363021357619-0.23076804554558092*I);
- assert_eq(sqrt(2*I), 1 + I);
-}
-
-test_integer();
-test_float();
-
-test_modulo();
-test_fraction();
-test_mod();
-test_polynomial();
-test_poly_mod();
-test_rfunc();
-test_series();
-test_matrix();
-test_trig();