summaryrefslogtreecommitdiff
path: root/libbf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libbf.c')
-rw-r--r--libbf.c8166
1 files changed, 8166 insertions, 0 deletions
diff --git a/libbf.c b/libbf.c
new file mode 100644
index 0000000..25e856d
--- /dev/null
+++ b/libbf.c
@@ -0,0 +1,8166 @@
+/*
+ * Tiny arbitrary precision floating point library
+ *
+ * Copyright (c) 2017-2020 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include <stdlib.h>
+#include <stdio.h>
+#include <inttypes.h>
+#include <math.h>
+#include <string.h>
+#include <assert.h>
+
+#ifdef __AVX2__
+#include <immintrin.h>
+#endif
+
+#include "cutils.h"
+#include "libbf.h"
+
+/* enable it to check the multiplication result */
+//#define USE_MUL_CHECK
+/* enable it to use FFT/NTT multiplication */
+#define USE_FFT_MUL
+/* enable decimal floating point support */
+#define USE_BF_DEC
+
+//#define inline __attribute__((always_inline))
+
+#ifdef __AVX2__
+#define FFT_MUL_THRESHOLD 100 /* in limbs of the smallest factor */
+#else
+#define FFT_MUL_THRESHOLD 100 /* in limbs of the smallest factor */
+#endif
+
+/* XXX: adjust */
+#define DIVNORM_LARGE_THRESHOLD 50
+#define UDIV1NORM_THRESHOLD 3
+
+#if LIMB_BITS == 64
+#define FMT_LIMB1 "%" PRIx64
+#define FMT_LIMB "%016" PRIx64
+#define PRId_LIMB PRId64
+#define PRIu_LIMB PRIu64
+
+#else
+
+#define FMT_LIMB1 "%x"
+#define FMT_LIMB "%08x"
+#define PRId_LIMB "d"
+#define PRIu_LIMB "u"
+
+#endif
+
+typedef intptr_t mp_size_t;
+
+typedef int bf_op2_func_t(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags);
+
+#ifdef USE_FFT_MUL
+
+#define FFT_MUL_R_OVERLAP_A (1 << 0)
+#define FFT_MUL_R_OVERLAP_B (1 << 1)
+#define FFT_MUL_R_NORESIZE (1 << 2)
+
+static no_inline int fft_mul(bf_context_t *s,
+ bf_t *res, limb_t *a_tab, limb_t a_len,
+ limb_t *b_tab, limb_t b_len, int mul_flags);
+static void fft_clear_cache(bf_context_t *s);
+#endif
+#ifdef USE_BF_DEC
+static void mp_pow_init(void);
+static limb_t get_digit(const limb_t *tab, limb_t len, slimb_t pos);
+#endif
+
+
+/* could leading zeros */
+static inline int clz(limb_t a)
+{
+ if (a == 0) {
+ return LIMB_BITS;
+ } else {
+#if LIMB_BITS == 64
+ return clz64(a);
+#else
+ return clz32(a);
+#endif
+ }
+}
+
+static inline int ctz(limb_t a)
+{
+ if (a == 0) {
+ return LIMB_BITS;
+ } else {
+#if LIMB_BITS == 64
+ return ctz64(a);
+#else
+ return ctz32(a);
+#endif
+ }
+}
+
+static inline int ceil_log2(limb_t a)
+{
+ if (a <= 1)
+ return 0;
+ else
+ return LIMB_BITS - clz(a - 1);
+}
+
+/* b must be >= 1 */
+static inline slimb_t ceil_div(slimb_t a, slimb_t b)
+{
+ if (a >= 0)
+ return (a + b - 1) / b;
+ else
+ return a / b;
+}
+
+/* b must be >= 1 */
+static inline slimb_t floor_div(slimb_t a, slimb_t b)
+{
+ if (a >= 0) {
+ return a / b;
+ } else {
+ return (a - b + 1) / b;
+ }
+}
+
+/* return r = a modulo b (0 <= r <= b - 1. b must be >= 1 */
+static inline limb_t smod(slimb_t a, slimb_t b)
+{
+ a = a % (slimb_t)b;
+ if (a < 0)
+ a += b;
+ return a;
+}
+
+#define malloc(s) malloc_is_forbidden(s)
+#define free(p) free_is_forbidden(p)
+#define realloc(p, s) realloc_is_forbidden(p, s)
+
+void bf_context_init(bf_context_t *s, bf_realloc_func_t *realloc_func,
+ void *realloc_opaque)
+{
+ memset(s, 0, sizeof(*s));
+ s->realloc_func = realloc_func;
+ s->realloc_opaque = realloc_opaque;
+#ifdef USE_BF_DEC
+ mp_pow_init();
+#endif
+}
+
+void bf_context_end(bf_context_t *s)
+{
+ bf_clear_cache(s);
+}
+
+void bf_init(bf_context_t *s, bf_t *r)
+{
+ r->ctx = s;
+ r->sign = 0;
+ r->expn = BF_EXP_ZERO;
+ r->len = 0;
+ r->tab = NULL;
+}
+
+/* return 0 if OK, -1 if alloc error */
+int bf_resize(bf_t *r, limb_t len)
+{
+ limb_t *tab;
+
+ if (len != r->len) {
+ tab = bf_realloc(r->ctx, r->tab, len * sizeof(limb_t));
+ if (!tab && len != 0)
+ return -1;
+ r->tab = tab;
+ r->len = len;
+ }
+ return 0;
+}
+
+/* return 0 or BF_ST_MEM_ERROR */
+int bf_set_ui(bf_t *r, uint64_t a)
+{
+ r->sign = 0;
+ if (a == 0) {
+ r->expn = BF_EXP_ZERO;
+ bf_resize(r, 0); /* cannot fail */
+ }
+#if LIMB_BITS == 32
+ else if (a <= 0xffffffff)
+#else
+ else
+#endif
+ {
+ int shift;
+ if (bf_resize(r, 1))
+ goto fail;
+ shift = clz(a);
+ r->tab[0] = a << shift;
+ r->expn = LIMB_BITS - shift;
+ }
+#if LIMB_BITS == 32
+ else {
+ uint32_t a1, a0;
+ int shift;
+ if (bf_resize(r, 2))
+ goto fail;
+ a0 = a;
+ a1 = a >> 32;
+ shift = clz(a1);
+ r->tab[0] = a0 << shift;
+ r->tab[1] = (a1 << shift) | (a0 >> (LIMB_BITS - shift));
+ r->expn = 2 * LIMB_BITS - shift;
+ }
+#endif
+ return 0;
+ fail:
+ bf_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+/* return 0 or BF_ST_MEM_ERROR */
+int bf_set_si(bf_t *r, int64_t a)
+{
+ int ret;
+
+ if (a < 0) {
+ ret = bf_set_ui(r, -a);
+ r->sign = 1;
+ } else {
+ ret = bf_set_ui(r, a);
+ }
+ return ret;
+}
+
+void bf_set_nan(bf_t *r)
+{
+ bf_resize(r, 0); /* cannot fail */
+ r->expn = BF_EXP_NAN;
+ r->sign = 0;
+}
+
+void bf_set_zero(bf_t *r, int is_neg)
+{
+ bf_resize(r, 0); /* cannot fail */
+ r->expn = BF_EXP_ZERO;
+ r->sign = is_neg;
+}
+
+void bf_set_inf(bf_t *r, int is_neg)
+{
+ bf_resize(r, 0); /* cannot fail */
+ r->expn = BF_EXP_INF;
+ r->sign = is_neg;
+}
+
+/* return 0 or BF_ST_MEM_ERROR */
+int bf_set(bf_t *r, const bf_t *a)
+{
+ if (r == a)
+ return 0;
+ if (bf_resize(r, a->len)) {
+ bf_set_nan(r);
+ return BF_ST_MEM_ERROR;
+ }
+ r->sign = a->sign;
+ r->expn = a->expn;
+ memcpy(r->tab, a->tab, a->len * sizeof(limb_t));
+ return 0;
+}
+
+/* equivalent to bf_set(r, a); bf_delete(a) */
+void bf_move(bf_t *r, bf_t *a)
+{
+ bf_context_t *s = r->ctx;
+ if (r == a)
+ return;
+ bf_free(s, r->tab);
+ *r = *a;
+}
+
+static limb_t get_limbz(const bf_t *a, limb_t idx)
+{
+ if (idx >= a->len)
+ return 0;
+ else
+ return a->tab[idx];
+}
+
+/* get LIMB_BITS at bit position 'pos' in tab */
+static inline limb_t get_bits(const limb_t *tab, limb_t len, slimb_t pos)
+{
+ limb_t i, a0, a1;
+ int p;
+
+ i = pos >> LIMB_LOG2_BITS;
+ p = pos & (LIMB_BITS - 1);
+ if (i < len)
+ a0 = tab[i];
+ else
+ a0 = 0;
+ if (p == 0) {
+ return a0;
+ } else {
+ i++;
+ if (i < len)
+ a1 = tab[i];
+ else
+ a1 = 0;
+ return (a0 >> p) | (a1 << (LIMB_BITS - p));
+ }
+}
+
+static inline limb_t get_bit(const limb_t *tab, limb_t len, slimb_t pos)
+{
+ slimb_t i;
+ i = pos >> LIMB_LOG2_BITS;
+ if (i < 0 || i >= len)
+ return 0;
+ return (tab[i] >> (pos & (LIMB_BITS - 1))) & 1;
+}
+
+static inline limb_t limb_mask(int start, int last)
+{
+ limb_t v;
+ int n;
+ n = last - start + 1;
+ if (n == LIMB_BITS)
+ v = -1;
+ else
+ v = (((limb_t)1 << n) - 1) << start;
+ return v;
+}
+
+static limb_t mp_scan_nz(const limb_t *tab, mp_size_t n)
+{
+ mp_size_t i;
+ for(i = 0; i < n; i++) {
+ if (tab[i] != 0)
+ return 1;
+ }
+ return 0;
+}
+
+/* return != 0 if one bit between 0 and bit_pos inclusive is not zero. */
+static inline limb_t scan_bit_nz(const bf_t *r, slimb_t bit_pos)
+{
+ slimb_t pos;
+ limb_t v;
+
+ pos = bit_pos >> LIMB_LOG2_BITS;
+ if (pos < 0)
+ return 0;
+ v = r->tab[pos] & limb_mask(0, bit_pos & (LIMB_BITS - 1));
+ if (v != 0)
+ return 1;
+ pos--;
+ while (pos >= 0) {
+ if (r->tab[pos] != 0)
+ return 1;
+ pos--;
+ }
+ return 0;
+}
+
+/* return the addend for rounding. Note that prec can be <= 0 (for
+ BF_FLAG_RADPNT_PREC) */
+static int bf_get_rnd_add(int *pret, const bf_t *r, limb_t l,
+ slimb_t prec, int rnd_mode)
+{
+ int add_one, inexact;
+ limb_t bit1, bit0;
+
+ if (rnd_mode == BF_RNDF) {
+ bit0 = 1; /* faithful rounding does not honor the INEXACT flag */
+ } else {
+ /* starting limb for bit 'prec + 1' */
+ bit0 = scan_bit_nz(r, l * LIMB_BITS - 1 - bf_max(0, prec + 1));
+ }
+
+ /* get the bit at 'prec' */
+ bit1 = get_bit(r->tab, l, l * LIMB_BITS - 1 - prec);
+ inexact = (bit1 | bit0) != 0;
+
+ add_one = 0;
+ switch(rnd_mode) {
+ case BF_RNDZ:
+ break;
+ case BF_RNDN:
+ if (bit1) {
+ if (bit0) {
+ add_one = 1;
+ } else {
+ /* round to even */
+ add_one =
+ get_bit(r->tab, l, l * LIMB_BITS - 1 - (prec - 1));
+ }
+ }
+ break;
+ case BF_RNDD:
+ case BF_RNDU:
+ if (r->sign == (rnd_mode == BF_RNDD))
+ add_one = inexact;
+ break;
+ case BF_RNDNA:
+ case BF_RNDF:
+ add_one = bit1;
+ break;
+ case BF_RNDNU:
+ if (bit1) {
+ if (r->sign)
+ add_one = bit0;
+ else
+ add_one = 1;
+ }
+ break;
+ default:
+ abort();
+ }
+
+ if (inexact)
+ *pret |= BF_ST_INEXACT;
+ return add_one;
+}
+
+static int bf_set_overflow(bf_t *r, int sign, limb_t prec, bf_flags_t flags)
+{
+ slimb_t i, l, e_max;
+ int rnd_mode;
+
+ rnd_mode = flags & BF_RND_MASK;
+ if (prec == BF_PREC_INF ||
+ rnd_mode == BF_RNDN ||
+ rnd_mode == BF_RNDNA ||
+ rnd_mode == BF_RNDNU ||
+ (rnd_mode == BF_RNDD && sign == 1) ||
+ (rnd_mode == BF_RNDU && sign == 0)) {
+ bf_set_inf(r, sign);
+ } else {
+ /* set to maximum finite number */
+ l = (prec + LIMB_BITS - 1) / LIMB_BITS;
+ if (bf_resize(r, l)) {
+ bf_set_nan(r);
+ return BF_ST_MEM_ERROR;
+ }
+ r->tab[0] = limb_mask((-prec) & (LIMB_BITS - 1),
+ LIMB_BITS - 1);
+ for(i = 1; i < l; i++)
+ r->tab[i] = (limb_t)-1;
+ e_max = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
+ r->expn = e_max;
+ r->sign = sign;
+ }
+ return BF_ST_OVERFLOW | BF_ST_INEXACT;
+}
+
+/* round to prec1 bits assuming 'r' is non zero and finite. 'r' is
+ assumed to have length 'l' (1 <= l <= r->len). Note: 'prec1' can be
+ infinite (BF_PREC_INF). Can fail with BF_ST_MEM_ERROR in case of
+ overflow not returning infinity. */
+static int __bf_round(bf_t *r, limb_t prec1, bf_flags_t flags, limb_t l)
+{
+ limb_t v, a;
+ int shift, add_one, ret, rnd_mode;
+ slimb_t i, bit_pos, pos, e_min, e_max, e_range, prec;
+
+ /* e_min and e_max are computed to match the IEEE 754 conventions */
+ e_range = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
+ e_min = -e_range + 3;
+ e_max = e_range;
+
+ if (flags & BF_FLAG_RADPNT_PREC) {
+ /* 'prec' is the precision after the radix point */
+ if (prec1 != BF_PREC_INF)
+ prec = r->expn + prec1;
+ else
+ prec = prec1;
+ } else if (unlikely(r->expn < e_min) && (flags & BF_FLAG_SUBNORMAL)) {
+ /* restrict the precision in case of potentially subnormal
+ result */
+ assert(prec1 != BF_PREC_INF);
+ prec = prec1 - (e_min - r->expn);
+ } else {
+ prec = prec1;
+ }
+
+ /* round to prec bits */
+ rnd_mode = flags & BF_RND_MASK;
+ ret = 0;
+ add_one = bf_get_rnd_add(&ret, r, l, prec, rnd_mode);
+
+ if (prec <= 0) {
+ if (add_one) {
+ bf_resize(r, 1); /* cannot fail */
+ r->tab[0] = (limb_t)1 << (LIMB_BITS - 1);
+ r->expn += 1 - prec;
+ ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
+ return ret;
+ } else {
+ goto underflow;
+ }
+ } else if (add_one) {
+ limb_t carry;
+
+ /* add one starting at digit 'prec - 1' */
+ bit_pos = l * LIMB_BITS - 1 - (prec - 1);
+ pos = bit_pos >> LIMB_LOG2_BITS;
+ carry = (limb_t)1 << (bit_pos & (LIMB_BITS - 1));
+
+ for(i = pos; i < l; i++) {
+ v = r->tab[i] + carry;
+ carry = (v < carry);
+ r->tab[i] = v;
+ if (carry == 0)
+ break;
+ }
+ if (carry) {
+ /* shift right by one digit */
+ v = 1;
+ for(i = l - 1; i >= pos; i--) {
+ a = r->tab[i];
+ r->tab[i] = (a >> 1) | (v << (LIMB_BITS - 1));
+ v = a;
+ }
+ r->expn++;
+ }
+ }
+
+ /* check underflow */
+ if (unlikely(r->expn < e_min)) {
+ if (flags & BF_FLAG_SUBNORMAL) {
+ /* if inexact, also set the underflow flag */
+ if (ret & BF_ST_INEXACT)
+ ret |= BF_ST_UNDERFLOW;
+ } else {
+ underflow:
+ ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
+ bf_set_zero(r, r->sign);
+ return ret;
+ }
+ }
+
+ /* check overflow */
+ if (unlikely(r->expn > e_max))
+ return bf_set_overflow(r, r->sign, prec1, flags);
+
+ /* keep the bits starting at 'prec - 1' */
+ bit_pos = l * LIMB_BITS - 1 - (prec - 1);
+ i = bit_pos >> LIMB_LOG2_BITS;
+ if (i >= 0) {
+ shift = bit_pos & (LIMB_BITS - 1);
+ if (shift != 0)
+ r->tab[i] &= limb_mask(shift, LIMB_BITS - 1);
+ } else {
+ i = 0;
+ }
+ /* remove trailing zeros */
+ while (r->tab[i] == 0)
+ i++;
+ if (i > 0) {
+ l -= i;
+ memmove(r->tab, r->tab + i, l * sizeof(limb_t));
+ }
+ bf_resize(r, l); /* cannot fail */
+ return ret;
+}
+
+/* 'r' must be a finite number. */
+int bf_normalize_and_round(bf_t *r, limb_t prec1, bf_flags_t flags)
+{
+ limb_t l, v, a;
+ int shift, ret;
+ slimb_t i;
+
+ // bf_print_str("bf_renorm", r);
+ l = r->len;
+ while (l > 0 && r->tab[l - 1] == 0)
+ l--;
+ if (l == 0) {
+ /* zero */
+ r->expn = BF_EXP_ZERO;
+ bf_resize(r, 0); /* cannot fail */
+ ret = 0;
+ } else {
+ r->expn -= (r->len - l) * LIMB_BITS;
+ /* shift to have the MSB set to '1' */
+ v = r->tab[l - 1];
+ shift = clz(v);
+ if (shift != 0) {
+ v = 0;
+ for(i = 0; i < l; i++) {
+ a = r->tab[i];
+ r->tab[i] = (a << shift) | (v >> (LIMB_BITS - shift));
+ v = a;
+ }
+ r->expn -= shift;
+ }
+ ret = __bf_round(r, prec1, flags, l);
+ }
+ // bf_print_str("r_final", r);
+ return ret;
+}
+
+/* return true if rounding can be done at precision 'prec' assuming
+ the exact result r is such that |r-a| <= 2^(EXP(a)-k). */
+/* XXX: check the case where the exponent would be incremented by the
+ rounding */
+int bf_can_round(const bf_t *a, slimb_t prec, bf_rnd_t rnd_mode, slimb_t k)
+{
+ BOOL is_rndn;
+ slimb_t bit_pos, n;
+ limb_t bit;
+
+ if (a->expn == BF_EXP_INF || a->expn == BF_EXP_NAN)
+ return FALSE;
+ if (rnd_mode == BF_RNDF) {
+ return (k >= (prec + 1));
+ }
+ if (a->expn == BF_EXP_ZERO)
+ return FALSE;
+ is_rndn = (rnd_mode == BF_RNDN || rnd_mode == BF_RNDNA ||
+ rnd_mode == BF_RNDNU);
+ if (k < (prec + 2))
+ return FALSE;
+ bit_pos = a->len * LIMB_BITS - 1 - prec;
+ n = k - prec;
+ /* bit pattern for RNDN or RNDNA: 0111.. or 1000...
+ for other rounding modes: 000... or 111...
+ */
+ bit = get_bit(a->tab, a->len, bit_pos);
+ bit_pos--;
+ n--;
+ bit ^= is_rndn;
+ /* XXX: slow, but a few iterations on average */
+ while (n != 0) {
+ if (get_bit(a->tab, a->len, bit_pos) != bit)
+ return TRUE;
+ bit_pos--;
+ n--;
+ }
+ return FALSE;
+}
+
+/* Cannot fail with BF_ST_MEM_ERROR. */
+int bf_round(bf_t *r, limb_t prec, bf_flags_t flags)
+{
+ if (r->len == 0)
+ return 0;
+ return __bf_round(r, prec, flags, r->len);
+}
+
+/* for debugging */
+static __maybe_unused void dump_limbs(const char *str, const limb_t *tab, limb_t n)
+{
+ limb_t i;
+ printf("%s: len=%" PRId_LIMB "\n", str, n);
+ for(i = 0; i < n; i++) {
+ printf("%" PRId_LIMB ": " FMT_LIMB "\n",
+ i, tab[i]);
+ }
+}
+
+void mp_print_str(const char *str, const limb_t *tab, limb_t n)
+{
+ slimb_t i;
+ printf("%s= 0x", str);
+ for(i = n - 1; i >= 0; i--) {
+ if (i != (n - 1))
+ printf("_");
+ printf(FMT_LIMB, tab[i]);
+ }
+ printf("\n");
+}
+
+static __maybe_unused void mp_print_str_h(const char *str,
+ const limb_t *tab, limb_t n,
+ limb_t high)
+{
+ slimb_t i;
+ printf("%s= 0x", str);
+ printf(FMT_LIMB, high);
+ for(i = n - 1; i >= 0; i--) {
+ printf("_");
+ printf(FMT_LIMB, tab[i]);
+ }
+ printf("\n");
+}
+
+/* for debugging */
+void bf_print_str(const char *str, const bf_t *a)
+{
+ slimb_t i;
+ printf("%s=", str);
+
+ if (a->expn == BF_EXP_NAN) {
+ printf("NaN");
+ } else {
+ if (a->sign)
+ putchar('-');
+ if (a->expn == BF_EXP_ZERO) {
+ putchar('0');
+ } else if (a->expn == BF_EXP_INF) {
+ printf("Inf");
+ } else {
+ printf("0x0.");
+ for(i = a->len - 1; i >= 0; i--)
+ printf(FMT_LIMB, a->tab[i]);
+ printf("p%" PRId_LIMB, a->expn);
+ }
+ }
+ printf("\n");
+}
+
+/* compare the absolute value of 'a' and 'b'. Return < 0 if a < b, 0
+ if a = b and > 0 otherwise. */
+int bf_cmpu(const bf_t *a, const bf_t *b)
+{
+ slimb_t i;
+ limb_t len, v1, v2;
+
+ if (a->expn != b->expn) {
+ if (a->expn < b->expn)
+ return -1;
+ else
+ return 1;
+ }
+ len = bf_max(a->len, b->len);
+ for(i = len - 1; i >= 0; i--) {
+ v1 = get_limbz(a, a->len - len + i);
+ v2 = get_limbz(b, b->len - len + i);
+ if (v1 != v2) {
+ if (v1 < v2)
+ return -1;
+ else
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* Full order: -0 < 0, NaN == NaN and NaN is larger than all other numbers */
+int bf_cmp_full(const bf_t *a, const bf_t *b)
+{
+ int res;
+
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
+ if (a->expn == b->expn)
+ res = 0;
+ else if (a->expn == BF_EXP_NAN)
+ res = 1;
+ else
+ res = -1;
+ } else if (a->sign != b->sign) {
+ res = 1 - 2 * a->sign;
+ } else {
+ res = bf_cmpu(a, b);
+ if (a->sign)
+ res = -res;
+ }
+ return res;
+}
+
+#define BF_CMP_EQ 1
+#define BF_CMP_LT 2
+#define BF_CMP_LE 3
+
+static int bf_cmp(const bf_t *a, const bf_t *b, int op)
+{
+ BOOL is_both_zero;
+ int res;
+
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN)
+ return 0;
+ if (a->sign != b->sign) {
+ is_both_zero = (a->expn == BF_EXP_ZERO && b->expn == BF_EXP_ZERO);
+ if (is_both_zero) {
+ return op & BF_CMP_EQ;
+ } else if (op & BF_CMP_LT) {
+ return a->sign;
+ } else {
+ return FALSE;
+ }
+ } else {
+ res = bf_cmpu(a, b);
+ if (res == 0) {
+ return op & BF_CMP_EQ;
+ } else if (op & BF_CMP_LT) {
+ return (res < 0) ^ a->sign;
+ } else {
+ return FALSE;
+ }
+ }
+}
+
+int bf_cmp_eq(const bf_t *a, const bf_t *b)
+{
+ return bf_cmp(a, b, BF_CMP_EQ);
+}
+
+int bf_cmp_le(const bf_t *a, const bf_t *b)
+{
+ return bf_cmp(a, b, BF_CMP_LE);
+}
+
+int bf_cmp_lt(const bf_t *a, const bf_t *b)
+{
+ return bf_cmp(a, b, BF_CMP_LT);
+}
+
+/* Compute the number of bits 'n' matching the pattern:
+ a= X1000..0
+ b= X0111..1
+
+ When computing a-b, the result will have at least n leading zero
+ bits.
+
+ Precondition: a > b and a.expn - b.expn = 0 or 1
+*/
+static limb_t count_cancelled_bits(const bf_t *a, const bf_t *b)
+{
+ slimb_t bit_offset, b_offset, n;
+ int p, p1;
+ limb_t v1, v2, mask;
+
+ bit_offset = a->len * LIMB_BITS - 1;
+ b_offset = (b->len - a->len) * LIMB_BITS - (LIMB_BITS - 1) +
+ a->expn - b->expn;
+ n = 0;
+
+ /* first search the equals bits */
+ for(;;) {
+ v1 = get_limbz(a, bit_offset >> LIMB_LOG2_BITS);
+ v2 = get_bits(b->tab, b->len, bit_offset + b_offset);
+ // printf("v1=" FMT_LIMB " v2=" FMT_LIMB "\n", v1, v2);
+ if (v1 != v2)
+ break;
+ n += LIMB_BITS;
+ bit_offset -= LIMB_BITS;
+ }
+ /* find the position of the first different bit */
+ p = clz(v1 ^ v2) + 1;
+ n += p;
+ /* then search for '0' in a and '1' in b */
+ p = LIMB_BITS - p;
+ if (p > 0) {
+ /* search in the trailing p bits of v1 and v2 */
+ mask = limb_mask(0, p - 1);
+ p1 = bf_min(clz(v1 & mask), clz((~v2) & mask)) - (LIMB_BITS - p);
+ n += p1;
+ if (p1 != p)
+ goto done;
+ }
+ bit_offset -= LIMB_BITS;
+ for(;;) {
+ v1 = get_limbz(a, bit_offset >> LIMB_LOG2_BITS);
+ v2 = get_bits(b->tab, b->len, bit_offset + b_offset);
+ // printf("v1=" FMT_LIMB " v2=" FMT_LIMB "\n", v1, v2);
+ if (v1 != 0 || v2 != -1) {
+ /* different: count the matching bits */
+ p1 = bf_min(clz(v1), clz(~v2));
+ n += p1;
+ break;
+ }
+ n += LIMB_BITS;
+ bit_offset -= LIMB_BITS;
+ }
+ done:
+ return n;
+}
+
+static int bf_add_internal(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags, int b_neg)
+{
+ const bf_t *tmp;
+ int is_sub, ret, cmp_res, a_sign, b_sign;
+
+ a_sign = a->sign;
+ b_sign = b->sign ^ b_neg;
+ is_sub = a_sign ^ b_sign;
+ cmp_res = bf_cmpu(a, b);
+ if (cmp_res < 0) {
+ tmp = a;
+ a = b;
+ b = tmp;
+ a_sign = b_sign; /* b_sign is never used later */
+ }
+ /* abs(a) >= abs(b) */
+ if (cmp_res == 0 && is_sub && a->expn < BF_EXP_INF) {
+ /* zero result */
+ bf_set_zero(r, (flags & BF_RND_MASK) == BF_RNDD);
+ ret = 0;
+ } else if (a->len == 0 || b->len == 0) {
+ ret = 0;
+ if (a->expn >= BF_EXP_INF) {
+ if (a->expn == BF_EXP_NAN) {
+ /* at least one operand is NaN */
+ bf_set_nan(r);
+ } else if (b->expn == BF_EXP_INF && is_sub) {
+ /* infinities with different signs */
+ bf_set_nan(r);
+ ret = BF_ST_INVALID_OP;
+ } else {
+ bf_set_inf(r, a_sign);
+ }
+ } else {
+ /* at least one zero and not subtract */
+ bf_set(r, a);
+ r->sign = a_sign;
+ goto renorm;
+ }
+ } else {
+ slimb_t d, a_offset, b_bit_offset, i, cancelled_bits;
+ limb_t carry, v1, v2, u, r_len, carry1, precl, tot_len, z, sub_mask;
+
+ r->sign = a_sign;
+ r->expn = a->expn;
+ d = a->expn - b->expn;
+ /* must add more precision for the leading cancelled bits in
+ subtraction */
+ if (is_sub) {
+ if (d <= 1)
+ cancelled_bits = count_cancelled_bits(a, b);
+ else
+ cancelled_bits = 1;
+ } else {
+ cancelled_bits = 0;
+ }
+
+ /* add two extra bits for rounding */
+ precl = (cancelled_bits + prec + 2 + LIMB_BITS - 1) / LIMB_BITS;
+ tot_len = bf_max(a->len, b->len + (d + LIMB_BITS - 1) / LIMB_BITS);
+ r_len = bf_min(precl, tot_len);
+ if (bf_resize(r, r_len))
+ goto fail;
+ a_offset = a->len - r_len;
+ b_bit_offset = (b->len - r_len) * LIMB_BITS + d;
+
+ /* compute the bits before for the rounding */
+ carry = is_sub;
+ z = 0;
+ sub_mask = -is_sub;
+ i = r_len - tot_len;
+ while (i < 0) {
+ slimb_t ap, bp;
+ BOOL inflag;
+
+ ap = a_offset + i;
+ bp = b_bit_offset + i * LIMB_BITS;
+ inflag = FALSE;
+ if (ap >= 0 && ap < a->len) {
+ v1 = a->tab[ap];
+ inflag = TRUE;
+ } else {
+ v1 = 0;
+ }
+ if (bp + LIMB_BITS > 0 && bp < (slimb_t)(b->len * LIMB_BITS)) {
+ v2 = get_bits(b->tab, b->len, bp);
+ inflag = TRUE;
+ } else {
+ v2 = 0;
+ }
+ if (!inflag) {
+ /* outside 'a' and 'b': go directly to the next value
+ inside a or b so that the running time does not
+ depend on the exponent difference */
+ i = 0;
+ if (ap < 0)
+ i = bf_min(i, -a_offset);
+ /* b_bit_offset + i * LIMB_BITS + LIMB_BITS >= 1
+ equivalent to
+ i >= ceil(-b_bit_offset + 1 - LIMB_BITS) / LIMB_BITS)
+ */
+ if (bp + LIMB_BITS <= 0)
+ i = bf_min(i, (-b_bit_offset) >> LIMB_LOG2_BITS);
+ } else {
+ i++;
+ }
+ v2 ^= sub_mask;
+ u = v1 + v2;
+ carry1 = u < v1;
+ u += carry;
+ carry = (u < carry) | carry1;
+ z |= u;
+ }
+ /* and the result */
+ for(i = 0; i < r_len; i++) {
+ v1 = get_limbz(a, a_offset + i);
+ v2 = get_bits(b->tab, b->len, b_bit_offset + i * LIMB_BITS);
+ v2 ^= sub_mask;
+ u = v1 + v2;
+ carry1 = u < v1;
+ u += carry;
+ carry = (u < carry) | carry1;
+ r->tab[i] = u;
+ }
+ /* set the extra bits for the rounding */
+ r->tab[0] |= (z != 0);
+
+ /* carry is only possible in add case */
+ if (!is_sub && carry) {
+ if (bf_resize(r, r_len + 1))
+ goto fail;
+ r->tab[r_len] = 1;
+ r->expn += LIMB_BITS;
+ }
+ renorm:
+ ret = bf_normalize_and_round(r, prec, flags);
+ }
+ return ret;
+ fail:
+ bf_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+static int __bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_add_internal(r, a, b, prec, flags, 0);
+}
+
+static int __bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_add_internal(r, a, b, prec, flags, 1);
+}
+
+limb_t mp_add(limb_t *res, const limb_t *op1, const limb_t *op2,
+ limb_t n, limb_t carry)
+{
+ slimb_t i;
+ limb_t k, a, v, k1;
+
+ k = carry;
+ for(i=0;i<n;i++) {
+ v = op1[i];
+ a = v + op2[i];
+ k1 = a < v;
+ a = a + k;
+ k = (a < k) | k1;
+ res[i] = a;
+ }
+ return k;
+}
+
+limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n)
+{
+ size_t i;
+ limb_t k, a;
+
+ k=b;
+ for(i=0;i<n;i++) {
+ if (k == 0)
+ break;
+ a = tab[i] + k;
+ k = (a < k);
+ tab[i] = a;
+ }
+ return k;
+}
+
+limb_t mp_sub(limb_t *res, const limb_t *op1, const limb_t *op2,
+ mp_size_t n, limb_t carry)
+{
+ int i;
+ limb_t k, a, v, k1;
+
+ k = carry;
+ for(i=0;i<n;i++) {
+ v = op1[i];
+ a = v - op2[i];
+ k1 = a > v;
+ v = a - k;
+ k = (v > a) | k1;
+ res[i] = v;
+ }
+ return k;
+}
+
+/* compute 0 - op2 */
+static limb_t mp_neg(limb_t *res, const limb_t *op2, mp_size_t n, limb_t carry)
+{
+ int i;
+ limb_t k, a, v, k1;
+
+ k = carry;
+ for(i=0;i<n;i++) {
+ v = 0;
+ a = v - op2[i];
+ k1 = a > v;
+ v = a - k;
+ k = (v > a) | k1;
+ res[i] = v;
+ }
+ return k;
+}
+
+limb_t mp_sub_ui(limb_t *tab, limb_t b, mp_size_t n)
+{
+ mp_size_t i;
+ limb_t k, a, v;
+
+ k=b;
+ for(i=0;i<n;i++) {
+ v = tab[i];
+ a = v - k;
+ k = a > v;
+ tab[i] = a;
+ if (k == 0)
+ break;
+ }
+ return k;
+}
+
+/* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift).
+ 1 <= shift <= LIMB_BITS - 1 */
+static limb_t mp_shr(limb_t *tab_r, const limb_t *tab, mp_size_t n,
+ int shift, limb_t high)
+{
+ mp_size_t i;
+ limb_t l, a;
+
+ assert(shift >= 1 && shift < LIMB_BITS);
+ l = high;
+ for(i = n - 1; i >= 0; i--) {
+ a = tab[i];
+ tab_r[i] = (a >> shift) | (l << (LIMB_BITS - shift));
+ l = a;
+ }
+ return l & (((limb_t)1 << shift) - 1);
+}
+
+/* tabr[] = taba[] * b + l. Return the high carry */
+static limb_t mp_mul1(limb_t *tabr, const limb_t *taba, limb_t n,
+ limb_t b, limb_t l)
+{
+ limb_t i;
+ dlimb_t t;
+
+ for(i = 0; i < n; i++) {
+ t = (dlimb_t)taba[i] * (dlimb_t)b + l;
+ tabr[i] = t;
+ l = t >> LIMB_BITS;
+ }
+ return l;
+}
+
+/* tabr[] += taba[] * b, return the high word. */
+static limb_t mp_add_mul1(limb_t *tabr, const limb_t *taba, limb_t n,
+ limb_t b)
+{
+ limb_t i, l;
+ dlimb_t t;
+
+ l = 0;
+ for(i = 0; i < n; i++) {
+ t = (dlimb_t)taba[i] * (dlimb_t)b + l + tabr[i];
+ tabr[i] = t;
+ l = t >> LIMB_BITS;
+ }
+ return l;
+}
+
+/* size of the result : op1_size + op2_size. */
+static void mp_mul_basecase(limb_t *result,
+ const limb_t *op1, limb_t op1_size,
+ const limb_t *op2, limb_t op2_size)
+{
+ limb_t i, r;
+
+ result[op1_size] = mp_mul1(result, op1, op1_size, op2[0], 0);
+ for(i=1;i<op2_size;i++) {
+ r = mp_add_mul1(result + i, op1, op1_size, op2[i]);
+ result[i + op1_size] = r;
+ }
+}
+
+/* return 0 if OK, -1 if memory error */
+/* XXX: change API so that result can be allocated */
+int mp_mul(bf_context_t *s, limb_t *result,
+ const limb_t *op1, limb_t op1_size,
+ const limb_t *op2, limb_t op2_size)
+{
+#ifdef USE_FFT_MUL
+ if (unlikely(bf_min(op1_size, op2_size) >= FFT_MUL_THRESHOLD)) {
+ bf_t r_s, *r = &r_s;
+ r->tab = result;
+ /* XXX: optimize memory usage in API */
+ if (fft_mul(s, r, (limb_t *)op1, op1_size,
+ (limb_t *)op2, op2_size, FFT_MUL_R_NORESIZE))
+ return -1;
+ } else
+#endif
+ {
+ mp_mul_basecase(result, op1, op1_size, op2, op2_size);
+ }
+ return 0;
+}
+
+/* tabr[] -= taba[] * b. Return the value to substract to the high
+ word. */
+static limb_t mp_sub_mul1(limb_t *tabr, const limb_t *taba, limb_t n,
+ limb_t b)
+{
+ limb_t i, l;
+ dlimb_t t;
+
+ l = 0;
+ for(i = 0; i < n; i++) {
+ t = tabr[i] - (dlimb_t)taba[i] * (dlimb_t)b - l;
+ tabr[i] = t;
+ l = -(t >> LIMB_BITS);
+ }
+ return l;
+}
+
+/* WARNING: d must be >= 2^(LIMB_BITS-1) */
+static inline limb_t udiv1norm_init(limb_t d)
+{
+ limb_t a0, a1;
+ a1 = -d - 1;
+ a0 = -1;
+ return (((dlimb_t)a1 << LIMB_BITS) | a0) / d;
+}
+
+/* return the quotient and the remainder in '*pr'of 'a1*2^LIMB_BITS+a0
+ / d' with 0 <= a1 < d. */
+static inline limb_t udiv1norm(limb_t *pr, limb_t a1, limb_t a0,
+ limb_t d, limb_t d_inv)
+{
+ limb_t n1m, n_adj, q, r, ah;
+ dlimb_t a;
+ n1m = ((slimb_t)a0 >> (LIMB_BITS - 1));
+ n_adj = a0 + (n1m & d);
+ a = (dlimb_t)d_inv * (a1 - n1m) + n_adj;
+ q = (a >> LIMB_BITS) + a1;
+ /* compute a - q * r and update q so that the remainder is\
+ between 0 and d - 1 */
+ a = ((dlimb_t)a1 << LIMB_BITS) | a0;
+ a = a - (dlimb_t)q * d - d;
+ ah = a >> LIMB_BITS;
+ q += 1 + ah;
+ r = (limb_t)a + (ah & d);
+ *pr = r;
+ return q;
+}
+
+/* b must be >= 1 << (LIMB_BITS - 1) */
+static limb_t mp_div1norm(limb_t *tabr, const limb_t *taba, limb_t n,
+ limb_t b, limb_t r)
+{
+ slimb_t i;
+
+ if (n >= UDIV1NORM_THRESHOLD) {
+ limb_t b_inv;
+ b_inv = udiv1norm_init(b);
+ for(i = n - 1; i >= 0; i--) {
+ tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv);
+ }
+ } else {
+ dlimb_t a1;
+ for(i = n - 1; i >= 0; i--) {
+ a1 = ((dlimb_t)r << LIMB_BITS) | taba[i];
+ tabr[i] = a1 / b;
+ r = a1 % b;
+ }
+ }
+ return r;
+}
+
+static int mp_divnorm_large(bf_context_t *s,
+ limb_t *tabq, limb_t *taba, limb_t na,
+ const limb_t *tabb, limb_t nb);
+
+/* base case division: divides taba[0..na-1] by tabb[0..nb-1]. tabb[nb
+ - 1] must be >= 1 << (LIMB_BITS - 1). na - nb must be >= 0. 'taba'
+ is modified and contains the remainder (nb limbs). tabq[0..na-nb]
+ contains the quotient with tabq[na - nb] <= 1. */
+static int mp_divnorm(bf_context_t *s, limb_t *tabq, limb_t *taba, limb_t na,
+ const limb_t *tabb, limb_t nb)
+{
+ limb_t r, a, c, q, v, b1, b1_inv, n, dummy_r;
+ slimb_t i, j;
+
+ b1 = tabb[nb - 1];
+ if (nb == 1) {
+ taba[0] = mp_div1norm(tabq, taba, na, b1, 0);
+ return 0;
+ }
+ n = na - nb;
+ if (bf_min(n, nb) >= DIVNORM_LARGE_THRESHOLD) {
+ return mp_divnorm_large(s, tabq, taba, na, tabb, nb);
+ }
+
+ if (n >= UDIV1NORM_THRESHOLD)
+ b1_inv = udiv1norm_init(b1);
+ else
+ b1_inv = 0;
+
+ /* first iteration: the quotient is only 0 or 1 */
+ q = 1;
+ for(j = nb - 1; j >= 0; j--) {
+ if (taba[n + j] != tabb[j]) {
+ if (taba[n + j] < tabb[j])
+ q = 0;
+ break;
+ }
+ }
+ tabq[n] = q;
+ if (q) {
+ mp_sub(taba + n, taba + n, tabb, nb, 0);
+ }
+
+ for(i = n - 1; i >= 0; i--) {
+ if (unlikely(taba[i + nb] >= b1)) {
+ q = -1;
+ } else if (b1_inv) {
+ q = udiv1norm(&dummy_r, taba[i + nb], taba[i + nb - 1], b1, b1_inv);
+ } else {
+ dlimb_t al;
+ al = ((dlimb_t)taba[i + nb] << LIMB_BITS) | taba[i + nb - 1];
+ q = al / b1;
+ r = al % b1;
+ }
+ r = mp_sub_mul1(taba + i, tabb, nb, q);
+
+ v = taba[i + nb];
+ a = v - r;
+ c = (a > v);
+ taba[i + nb] = a;
+
+ if (c != 0) {
+ /* negative result */
+ for(;;) {
+ q--;
+ c = mp_add(taba + i, taba + i, tabb, nb, 0);
+ /* propagate carry and test if positive result */
+ if (c != 0) {
+ if (++taba[i + nb] == 0) {
+ break;
+ }
+ }
+ }
+ }
+ tabq[i] = q;
+ }
+ return 0;
+}
+
+/* compute r=B^(2*n)/a such as a*r < B^(2*n) < a*r + 2 with n >= 1. 'a'
+ has n limbs with a[n-1] >= B/2 and 'r' has n+1 limbs with r[n] = 1.
+
+ See Modern Computer Arithmetic by Richard P. Brent and Paul
+ Zimmermann, algorithm 3.5 */
+int mp_recip(bf_context_t *s, limb_t *tabr, const limb_t *taba, limb_t n)
+{
+ mp_size_t l, h, k, i;
+ limb_t *tabxh, *tabt, c, *tabu;
+
+ if (n <= 2) {
+ /* return ceil(B^(2*n)/a) - 1 */
+ /* XXX: could avoid allocation */
+ tabu = bf_malloc(s, sizeof(limb_t) * (2 * n + 1));
+ tabt = bf_malloc(s, sizeof(limb_t) * (n + 2));
+ if (!tabt || !tabu)
+ goto fail;
+ for(i = 0; i < 2 * n; i++)
+ tabu[i] = 0;
+ tabu[2 * n] = 1;
+ if (mp_divnorm(s, tabt, tabu, 2 * n + 1, taba, n))
+ goto fail;
+ for(i = 0; i < n + 1; i++)
+ tabr[i] = tabt[i];
+ if (mp_scan_nz(tabu, n) == 0) {
+ /* only happens for a=B^n/2 */
+ mp_sub_ui(tabr, 1, n + 1);
+ }
+ } else {
+ l = (n - 1) / 2;
+ h = n - l;
+ /* n=2p -> l=p-1, h = p + 1, k = p + 3
+ n=2p+1-> l=p, h = p + 1; k = p + 2
+ */
+ tabt = bf_malloc(s, sizeof(limb_t) * (n + h + 1));
+ tabu = bf_malloc(s, sizeof(limb_t) * (n + 2 * h - l + 2));
+ if (!tabt || !tabu)
+ goto fail;
+ tabxh = tabr + l;
+ if (mp_recip(s, tabxh, taba + l, h))
+ goto fail;
+ if (mp_mul(s, tabt, taba, n, tabxh, h + 1)) /* n + h + 1 limbs */
+ goto fail;
+ while (tabt[n + h] != 0) {
+ mp_sub_ui(tabxh, 1, h + 1);
+ c = mp_sub(tabt, tabt, taba, n, 0);
+ mp_sub_ui(tabt + n, c, h + 1);
+ }
+ /* T = B^(n+h) - T */
+ mp_neg(tabt, tabt, n + h + 1, 0);
+ tabt[n + h]++;
+ if (mp_mul(s, tabu, tabt + l, n + h + 1 - l, tabxh, h + 1))
+ goto fail;
+ /* n + 2*h - l + 2 limbs */
+ k = 2 * h - l;
+ for(i = 0; i < l; i++)
+ tabr[i] = tabu[i + k];
+ mp_add(tabr + l, tabr + l, tabu + 2 * h, h, 0);
+ }
+ bf_free(s, tabt);
+ bf_free(s, tabu);
+ return 0;
+ fail:
+ bf_free(s, tabt);
+ bf_free(s, tabu);
+ return -1;
+}
+
+/* return -1, 0 or 1 */
+static int mp_cmp(const limb_t *taba, const limb_t *tabb, mp_size_t n)
+{
+ mp_size_t i;
+ for(i = n - 1; i >= 0; i--) {
+ if (taba[i] != tabb[i]) {
+ if (taba[i] < tabb[i])
+ return -1;
+ else
+ return 1;
+ }
+ }
+ return 0;
+}
+
+//#define DEBUG_DIVNORM_LARGE
+//#define DEBUG_DIVNORM_LARGE2
+
+/* subquadratic divnorm */
+static int mp_divnorm_large(bf_context_t *s,
+ limb_t *tabq, limb_t *taba, limb_t na,
+ const limb_t *tabb, limb_t nb)
+{
+ limb_t *tabb_inv, nq, *tabt, i, n;
+ nq = na - nb;
+#ifdef DEBUG_DIVNORM_LARGE
+ printf("na=%d nb=%d nq=%d\n", (int)na, (int)nb, (int)nq);
+ mp_print_str("a", taba, na);
+ mp_print_str("b", tabb, nb);
+#endif
+ assert(nq >= 1);
+ n = nq;
+ if (nq < nb)
+ n++;
+ tabb_inv = bf_malloc(s, sizeof(limb_t) * (n + 1));
+ tabt = bf_malloc(s, sizeof(limb_t) * 2 * (n + 1));
+ if (!tabb_inv || !tabt)
+ goto fail;
+
+ if (n >= nb) {
+ for(i = 0; i < n - nb; i++)
+ tabt[i] = 0;
+ for(i = 0; i < nb; i++)
+ tabt[i + n - nb] = tabb[i];
+ } else {
+ /* truncate B: need to increment it so that the approximate
+ inverse is smaller that the exact inverse */
+ for(i = 0; i < n; i++)
+ tabt[i] = tabb[i + nb - n];
+ if (mp_add_ui(tabt, 1, n)) {
+ /* tabt = B^n : tabb_inv = B^n */
+ memset(tabb_inv, 0, n * sizeof(limb_t));
+ tabb_inv[n] = 1;
+ goto recip_done;
+ }
+ }
+ if (mp_recip(s, tabb_inv, tabt, n))
+ goto fail;
+ recip_done:
+ /* Q=A*B^-1 */
+ if (mp_mul(s, tabt, tabb_inv, n + 1, taba + na - (n + 1), n + 1))
+ goto fail;
+
+ for(i = 0; i < nq + 1; i++)
+ tabq[i] = tabt[i + 2 * (n + 1) - (nq + 1)];
+#ifdef DEBUG_DIVNORM_LARGE
+ mp_print_str("q", tabq, nq + 1);
+#endif
+
+ bf_free(s, tabt);
+ bf_free(s, tabb_inv);
+ tabb_inv = NULL;
+
+ /* R=A-B*Q */
+ tabt = bf_malloc(s, sizeof(limb_t) * (na + 1));
+ if (!tabt)
+ goto fail;
+ if (mp_mul(s, tabt, tabq, nq + 1, tabb, nb))
+ goto fail;
+ /* we add one more limb for the result */
+ mp_sub(taba, taba, tabt, nb + 1, 0);
+ bf_free(s, tabt);
+ /* the approximated quotient is smaller than than the exact one,
+ hence we may have to increment it */
+#ifdef DEBUG_DIVNORM_LARGE2
+ int cnt = 0;
+ static int cnt_max;
+#endif
+ for(;;) {
+ if (taba[nb] == 0 && mp_cmp(taba, tabb, nb) < 0)
+ break;
+ taba[nb] -= mp_sub(taba, taba, tabb, nb, 0);
+ mp_add_ui(tabq, 1, nq + 1);
+#ifdef DEBUG_DIVNORM_LARGE2
+ cnt++;
+#endif
+ }
+#ifdef DEBUG_DIVNORM_LARGE2
+ if (cnt > cnt_max) {
+ cnt_max = cnt;
+ printf("\ncnt=%d nq=%d nb=%d\n", cnt_max, (int)nq, (int)nb);
+ }
+#endif
+ return 0;
+ fail:
+ bf_free(s, tabb_inv);
+ bf_free(s, tabt);
+ return -1;
+}
+
+int bf_mul(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ int ret, r_sign;
+
+ if (a->len < b->len) {
+ const bf_t *tmp = a;
+ a = b;
+ b = tmp;
+ }
+ r_sign = a->sign ^ b->sign;
+ /* here b->len <= a->len */
+ if (b->len == 0) {
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ ret = 0;
+ } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_INF) {
+ if ((a->expn == BF_EXP_INF && b->expn == BF_EXP_ZERO) ||
+ (a->expn == BF_EXP_ZERO && b->expn == BF_EXP_INF)) {
+ bf_set_nan(r);
+ ret = BF_ST_INVALID_OP;
+ } else {
+ bf_set_inf(r, r_sign);
+ ret = 0;
+ }
+ } else {
+ bf_set_zero(r, r_sign);
+ ret = 0;
+ }
+ } else {
+ bf_t tmp, *r1 = NULL;
+ limb_t a_len, b_len, precl;
+ limb_t *a_tab, *b_tab;
+
+ a_len = a->len;
+ b_len = b->len;
+
+ if ((flags & BF_RND_MASK) == BF_RNDF) {
+ /* faithful rounding does not require using the full inputs */
+ precl = (prec + 2 + LIMB_BITS - 1) / LIMB_BITS;
+ a_len = bf_min(a_len, precl);
+ b_len = bf_min(b_len, precl);
+ }
+ a_tab = a->tab + a->len - a_len;
+ b_tab = b->tab + b->len - b_len;
+
+#ifdef USE_FFT_MUL
+ if (b_len >= FFT_MUL_THRESHOLD) {
+ int mul_flags = 0;
+ if (r == a)
+ mul_flags |= FFT_MUL_R_OVERLAP_A;
+ if (r == b)
+ mul_flags |= FFT_MUL_R_OVERLAP_B;
+ if (fft_mul(r->ctx, r, a_tab, a_len, b_tab, b_len, mul_flags))
+ goto fail;
+ } else
+#endif
+ {
+ if (r == a || r == b) {
+ bf_init(r->ctx, &tmp);
+ r1 = r;
+ r = &tmp;
+ }
+ if (bf_resize(r, a_len + b_len)) {
+ fail:
+ bf_set_nan(r);
+ ret = BF_ST_MEM_ERROR;
+ goto done;
+ }
+ mp_mul_basecase(r->tab, a_tab, a_len, b_tab, b_len);
+ }
+ r->sign = r_sign;
+ r->expn = a->expn + b->expn;
+ ret = bf_normalize_and_round(r, prec, flags);
+ done:
+ if (r == &tmp)
+ bf_move(r1, &tmp);
+ }
+ return ret;
+}
+
+/* multiply 'r' by 2^e */
+int bf_mul_2exp(bf_t *r, slimb_t e, limb_t prec, bf_flags_t flags)
+{
+ slimb_t e_max;
+ if (r->len == 0)
+ return 0;
+ e_max = ((limb_t)1 << BF_EXP_BITS_MAX) - 1;
+ e = bf_max(e, -e_max);
+ e = bf_min(e, e_max);
+ r->expn += e;
+ return __bf_round(r, prec, flags, r->len);
+}
+
+/* Return e such as a=m*2^e with m odd integer. return 0 if a is zero,
+ Infinite or Nan. */
+slimb_t bf_get_exp_min(const bf_t *a)
+{
+ slimb_t i;
+ limb_t v;
+ int k;
+
+ for(i = 0; i < a->len; i++) {
+ v = a->tab[i];
+ if (v != 0) {
+ k = ctz(v);
+ return a->expn - (a->len - i) * LIMB_BITS + k;
+ }
+ }
+ return 0;
+}
+
+/* a and b must be finite numbers with a >= 0 and b > 0. 'q' is the
+ integer defined as floor(a/b) and r = a - q * b. */
+static void bf_tdivremu(bf_t *q, bf_t *r,
+ const bf_t *a, const bf_t *b)
+{
+ if (bf_cmpu(a, b) < 0) {
+ bf_set_ui(q, 0);
+ bf_set(r, a);
+ } else {
+ bf_div(q, a, b, bf_max(a->expn - b->expn + 1, 2), BF_RNDZ);
+ bf_rint(q, BF_RNDZ);
+ bf_mul(r, q, b, BF_PREC_INF, BF_RNDZ);
+ bf_sub(r, a, r, BF_PREC_INF, BF_RNDZ);
+ }
+}
+
+static int __bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ bf_context_t *s = r->ctx;
+ int ret, r_sign;
+ limb_t n, nb, precl;
+
+ r_sign = a->sign ^ b->sign;
+ if (a->expn >= BF_EXP_INF || b->expn >= BF_EXP_INF) {
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ return 0;
+ } else if (a->expn == BF_EXP_INF && b->expn == BF_EXP_INF) {
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else if (a->expn == BF_EXP_INF) {
+ bf_set_inf(r, r_sign);
+ return 0;
+ } else {
+ bf_set_zero(r, r_sign);
+ return 0;
+ }
+ } else if (a->expn == BF_EXP_ZERO) {
+ if (b->expn == BF_EXP_ZERO) {
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ bf_set_zero(r, r_sign);
+ return 0;
+ }
+ } else if (b->expn == BF_EXP_ZERO) {
+ bf_set_inf(r, r_sign);
+ return BF_ST_DIVIDE_ZERO;
+ }
+
+ /* number of limbs of the quotient (2 extra bits for rounding) */
+ precl = (prec + 2 + LIMB_BITS - 1) / LIMB_BITS;
+ nb = b->len;
+ n = bf_max(a->len, precl);
+
+ {
+ limb_t *taba, na;
+ slimb_t d;
+
+ na = n + nb;
+ taba = bf_malloc(s, (na + 1) * sizeof(limb_t));
+ if (!taba)
+ goto fail;
+ d = na - a->len;
+ memset(taba, 0, d * sizeof(limb_t));
+ memcpy(taba + d, a->tab, a->len * sizeof(limb_t));
+ if (bf_resize(r, n + 1))
+ goto fail;
+ if (mp_divnorm(s, r->tab, taba, na, b->tab, nb))
+ goto fail;
+
+ /* see if non zero remainder */
+ if (mp_scan_nz(taba, nb))
+ r->tab[0] |= 1;
+ bf_free(r->ctx, taba);
+ r->expn = a->expn - b->expn + LIMB_BITS;
+ r->sign = r_sign;
+ ret = bf_normalize_and_round(r, prec, flags);
+ }
+ return ret;
+ fail:
+ bf_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+/* division and remainder.
+
+ rnd_mode is the rounding mode for the quotient. The additional
+ rounding mode BF_RND_EUCLIDIAN is supported.
+
+ 'q' is an integer. 'r' is rounded with prec and flags (prec can be
+ BF_PREC_INF).
+*/
+int bf_divrem(bf_t *q, bf_t *r, const bf_t *a, const bf_t *b,
+ limb_t prec, bf_flags_t flags, int rnd_mode)
+{
+ bf_t a1_s, *a1 = &a1_s;
+ bf_t b1_s, *b1 = &b1_s;
+ int q_sign, ret;
+ BOOL is_ceil, is_rndn;
+
+ assert(q != a && q != b);
+ assert(r != a && r != b);
+ assert(q != r);
+
+ if (a->len == 0 || b->len == 0) {
+ bf_set_zero(q, 0);
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ return 0;
+ } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_ZERO) {
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ bf_set(r, a);
+ return bf_round(r, prec, flags);
+ }
+ }
+
+ q_sign = a->sign ^ b->sign;
+ is_rndn = (rnd_mode == BF_RNDN || rnd_mode == BF_RNDNA ||
+ rnd_mode == BF_RNDNU);
+ switch(rnd_mode) {
+ default:
+ case BF_RNDZ:
+ case BF_RNDN:
+ case BF_RNDNA:
+ is_ceil = FALSE;
+ break;
+ case BF_RNDD:
+ is_ceil = q_sign;
+ break;
+ case BF_RNDU:
+ is_ceil = q_sign ^ 1;
+ break;
+ case BF_DIVREM_EUCLIDIAN:
+ is_ceil = a->sign;
+ break;
+ case BF_RNDNU:
+ /* XXX: unsupported yet */
+ abort();
+ }
+
+ a1->expn = a->expn;
+ a1->tab = a->tab;
+ a1->len = a->len;
+ a1->sign = 0;
+
+ b1->expn = b->expn;
+ b1->tab = b->tab;
+ b1->len = b->len;
+ b1->sign = 0;
+
+ /* XXX: could improve to avoid having a large 'q' */
+ bf_tdivremu(q, r, a1, b1);
+ if (bf_is_nan(q) || bf_is_nan(r))
+ goto fail;
+
+ if (r->len != 0) {
+ if (is_rndn) {
+ int res;
+ b1->expn--;
+ res = bf_cmpu(r, b1);
+ b1->expn++;
+ if (res > 0 ||
+ (res == 0 &&
+ (rnd_mode == BF_RNDNA ||
+ get_bit(q->tab, q->len, q->len * LIMB_BITS - q->expn)))) {
+ goto do_sub_r;
+ }
+ } else if (is_ceil) {
+ do_sub_r:
+ ret = bf_add_si(q, q, 1, BF_PREC_INF, BF_RNDZ);
+ ret |= bf_sub(r, r, b1, BF_PREC_INF, BF_RNDZ);
+ if (ret & BF_ST_MEM_ERROR)
+ goto fail;
+ }
+ }
+
+ r->sign ^= a->sign;
+ q->sign = q_sign;
+ return bf_round(r, prec, flags);
+ fail:
+ bf_set_nan(q);
+ bf_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+int bf_fmod(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ bf_t q_s, *q = &q_s;
+ int ret;
+
+ bf_init(r->ctx, q);
+ ret = bf_divrem(q, r, a, b, prec, flags, BF_RNDZ);
+ bf_delete(q);
+ return ret;
+}
+
+int bf_remainder(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ bf_t q_s, *q = &q_s;
+ int ret;
+
+ bf_init(r->ctx, q);
+ ret = bf_divrem(q, r, a, b, prec, flags, BF_RNDN);
+ bf_delete(q);
+ return ret;
+}
+
+static inline int bf_get_limb(slimb_t *pres, const bf_t *a, int flags)
+{
+#if LIMB_BITS == 32
+ return bf_get_int32(pres, a, flags);
+#else
+ return bf_get_int64(pres, a, flags);
+#endif
+}
+
+int bf_remquo(slimb_t *pq, bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ bf_t q_s, *q = &q_s;
+ int ret;
+
+ bf_init(r->ctx, q);
+ ret = bf_divrem(q, r, a, b, prec, flags, BF_RNDN);
+ bf_get_limb(pq, q, BF_GET_INT_MOD);
+ bf_delete(q);
+ return ret;
+}
+
+static __maybe_unused inline limb_t mul_mod(limb_t a, limb_t b, limb_t m)
+{
+ dlimb_t t;
+ t = (dlimb_t)a * (dlimb_t)b;
+ return t % m;
+}
+
+#if defined(USE_MUL_CHECK)
+static limb_t mp_mod1(const limb_t *tab, limb_t n, limb_t m, limb_t r)
+{
+ slimb_t i;
+ dlimb_t t;
+
+ for(i = n - 1; i >= 0; i--) {
+ t = ((dlimb_t)r << LIMB_BITS) | tab[i];
+ r = t % m;
+ }
+ return r;
+}
+#endif
+
+static const uint16_t sqrt_table[192] = {
+128,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,144,145,146,147,148,149,150,150,151,152,153,154,155,155,156,157,158,159,160,160,161,162,163,163,164,165,166,167,167,168,169,170,170,171,172,173,173,174,175,176,176,177,178,178,179,180,181,181,182,183,183,184,185,185,186,187,187,188,189,189,190,191,192,192,193,193,194,195,195,196,197,197,198,199,199,200,201,201,202,203,203,204,204,205,206,206,207,208,208,209,209,210,211,211,212,212,213,214,214,215,215,216,217,217,218,218,219,219,220,221,221,222,222,223,224,224,225,225,226,226,227,227,228,229,229,230,230,231,231,232,232,233,234,234,235,235,236,236,237,237,238,238,239,240,240,241,241,242,242,243,243,244,244,245,245,246,246,247,247,248,248,249,249,250,250,251,251,252,252,253,253,254,254,255,
+};
+
+/* a >= 2^(LIMB_BITS - 2). Return (s, r) with s=floor(sqrt(a)) and
+ r=a-s^2. 0 <= r <= 2 * s */
+static limb_t mp_sqrtrem1(limb_t *pr, limb_t a)
+{
+ limb_t s1, r1, s, r, q, u, num;
+
+ /* use a table for the 16 -> 8 bit sqrt */
+ s1 = sqrt_table[(a >> (LIMB_BITS - 8)) - 64];
+ r1 = (a >> (LIMB_BITS - 16)) - s1 * s1;
+ if (r1 > 2 * s1) {
+ r1 -= 2 * s1 + 1;
+ s1++;
+ }
+
+ /* one iteration to get a 32 -> 16 bit sqrt */
+ num = (r1 << 8) | ((a >> (LIMB_BITS - 32 + 8)) & 0xff);
+ q = num / (2 * s1); /* q <= 2^8 */
+ u = num % (2 * s1);
+ s = (s1 << 8) + q;
+ r = (u << 8) | ((a >> (LIMB_BITS - 32)) & 0xff);
+ r -= q * q;
+ if ((slimb_t)r < 0) {
+ s--;
+ r += 2 * s + 1;
+ }
+
+#if LIMB_BITS == 64
+ s1 = s;
+ r1 = r;
+ /* one more iteration for 64 -> 32 bit sqrt */
+ num = (r1 << 16) | ((a >> (LIMB_BITS - 64 + 16)) & 0xffff);
+ q = num / (2 * s1); /* q <= 2^16 */
+ u = num % (2 * s1);
+ s = (s1 << 16) + q;
+ r = (u << 16) | ((a >> (LIMB_BITS - 64)) & 0xffff);
+ r -= q * q;
+ if ((slimb_t)r < 0) {
+ s--;
+ r += 2 * s + 1;
+ }
+#endif
+ *pr = r;
+ return s;
+}
+
+/* return floor(sqrt(a)) */
+limb_t bf_isqrt(limb_t a)
+{
+ limb_t s, r;
+ int k;
+
+ if (a == 0)
+ return 0;
+ k = clz(a) & ~1;
+ s = mp_sqrtrem1(&r, a << k);
+ s >>= (k >> 1);
+ return s;
+}
+
+static limb_t mp_sqrtrem2(limb_t *tabs, limb_t *taba)
+{
+ limb_t s1, r1, s, q, u, a0, a1;
+ dlimb_t r, num;
+ int l;
+
+ a0 = taba[0];
+ a1 = taba[1];
+ s1 = mp_sqrtrem1(&r1, a1);
+ l = LIMB_BITS / 2;
+ num = ((dlimb_t)r1 << l) | (a0 >> l);
+ q = num / (2 * s1);
+ u = num % (2 * s1);
+ s = (s1 << l) + q;
+ r = ((dlimb_t)u << l) | (a0 & (((limb_t)1 << l) - 1));
+ if (unlikely((q >> l) != 0))
+ r -= (dlimb_t)1 << LIMB_BITS; /* special case when q=2^l */
+ else
+ r -= q * q;
+ if ((slimb_t)(r >> LIMB_BITS) < 0) {
+ s--;
+ r += 2 * (dlimb_t)s + 1;
+ }
+ tabs[0] = s;
+ taba[0] = r;
+ return r >> LIMB_BITS;
+}
+
+//#define DEBUG_SQRTREM
+
+/* tmp_buf must contain (n / 2 + 1 limbs). *prh contains the highest
+ limb of the remainder. */
+static int mp_sqrtrem_rec(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n,
+ limb_t *tmp_buf, limb_t *prh)
+{
+ limb_t l, h, rh, ql, qh, c, i;
+
+ if (n == 1) {
+ *prh = mp_sqrtrem2(tabs, taba);
+ return 0;
+ }
+#ifdef DEBUG_SQRTREM
+ mp_print_str("a", taba, 2 * n);
+#endif
+ l = n / 2;
+ h = n - l;
+ if (mp_sqrtrem_rec(s, tabs + l, taba + 2 * l, h, tmp_buf, &qh))
+ return -1;
+#ifdef DEBUG_SQRTREM
+ mp_print_str("s1", tabs + l, h);
+ mp_print_str_h("r1", taba + 2 * l, h, qh);
+ mp_print_str_h("r2", taba + l, n, qh);
+#endif
+
+ /* the remainder is in taba + 2 * l. Its high bit is in qh */
+ if (qh) {
+ mp_sub(taba + 2 * l, taba + 2 * l, tabs + l, h, 0);
+ }
+ /* instead of dividing by 2*s, divide by s (which is normalized)
+ and update q and r */
+ if (mp_divnorm(s, tmp_buf, taba + l, n, tabs + l, h))
+ return -1;
+ qh += tmp_buf[l];
+ for(i = 0; i < l; i++)
+ tabs[i] = tmp_buf[i];
+ ql = mp_shr(tabs, tabs, l, 1, qh & 1);
+ qh = qh >> 1; /* 0 or 1 */
+ if (ql)
+ rh = mp_add(taba + l, taba + l, tabs + l, h, 0);
+ else
+ rh = 0;
+#ifdef DEBUG_SQRTREM
+ mp_print_str_h("q", tabs, l, qh);
+ mp_print_str_h("u", taba + l, h, rh);
+#endif
+
+ mp_add_ui(tabs + l, qh, h);
+#ifdef DEBUG_SQRTREM
+ mp_print_str_h("s2", tabs, n, sh);
+#endif
+
+ /* q = qh, tabs[l - 1 ... 0], r = taba[n - 1 ... l] */
+ /* subtract q^2. if qh = 1 then q = B^l, so we can take shortcuts */
+ if (qh) {
+ c = qh;
+ } else {
+ if (mp_mul(s, taba + n, tabs, l, tabs, l))
+ return -1;
+ c = mp_sub(taba, taba, taba + n, 2 * l, 0);
+ }
+ rh -= mp_sub_ui(taba + 2 * l, c, n - 2 * l);
+ if ((slimb_t)rh < 0) {
+ mp_sub_ui(tabs, 1, n);
+ rh += mp_add_mul1(taba, tabs, n, 2);
+ rh += mp_add_ui(taba, 1, n);
+ }
+ *prh = rh;
+ return 0;
+}
+
+/* 'taba' has 2*n limbs with n >= 1 and taba[2*n-1] >= 2 ^ (LIMB_BITS
+ - 2). Return (s, r) with s=floor(sqrt(a)) and r=a-s^2. 0 <= r <= 2
+ * s. tabs has n limbs. r is returned in the lower n limbs of
+ taba. Its r[n] is the returned value of the function. */
+/* Algorithm from the article "Karatsuba Square Root" by Paul Zimmermann and
+ inspirated from its GMP implementation */
+int mp_sqrtrem(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n)
+{
+ limb_t tmp_buf1[8];
+ limb_t *tmp_buf;
+ mp_size_t n2;
+ int ret;
+ n2 = n / 2 + 1;
+ if (n2 <= countof(tmp_buf1)) {
+ tmp_buf = tmp_buf1;
+ } else {
+ tmp_buf = bf_malloc(s, sizeof(limb_t) * n2);
+ if (!tmp_buf)
+ return -1;
+ }
+ ret = mp_sqrtrem_rec(s, tabs, taba, n, tmp_buf, taba + n);
+ if (tmp_buf != tmp_buf1)
+ bf_free(s, tmp_buf);
+ return ret;
+}
+
+/* Integer square root with remainder. 'a' must be an integer. r =
+ floor(sqrt(a)) and rem = a - r^2. BF_ST_INEXACT is set if the result
+ is inexact. 'rem' can be NULL if the remainder is not needed. */
+int bf_sqrtrem(bf_t *r, bf_t *rem1, const bf_t *a)
+{
+ int ret;
+
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ } else if (a->expn == BF_EXP_INF && a->sign) {
+ goto invalid_op;
+ } else {
+ bf_set(r, a);
+ }
+ if (rem1)
+ bf_set_ui(rem1, 0);
+ ret = 0;
+ } else if (a->sign) {
+ invalid_op:
+ bf_set_nan(r);
+ if (rem1)
+ bf_set_ui(rem1, 0);
+ ret = BF_ST_INVALID_OP;
+ } else {
+ bf_t rem_s, *rem;
+
+ bf_sqrt(r, a, (a->expn + 1) / 2, BF_RNDZ);
+ bf_rint(r, BF_RNDZ);
+ /* see if the result is exact by computing the remainder */
+ if (rem1) {
+ rem = rem1;
+ } else {
+ rem = &rem_s;
+ bf_init(r->ctx, rem);
+ }
+ /* XXX: could avoid recomputing the remainder */
+ bf_mul(rem, r, r, BF_PREC_INF, BF_RNDZ);
+ bf_neg(rem);
+ bf_add(rem, rem, a, BF_PREC_INF, BF_RNDZ);
+ if (bf_is_nan(rem)) {
+ ret = BF_ST_MEM_ERROR;
+ goto done;
+ }
+ if (rem->len != 0) {
+ ret = BF_ST_INEXACT;
+ } else {
+ ret = 0;
+ }
+ done:
+ if (!rem1)
+ bf_delete(rem);
+ }
+ return ret;
+}
+
+int bf_sqrt(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ bf_context_t *s = a->ctx;
+ int ret;
+
+ assert(r != a);
+
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ } else if (a->expn == BF_EXP_INF && a->sign) {
+ goto invalid_op;
+ } else {
+ bf_set(r, a);
+ }
+ ret = 0;
+ } else if (a->sign) {
+ invalid_op:
+ bf_set_nan(r);
+ ret = BF_ST_INVALID_OP;
+ } else {
+ limb_t *a1;
+ slimb_t n, n1;
+ limb_t res;
+
+ /* convert the mantissa to an integer with at least 2 *
+ prec + 4 bits */
+ n = (2 * (prec + 2) + 2 * LIMB_BITS - 1) / (2 * LIMB_BITS);
+ if (bf_resize(r, n))
+ goto fail;
+ a1 = bf_malloc(s, sizeof(limb_t) * 2 * n);
+ if (!a1)
+ goto fail;
+ n1 = bf_min(2 * n, a->len);
+ memset(a1, 0, (2 * n - n1) * sizeof(limb_t));
+ memcpy(a1 + 2 * n - n1, a->tab + a->len - n1, n1 * sizeof(limb_t));
+ if (a->expn & 1) {
+ res = mp_shr(a1, a1, 2 * n, 1, 0);
+ } else {
+ res = 0;
+ }
+ if (mp_sqrtrem(s, r->tab, a1, n)) {
+ bf_free(s, a1);
+ goto fail;
+ }
+ if (!res) {
+ res = mp_scan_nz(a1, n + 1);
+ }
+ bf_free(s, a1);
+ if (!res) {
+ res = mp_scan_nz(a->tab, a->len - n1);
+ }
+ if (res != 0)
+ r->tab[0] |= 1;
+ r->sign = 0;
+ r->expn = (a->expn + 1) >> 1;
+ ret = bf_round(r, prec, flags);
+ }
+ return ret;
+ fail:
+ bf_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+static no_inline int bf_op2(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags, bf_op2_func_t *func)
+{
+ bf_t tmp;
+ int ret;
+
+ if (r == a || r == b) {
+ bf_init(r->ctx, &tmp);
+ ret = func(&tmp, a, b, prec, flags);
+ bf_move(r, &tmp);
+ } else {
+ ret = func(r, a, b, prec, flags);
+ }
+ return ret;
+}
+
+int bf_add(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_op2(r, a, b, prec, flags, __bf_add);
+}
+
+int bf_sub(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_op2(r, a, b, prec, flags, __bf_sub);
+}
+
+int bf_div(bf_t *r, const bf_t *a, const bf_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_op2(r, a, b, prec, flags, __bf_div);
+}
+
+int bf_mul_ui(bf_t *r, const bf_t *a, uint64_t b1, limb_t prec,
+ bf_flags_t flags)
+{
+ bf_t b;
+ int ret;
+ bf_init(r->ctx, &b);
+ ret = bf_set_ui(&b, b1);
+ ret |= bf_mul(r, a, &b, prec, flags);
+ bf_delete(&b);
+ return ret;
+}
+
+int bf_mul_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
+ bf_flags_t flags)
+{
+ bf_t b;
+ int ret;
+ bf_init(r->ctx, &b);
+ ret = bf_set_si(&b, b1);
+ ret |= bf_mul(r, a, &b, prec, flags);
+ bf_delete(&b);
+ return ret;
+}
+
+int bf_add_si(bf_t *r, const bf_t *a, int64_t b1, limb_t prec,
+ bf_flags_t flags)
+{
+ bf_t b;
+ int ret;
+
+ bf_init(r->ctx, &b);
+ ret = bf_set_si(&b, b1);
+ ret |= bf_add(r, a, &b, prec, flags);
+ bf_delete(&b);
+ return ret;
+}
+
+static int bf_pow_ui(bf_t *r, const bf_t *a, limb_t b, limb_t prec,
+ bf_flags_t flags)
+{
+ int ret, n_bits, i;
+
+ assert(r != a);
+ if (b == 0)
+ return bf_set_ui(r, 1);
+ ret = bf_set(r, a);
+ n_bits = LIMB_BITS - clz(b);
+ for(i = n_bits - 2; i >= 0; i--) {
+ ret |= bf_mul(r, r, r, prec, flags);
+ if ((b >> i) & 1)
+ ret |= bf_mul(r, r, a, prec, flags);
+ }
+ return ret;
+}
+
+static int bf_pow_ui_ui(bf_t *r, limb_t a1, limb_t b,
+ limb_t prec, bf_flags_t flags)
+{
+ bf_t a;
+ int ret;
+
+ if (a1 == 10 && b <= LIMB_DIGITS) {
+ /* use precomputed powers. We do not round at this point
+ because we expect the caller to do it */
+ ret = bf_set_ui(r, mp_pow_dec[b]);
+ } else {
+ bf_init(r->ctx, &a);
+ ret = bf_set_ui(&a, a1);
+ ret |= bf_pow_ui(r, &a, b, prec, flags);
+ bf_delete(&a);
+ }
+ return ret;
+}
+
+/* convert to integer (infinite precision) */
+int bf_rint(bf_t *r, int rnd_mode)
+{
+ return bf_round(r, 0, rnd_mode | BF_FLAG_RADPNT_PREC);
+}
+
+/* logical operations */
+#define BF_LOGIC_OR 0
+#define BF_LOGIC_XOR 1
+#define BF_LOGIC_AND 2
+
+static inline limb_t bf_logic_op1(limb_t a, limb_t b, int op)
+{
+ switch(op) {
+ case BF_LOGIC_OR:
+ return a | b;
+ case BF_LOGIC_XOR:
+ return a ^ b;
+ default:
+ case BF_LOGIC_AND:
+ return a & b;
+ }
+}
+
+static int bf_logic_op(bf_t *r, const bf_t *a1, const bf_t *b1, int op)
+{
+ bf_t b1_s, a1_s, *a, *b;
+ limb_t a_sign, b_sign, r_sign;
+ slimb_t l, i, a_bit_offset, b_bit_offset;
+ limb_t v1, v2, v1_mask, v2_mask, r_mask;
+ int ret;
+
+ assert(r != a1 && r != b1);
+
+ if (a1->expn <= 0)
+ a_sign = 0; /* minus zero is considered as positive */
+ else
+ a_sign = a1->sign;
+
+ if (b1->expn <= 0)
+ b_sign = 0; /* minus zero is considered as positive */
+ else
+ b_sign = b1->sign;
+
+ if (a_sign) {
+ a = &a1_s;
+ bf_init(r->ctx, a);
+ if (bf_add_si(a, a1, 1, BF_PREC_INF, BF_RNDZ)) {
+ b = NULL;
+ goto fail;
+ }
+ } else {
+ a = (bf_t *)a1;
+ }
+
+ if (b_sign) {
+ b = &b1_s;
+ bf_init(r->ctx, b);
+ if (bf_add_si(b, b1, 1, BF_PREC_INF, BF_RNDZ))
+ goto fail;
+ } else {
+ b = (bf_t *)b1;
+ }
+
+ r_sign = bf_logic_op1(a_sign, b_sign, op);
+ if (op == BF_LOGIC_AND && r_sign == 0) {
+ /* no need to compute extra zeros for and */
+ if (a_sign == 0 && b_sign == 0)
+ l = bf_min(a->expn, b->expn);
+ else if (a_sign == 0)
+ l = a->expn;
+ else
+ l = b->expn;
+ } else {
+ l = bf_max(a->expn, b->expn);
+ }
+ /* Note: a or b can be zero */
+ l = (bf_max(l, 1) + LIMB_BITS - 1) / LIMB_BITS;
+ if (bf_resize(r, l))
+ goto fail;
+ a_bit_offset = a->len * LIMB_BITS - a->expn;
+ b_bit_offset = b->len * LIMB_BITS - b->expn;
+ v1_mask = -a_sign;
+ v2_mask = -b_sign;
+ r_mask = -r_sign;
+ for(i = 0; i < l; i++) {
+ v1 = get_bits(a->tab, a->len, a_bit_offset + i * LIMB_BITS) ^ v1_mask;
+ v2 = get_bits(b->tab, b->len, b_bit_offset + i * LIMB_BITS) ^ v2_mask;
+ r->tab[i] = bf_logic_op1(v1, v2, op) ^ r_mask;
+ }
+ r->expn = l * LIMB_BITS;
+ r->sign = r_sign;
+ bf_normalize_and_round(r, BF_PREC_INF, BF_RNDZ); /* cannot fail */
+ if (r_sign) {
+ if (bf_add_si(r, r, -1, BF_PREC_INF, BF_RNDZ))
+ goto fail;
+ }
+ ret = 0;
+ done:
+ if (a == &a1_s)
+ bf_delete(a);
+ if (b == &b1_s)
+ bf_delete(b);
+ return ret;
+ fail:
+ bf_set_nan(r);
+ ret = BF_ST_MEM_ERROR;
+ goto done;
+}
+
+/* 'a' and 'b' must be integers. Return 0 or BF_ST_MEM_ERROR. */
+int bf_logic_or(bf_t *r, const bf_t *a, const bf_t *b)
+{
+ return bf_logic_op(r, a, b, BF_LOGIC_OR);
+}
+
+/* 'a' and 'b' must be integers. Return 0 or BF_ST_MEM_ERROR. */
+int bf_logic_xor(bf_t *r, const bf_t *a, const bf_t *b)
+{
+ return bf_logic_op(r, a, b, BF_LOGIC_XOR);
+}
+
+/* 'a' and 'b' must be integers. Return 0 or BF_ST_MEM_ERROR. */
+int bf_logic_and(bf_t *r, const bf_t *a, const bf_t *b)
+{
+ return bf_logic_op(r, a, b, BF_LOGIC_AND);
+}
+
+/* conversion between fixed size types */
+
+typedef union {
+ double d;
+ uint64_t u;
+} Float64Union;
+
+int bf_get_float64(const bf_t *a, double *pres, bf_rnd_t rnd_mode)
+{
+ Float64Union u;
+ int e, ret;
+ uint64_t m;
+
+ ret = 0;
+ if (a->expn == BF_EXP_NAN) {
+ u.u = 0x7ff8000000000000; /* quiet nan */
+ } else {
+ bf_t b_s, *b = &b_s;
+
+ bf_init(a->ctx, b);
+ bf_set(b, a);
+ if (bf_is_finite(b)) {
+ ret = bf_round(b, 53, rnd_mode | BF_FLAG_SUBNORMAL | bf_set_exp_bits(11));
+ }
+ if (b->expn == BF_EXP_INF) {
+ e = (1 << 11) - 1;
+ m = 0;
+ } else if (b->expn == BF_EXP_ZERO) {
+ e = 0;
+ m = 0;
+ } else {
+ e = b->expn + 1023 - 1;
+#if LIMB_BITS == 32
+ if (b->len == 2) {
+ m = ((uint64_t)b->tab[1] << 32) | b->tab[0];
+ } else {
+ m = ((uint64_t)b->tab[0] << 32);
+ }
+#else
+ m = b->tab[0];
+#endif
+ if (e <= 0) {
+ /* subnormal */
+ m = m >> (12 - e);
+ e = 0;
+ } else {
+ m = (m << 1) >> 12;
+ }
+ }
+ u.u = m | ((uint64_t)e << 52) | ((uint64_t)b->sign << 63);
+ bf_delete(b);
+ }
+ *pres = u.d;
+ return ret;
+}
+
+int bf_set_float64(bf_t *a, double d)
+{
+ Float64Union u;
+ uint64_t m;
+ int shift, e, sgn;
+
+ u.d = d;
+ sgn = u.u >> 63;
+ e = (u.u >> 52) & ((1 << 11) - 1);
+ m = u.u & (((uint64_t)1 << 52) - 1);
+ if (e == ((1 << 11) - 1)) {
+ if (m != 0) {
+ bf_set_nan(a);
+ } else {
+ bf_set_inf(a, sgn);
+ }
+ } else if (e == 0) {
+ if (m == 0) {
+ bf_set_zero(a, sgn);
+ } else {
+ /* subnormal number */
+ m <<= 12;
+ shift = clz64(m);
+ m <<= shift;
+ e = -shift;
+ goto norm;
+ }
+ } else {
+ m = (m << 11) | ((uint64_t)1 << 63);
+ norm:
+ a->expn = e - 1023 + 1;
+#if LIMB_BITS == 32
+ if (bf_resize(a, 2))
+ goto fail;
+ a->tab[0] = m;
+ a->tab[1] = m >> 32;
+#else
+ if (bf_resize(a, 1))
+ goto fail;
+ a->tab[0] = m;
+#endif
+ a->sign = sgn;
+ }
+ return 0;
+fail:
+ bf_set_nan(a);
+ return BF_ST_MEM_ERROR;
+}
+
+/* The rounding mode is always BF_RNDZ. Return BF_ST_OVERFLOW if there
+ is an overflow and 0 otherwise. */
+int bf_get_int32(int *pres, const bf_t *a, int flags)
+{
+ uint32_t v;
+ int ret;
+ if (a->expn >= BF_EXP_INF) {
+ ret = 0;
+ if (flags & BF_GET_INT_MOD) {
+ v = 0;
+ } else if (a->expn == BF_EXP_INF) {
+ v = (uint32_t)INT32_MAX + a->sign;
+ /* XXX: return overflow ? */
+ } else {
+ v = INT32_MAX;
+ }
+ } else if (a->expn <= 0) {
+ v = 0;
+ ret = 0;
+ } else if (a->expn <= 31) {
+ v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
+ if (a->sign)
+ v = -v;
+ ret = 0;
+ } else if (!(flags & BF_GET_INT_MOD)) {
+ ret = BF_ST_OVERFLOW;
+ if (a->sign) {
+ v = (uint32_t)INT32_MAX + 1;
+ if (a->expn == 32 &&
+ (a->tab[a->len - 1] >> (LIMB_BITS - 32)) == v) {
+ ret = 0;
+ }
+ } else {
+ v = INT32_MAX;
+ }
+ } else {
+ v = get_bits(a->tab, a->len, a->len * LIMB_BITS - a->expn);
+ if (a->sign)
+ v = -v;
+ ret = 0;
+ }
+ *pres = v;
+ return ret;
+}
+
+/* The rounding mode is always BF_RNDZ. Return BF_ST_OVERFLOW if there
+ is an overflow and 0 otherwise. */
+int bf_get_int64(int64_t *pres, const bf_t *a, int flags)
+{
+ uint64_t v;
+ int ret;
+ if (a->expn >= BF_EXP_INF) {
+ ret = 0;
+ if (flags & BF_GET_INT_MOD) {
+ v = 0;
+ } else if (a->expn == BF_EXP_INF) {
+ v = (uint64_t)INT64_MAX + a->sign;
+ } else {
+ v = INT64_MAX;
+ }
+ } else if (a->expn <= 0) {
+ v = 0;
+ ret = 0;
+ } else if (a->expn <= 63) {
+#if LIMB_BITS == 32
+ if (a->expn <= 32)
+ v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
+ else
+ v = (((uint64_t)a->tab[a->len - 1] << 32) |
+ get_limbz(a, a->len - 2)) >> (64 - a->expn);
+#else
+ v = a->tab[a->len - 1] >> (LIMB_BITS - a->expn);
+#endif
+ if (a->sign)
+ v = -v;
+ ret = 0;
+ } else if (!(flags & BF_GET_INT_MOD)) {
+ ret = BF_ST_OVERFLOW;
+ if (a->sign) {
+ uint64_t v1;
+ v = (uint64_t)INT64_MAX + 1;
+ if (a->expn == 64) {
+ v1 = a->tab[a->len - 1];
+#if LIMB_BITS == 32
+ v1 = (v1 << 32) | get_limbz(a, a->len - 2);
+#endif
+ if (v1 == v)
+ ret = 0;
+ }
+ } else {
+ v = INT64_MAX;
+ }
+ } else {
+ slimb_t bit_pos = a->len * LIMB_BITS - a->expn;
+ v = get_bits(a->tab, a->len, bit_pos);
+#if LIMB_BITS == 32
+ v |= (uint64_t)get_bits(a->tab, a->len, bit_pos + 32) << 32;
+#endif
+ if (a->sign)
+ v = -v;
+ ret = 0;
+ }
+ *pres = v;
+ return ret;
+}
+
+/* base conversion from radix */
+
+static const uint8_t digits_per_limb_table[BF_RADIX_MAX - 1] = {
+#if LIMB_BITS == 32
+32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+#else
+64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12,
+#endif
+};
+
+static limb_t get_limb_radix(int radix)
+{
+ int i, k;
+ limb_t radixl;
+
+ k = digits_per_limb_table[radix - 2];
+ radixl = radix;
+ for(i = 1; i < k; i++)
+ radixl *= radix;
+ return radixl;
+}
+
+/* return != 0 if error */
+static int bf_integer_from_radix_rec(bf_t *r, const limb_t *tab,
+ limb_t n, int level, limb_t n0,
+ limb_t radix, bf_t *pow_tab)
+{
+ int ret;
+ if (n == 1) {
+ ret = bf_set_ui(r, tab[0]);
+ } else {
+ bf_t T_s, *T = &T_s, *B;
+ limb_t n1, n2;
+
+ n2 = (((n0 * 2) >> (level + 1)) + 1) / 2;
+ n1 = n - n2;
+ // printf("level=%d n0=%ld n1=%ld n2=%ld\n", level, n0, n1, n2);
+ B = &pow_tab[level];
+ if (B->len == 0) {
+ ret = bf_pow_ui_ui(B, radix, n2, BF_PREC_INF, BF_RNDZ);
+ if (ret)
+ return ret;
+ }
+ ret = bf_integer_from_radix_rec(r, tab + n2, n1, level + 1, n0,
+ radix, pow_tab);
+ if (ret)
+ return ret;
+ ret = bf_mul(r, r, B, BF_PREC_INF, BF_RNDZ);
+ if (ret)
+ return ret;
+ bf_init(r->ctx, T);
+ ret = bf_integer_from_radix_rec(T, tab, n2, level + 1, n0,
+ radix, pow_tab);
+ if (!ret)
+ ret = bf_add(r, r, T, BF_PREC_INF, BF_RNDZ);
+ bf_delete(T);
+ }
+ return ret;
+ // bf_print_str(" r=", r);
+}
+
+/* return 0 if OK != 0 if memory error */
+static int bf_integer_from_radix(bf_t *r, const limb_t *tab,
+ limb_t n, limb_t radix)
+{
+ bf_context_t *s = r->ctx;
+ int pow_tab_len, i, ret;
+ limb_t radixl;
+ bf_t *pow_tab;
+
+ radixl = get_limb_radix(radix);
+ pow_tab_len = ceil_log2(n) + 2; /* XXX: check */
+ pow_tab = bf_malloc(s, sizeof(pow_tab[0]) * pow_tab_len);
+ if (!pow_tab)
+ return -1;
+ for(i = 0; i < pow_tab_len; i++)
+ bf_init(r->ctx, &pow_tab[i]);
+ ret = bf_integer_from_radix_rec(r, tab, n, 0, n, radixl, pow_tab);
+ for(i = 0; i < pow_tab_len; i++) {
+ bf_delete(&pow_tab[i]);
+ }
+ bf_free(s, pow_tab);
+ return ret;
+}
+
+/* compute and round T * radix^expn. */
+int bf_mul_pow_radix(bf_t *r, const bf_t *T, limb_t radix,
+ slimb_t expn, limb_t prec, bf_flags_t flags)
+{
+ int ret, expn_sign, overflow;
+ slimb_t e, extra_bits, prec1, ziv_extra_bits;
+ bf_t B_s, *B = &B_s;
+
+ if (T->len == 0) {
+ return bf_set(r, T);
+ } else if (expn == 0) {
+ ret = bf_set(r, T);
+ ret |= bf_round(r, prec, flags);
+ return ret;
+ }
+
+ e = expn;
+ expn_sign = 0;
+ if (e < 0) {
+ e = -e;
+ expn_sign = 1;
+ }
+ bf_init(r->ctx, B);
+ if (prec == BF_PREC_INF) {
+ /* infinite precision: only used if the result is known to be exact */
+ ret = bf_pow_ui_ui(B, radix, e, BF_PREC_INF, BF_RNDN);
+ if (expn_sign) {
+ ret |= bf_div(r, T, B, T->len * LIMB_BITS, BF_RNDN);
+ } else {
+ ret |= bf_mul(r, T, B, BF_PREC_INF, BF_RNDN);
+ }
+ } else {
+ ziv_extra_bits = 16;
+ for(;;) {
+ prec1 = prec + ziv_extra_bits;
+ /* XXX: correct overflow/underflow handling */
+ /* XXX: rigorous error analysis needed */
+ extra_bits = ceil_log2(e) * 2 + 1;
+ ret = bf_pow_ui_ui(B, radix, e, prec1 + extra_bits, BF_RNDN);
+ overflow = !bf_is_finite(B);
+ /* XXX: if bf_pow_ui_ui returns an exact result, can stop
+ after the next operation */
+ if (expn_sign)
+ ret |= bf_div(r, T, B, prec1 + extra_bits, BF_RNDN);
+ else
+ ret |= bf_mul(r, T, B, prec1 + extra_bits, BF_RNDN);
+ if (ret & BF_ST_MEM_ERROR)
+ break;
+ if ((ret & BF_ST_INEXACT) &&
+ !bf_can_round(r, prec, flags & BF_RND_MASK, prec1) &&
+ !overflow) {
+ /* and more precision and retry */
+ ziv_extra_bits = ziv_extra_bits + (ziv_extra_bits / 2);
+ } else {
+ ret = bf_round(r, prec, flags) | (ret & BF_ST_INEXACT);
+ break;
+ }
+ }
+ }
+ bf_delete(B);
+ return ret;
+}
+
+static inline int to_digit(int c)
+{
+ if (c >= '0' && c <= '9')
+ return c - '0';
+ else if (c >= 'A' && c <= 'Z')
+ return c - 'A' + 10;
+ else if (c >= 'a' && c <= 'z')
+ return c - 'a' + 10;
+ else
+ return 36;
+}
+
+/* add a limb at 'pos' and decrement pos. new space is created if
+ needed. Return 0 if OK, -1 if memory error */
+static int bf_add_limb(bf_t *a, slimb_t *ppos, limb_t v)
+{
+ slimb_t pos;
+ pos = *ppos;
+ if (unlikely(pos < 0)) {
+ limb_t new_size, d, *new_tab;
+ new_size = bf_max(a->len + 1, a->len * 3 / 2);
+ new_tab = bf_realloc(a->ctx, a->tab, sizeof(limb_t) * new_size);
+ if (!new_tab)
+ return -1;
+ a->tab = new_tab;
+ d = new_size - a->len;
+ memmove(a->tab + d, a->tab, a->len * sizeof(limb_t));
+ a->len = new_size;
+ pos += d;
+ }
+ a->tab[pos--] = v;
+ *ppos = pos;
+ return 0;
+}
+
+static int bf_tolower(int c)
+{
+ if (c >= 'A' && c <= 'Z')
+ c = c - 'A' + 'a';
+ return c;
+}
+
+static int strcasestart(const char *str, const char *val, const char **ptr)
+{
+ const char *p, *q;
+ p = str;
+ q = val;
+ while (*q != '\0') {
+ if (bf_tolower(*p) != *q)
+ return 0;
+ p++;
+ q++;
+ }
+ if (ptr)
+ *ptr = p;
+ return 1;
+}
+
+static int bf_atof_internal(bf_t *r, slimb_t *pexponent,
+ const char *str, const char **pnext, int radix,
+ limb_t prec, bf_flags_t flags, BOOL is_dec)
+{
+ const char *p, *p_start;
+ int is_neg, radix_bits, exp_is_neg, ret, digits_per_limb, shift;
+ limb_t cur_limb;
+ slimb_t pos, expn, int_len, digit_count;
+ BOOL has_decpt, is_bin_exp;
+ bf_t a_s, *a;
+
+ *pexponent = 0;
+ p = str;
+ if (!(flags & BF_ATOF_NO_NAN_INF) && radix <= 16 &&
+ strcasestart(p, "nan", &p)) {
+ bf_set_nan(r);
+ ret = 0;
+ goto done;
+ }
+ is_neg = 0;
+
+ if (p[0] == '+') {
+ p++;
+ p_start = p;
+ } else if (p[0] == '-') {
+ is_neg = 1;
+ p++;
+ p_start = p;
+ } else {
+ p_start = p;
+ }
+ if (p[0] == '0') {
+ if ((p[1] == 'x' || p[1] == 'X') &&
+ (radix == 0 || radix == 16) &&
+ !(flags & BF_ATOF_NO_HEX)) {
+ radix = 16;
+ p += 2;
+ } else if ((p[1] == 'o' || p[1] == 'O') &&
+ radix == 0 && (flags & BF_ATOF_BIN_OCT)) {
+ p += 2;
+ radix = 8;
+ } else if ((p[1] == 'b' || p[1] == 'B') &&
+ radix == 0 && (flags & BF_ATOF_BIN_OCT)) {
+ p += 2;
+ radix = 2;
+ } else {
+ goto no_prefix;
+ }
+ /* there must be a digit after the prefix */
+ if (to_digit((uint8_t)*p) >= radix) {
+ bf_set_nan(r);
+ ret = 0;
+ goto done;
+ }
+ no_prefix: ;
+ } else {
+ if (!(flags & BF_ATOF_NO_NAN_INF) && radix <= 16 &&
+ strcasestart(p, "inf", &p)) {
+ bf_set_inf(r, is_neg);
+ ret = 0;
+ goto done;
+ }
+ }
+
+ if (radix == 0)
+ radix = 10;
+ if (is_dec) {
+ assert(radix == 10);
+ radix_bits = 0;
+ a = r;
+ } else if ((radix & (radix - 1)) != 0) {
+ radix_bits = 0; /* base is not a power of two */
+ a = &a_s;
+ bf_init(r->ctx, a);
+ } else {
+ radix_bits = ceil_log2(radix);
+ a = r;
+ }
+
+ /* skip leading zeros */
+ /* XXX: could also skip zeros after the decimal point */
+ while (*p == '0')
+ p++;
+
+ if (radix_bits) {
+ shift = digits_per_limb = LIMB_BITS;
+ } else {
+ radix_bits = 0;
+ shift = digits_per_limb = digits_per_limb_table[radix - 2];
+ }
+ cur_limb = 0;
+ bf_resize(a, 1);
+ pos = 0;
+ has_decpt = FALSE;
+ int_len = digit_count = 0;
+ for(;;) {
+ limb_t c;
+ if (*p == '.' && (p > p_start || to_digit(p[1]) < radix)) {
+ if (has_decpt)
+ break;
+ has_decpt = TRUE;
+ int_len = digit_count;
+ p++;
+ }
+ c = to_digit(*p);
+ if (c >= radix)
+ break;
+ digit_count++;
+ p++;
+ if (radix_bits) {
+ shift -= radix_bits;
+ if (shift <= 0) {
+ cur_limb |= c >> (-shift);
+ if (bf_add_limb(a, &pos, cur_limb))
+ goto mem_error;
+ if (shift < 0)
+ cur_limb = c << (LIMB_BITS + shift);
+ else
+ cur_limb = 0;
+ shift += LIMB_BITS;
+ } else {
+ cur_limb |= c << shift;
+ }
+ } else {
+ cur_limb = cur_limb * radix + c;
+ shift--;
+ if (shift == 0) {
+ if (bf_add_limb(a, &pos, cur_limb))
+ goto mem_error;
+ shift = digits_per_limb;
+ cur_limb = 0;
+ }
+ }
+ }
+ if (!has_decpt)
+ int_len = digit_count;
+
+ /* add the last limb and pad with zeros */
+ if (shift != digits_per_limb) {
+ if (radix_bits == 0) {
+ while (shift != 0) {
+ cur_limb *= radix;
+ shift--;
+ }
+ }
+ if (bf_add_limb(a, &pos, cur_limb)) {
+ mem_error:
+ ret = BF_ST_MEM_ERROR;
+ if (!radix_bits)
+ bf_delete(a);
+ bf_set_nan(r);
+ goto done;
+ }
+ }
+
+ /* reset the next limbs to zero (we prefer to reallocate in the
+ renormalization) */
+ memset(a->tab, 0, (pos + 1) * sizeof(limb_t));
+
+ if (p == p_start) {
+ ret = 0;
+ if (!radix_bits)
+ bf_delete(a);
+ bf_set_nan(r);
+ goto done;
+ }
+
+ /* parse the exponent, if any */
+ expn = 0;
+ is_bin_exp = FALSE;
+ if (((radix == 10 && (*p == 'e' || *p == 'E')) ||
+ (radix != 10 && (*p == '@' ||
+ (radix_bits && (*p == 'p' || *p == 'P'))))) &&
+ p > p_start) {
+ is_bin_exp = (*p == 'p' || *p == 'P');
+ p++;
+ exp_is_neg = 0;
+ if (*p == '+') {
+ p++;
+ } else if (*p == '-') {
+ exp_is_neg = 1;
+ p++;
+ }
+ for(;;) {
+ int c;
+ c = to_digit(*p);
+ if (c >= 10)
+ break;
+ if (unlikely(expn > ((EXP_MAX - 2 - 9) / 10))) {
+ /* exponent overflow */
+ if (exp_is_neg) {
+ bf_set_zero(r, is_neg);
+ ret = BF_ST_UNDERFLOW | BF_ST_INEXACT;
+ } else {
+ bf_set_inf(r, is_neg);
+ ret = BF_ST_OVERFLOW | BF_ST_INEXACT;
+ }
+ goto done;
+ }
+ p++;
+ expn = expn * 10 + c;
+ }
+ if (exp_is_neg)
+ expn = -expn;
+ }
+ if (is_dec) {
+ a->expn = expn + int_len;
+ a->sign = is_neg;
+ ret = bfdec_normalize_and_round((bfdec_t *)a, prec, flags);
+ } else if (radix_bits) {
+ /* XXX: may overflow */
+ if (!is_bin_exp)
+ expn *= radix_bits;
+ a->expn = expn + (int_len * radix_bits);
+ a->sign = is_neg;
+ ret = bf_normalize_and_round(a, prec, flags);
+ } else {
+ limb_t l;
+ pos++;
+ l = a->len - pos; /* number of limbs */
+ if (l == 0) {
+ bf_set_zero(r, is_neg);
+ ret = 0;
+ } else {
+ bf_t T_s, *T = &T_s;
+
+ expn -= l * digits_per_limb - int_len;
+ bf_init(r->ctx, T);
+ if (bf_integer_from_radix(T, a->tab + pos, l, radix)) {
+ bf_set_nan(r);
+ ret = BF_ST_MEM_ERROR;
+ } else {
+ T->sign = is_neg;
+ if (flags & BF_ATOF_EXPONENT) {
+ /* return the exponent */
+ *pexponent = expn;
+ ret = bf_set(r, T);
+ } else {
+ ret = bf_mul_pow_radix(r, T, radix, expn, prec, flags);
+ }
+ }
+ bf_delete(T);
+ }
+ bf_delete(a);
+ }
+ done:
+ if (pnext)
+ *pnext = p;
+ return ret;
+}
+
+/*
+ Return (status, n, exp). 'status' is the floating point status. 'n'
+ is the parsed number.
+
+ If (flags & BF_ATOF_EXPONENT) and if the radix is not a power of
+ two, the parsed number is equal to r *
+ (*pexponent)^radix. Otherwise *pexponent = 0.
+*/
+int bf_atof2(bf_t *r, slimb_t *pexponent,
+ const char *str, const char **pnext, int radix,
+ limb_t prec, bf_flags_t flags)
+{
+ return bf_atof_internal(r, pexponent, str, pnext, radix, prec, flags,
+ FALSE);
+}
+
+int bf_atof(bf_t *r, const char *str, const char **pnext, int radix,
+ limb_t prec, bf_flags_t flags)
+{
+ slimb_t dummy_exp;
+ return bf_atof_internal(r, &dummy_exp, str, pnext, radix, prec, flags, FALSE);
+}
+
+/* base conversion to radix */
+
+#if LIMB_BITS == 64
+#define RADIXL_10 UINT64_C(10000000000000000000)
+#else
+#define RADIXL_10 UINT64_C(1000000000)
+#endif
+
+static const uint32_t inv_log2_radix[BF_RADIX_MAX - 1][LIMB_BITS / 32 + 1] = {
+#if LIMB_BITS == 32
+{ 0x80000000, 0x00000000,},
+{ 0x50c24e60, 0xd4d4f4a7,},
+{ 0x40000000, 0x00000000,},
+{ 0x372068d2, 0x0a1ee5ca,},
+{ 0x3184648d, 0xb8153e7a,},
+{ 0x2d983275, 0x9d5369c4,},
+{ 0x2aaaaaaa, 0xaaaaaaab,},
+{ 0x28612730, 0x6a6a7a54,},
+{ 0x268826a1, 0x3ef3fde6,},
+{ 0x25001383, 0xbac8a744,},
+{ 0x23b46706, 0x82c0c709,},
+{ 0x229729f1, 0xb2c83ded,},
+{ 0x219e7ffd, 0xa5ad572b,},
+{ 0x20c33b88, 0xda7c29ab,},
+{ 0x20000000, 0x00000000,},
+{ 0x1f50b57e, 0xac5884b3,},
+{ 0x1eb22cc6, 0x8aa6e26f,},
+{ 0x1e21e118, 0x0c5daab2,},
+{ 0x1d9dcd21, 0x439834e4,},
+{ 0x1d244c78, 0x367a0d65,},
+{ 0x1cb40589, 0xac173e0c,},
+{ 0x1c4bd95b, 0xa8d72b0d,},
+{ 0x1bead768, 0x98f8ce4c,},
+{ 0x1b903469, 0x050f72e5,},
+{ 0x1b3b433f, 0x2eb06f15,},
+{ 0x1aeb6f75, 0x9c46fc38,},
+{ 0x1aa038eb, 0x0e3bfd17,},
+{ 0x1a593062, 0xb38d8c56,},
+{ 0x1a15f4c3, 0x2b95a2e6,},
+{ 0x19d630dc, 0xcc7ddef9,},
+{ 0x19999999, 0x9999999a,},
+{ 0x195fec80, 0x8a609431,},
+{ 0x1928ee7b, 0x0b4f22f9,},
+{ 0x18f46acf, 0x8c06e318,},
+{ 0x18c23246, 0xdc0a9f3d,},
+#else
+{ 0x80000000, 0x00000000, 0x00000000,},
+{ 0x50c24e60, 0xd4d4f4a7, 0x021f57bc,},
+{ 0x40000000, 0x00000000, 0x00000000,},
+{ 0x372068d2, 0x0a1ee5ca, 0x19ea911b,},
+{ 0x3184648d, 0xb8153e7a, 0x7fc2d2e1,},
+{ 0x2d983275, 0x9d5369c4, 0x4dec1661,},
+{ 0x2aaaaaaa, 0xaaaaaaaa, 0xaaaaaaab,},
+{ 0x28612730, 0x6a6a7a53, 0x810fabde,},
+{ 0x268826a1, 0x3ef3fde6, 0x23e2566b,},
+{ 0x25001383, 0xbac8a744, 0x385a3349,},
+{ 0x23b46706, 0x82c0c709, 0x3f891718,},
+{ 0x229729f1, 0xb2c83ded, 0x15fba800,},
+{ 0x219e7ffd, 0xa5ad572a, 0xe169744b,},
+{ 0x20c33b88, 0xda7c29aa, 0x9bddee52,},
+{ 0x20000000, 0x00000000, 0x00000000,},
+{ 0x1f50b57e, 0xac5884b3, 0x70e28eee,},
+{ 0x1eb22cc6, 0x8aa6e26f, 0x06d1a2a2,},
+{ 0x1e21e118, 0x0c5daab1, 0x81b4f4bf,},
+{ 0x1d9dcd21, 0x439834e3, 0x81667575,},
+{ 0x1d244c78, 0x367a0d64, 0xc8204d6d,},
+{ 0x1cb40589, 0xac173e0c, 0x3b7b16ba,},
+{ 0x1c4bd95b, 0xa8d72b0d, 0x5879f25a,},
+{ 0x1bead768, 0x98f8ce4c, 0x66cc2858,},
+{ 0x1b903469, 0x050f72e5, 0x0cf5488e,},
+{ 0x1b3b433f, 0x2eb06f14, 0x8c89719c,},
+{ 0x1aeb6f75, 0x9c46fc37, 0xab5fc7e9,},
+{ 0x1aa038eb, 0x0e3bfd17, 0x1bd62080,},
+{ 0x1a593062, 0xb38d8c56, 0x7998ab45,},
+{ 0x1a15f4c3, 0x2b95a2e6, 0x46aed6a0,},
+{ 0x19d630dc, 0xcc7ddef9, 0x5aadd61b,},
+{ 0x19999999, 0x99999999, 0x9999999a,},
+{ 0x195fec80, 0x8a609430, 0xe1106014,},
+{ 0x1928ee7b, 0x0b4f22f9, 0x5f69791d,},
+{ 0x18f46acf, 0x8c06e318, 0x4d2aeb2c,},
+{ 0x18c23246, 0xdc0a9f3d, 0x3fe16970,},
+#endif
+};
+
+static const limb_t log2_radix[BF_RADIX_MAX - 1] = {
+#if LIMB_BITS == 32
+0x20000000,
+0x32b80347,
+0x40000000,
+0x4a4d3c26,
+0x52b80347,
+0x59d5d9fd,
+0x60000000,
+0x6570068e,
+0x6a4d3c26,
+0x6eb3a9f0,
+0x72b80347,
+0x766a008e,
+0x79d5d9fd,
+0x7d053f6d,
+0x80000000,
+0x82cc7edf,
+0x8570068e,
+0x87ef05ae,
+0x8a4d3c26,
+0x8c8ddd45,
+0x8eb3a9f0,
+0x90c10501,
+0x92b80347,
+0x949a784c,
+0x966a008e,
+0x982809d6,
+0x99d5d9fd,
+0x9b74948f,
+0x9d053f6d,
+0x9e88c6b3,
+0xa0000000,
+0xa16bad37,
+0xa2cc7edf,
+0xa4231623,
+0xa570068e,
+#else
+0x2000000000000000,
+0x32b803473f7ad0f4,
+0x4000000000000000,
+0x4a4d3c25e68dc57f,
+0x52b803473f7ad0f4,
+0x59d5d9fd5010b366,
+0x6000000000000000,
+0x6570068e7ef5a1e8,
+0x6a4d3c25e68dc57f,
+0x6eb3a9f01975077f,
+0x72b803473f7ad0f4,
+0x766a008e4788cbcd,
+0x79d5d9fd5010b366,
+0x7d053f6d26089673,
+0x8000000000000000,
+0x82cc7edf592262d0,
+0x8570068e7ef5a1e8,
+0x87ef05ae409a0289,
+0x8a4d3c25e68dc57f,
+0x8c8ddd448f8b845a,
+0x8eb3a9f01975077f,
+0x90c10500d63aa659,
+0x92b803473f7ad0f4,
+0x949a784bcd1b8afe,
+0x966a008e4788cbcd,
+0x982809d5be7072dc,
+0x99d5d9fd5010b366,
+0x9b74948f5532da4b,
+0x9d053f6d26089673,
+0x9e88c6b3626a72aa,
+0xa000000000000000,
+0xa16bad3758efd873,
+0xa2cc7edf592262d0,
+0xa4231623369e78e6,
+0xa570068e7ef5a1e8,
+#endif
+};
+
+/* compute floor(a*b) or ceil(a*b) with b = log2(radix) or
+ b=1/log2(radix). For is_inv = 0, strict accuracy is not guaranteed
+ when radix is not a power of two. */
+slimb_t bf_mul_log2_radix(slimb_t a1, unsigned int radix, int is_inv,
+ int is_ceil1)
+{
+ int is_neg;
+ limb_t a;
+ BOOL is_ceil;
+
+ is_ceil = is_ceil1;
+ a = a1;
+ if (a1 < 0) {
+ a = -a;
+ is_neg = 1;
+ } else {
+ is_neg = 0;
+ }
+ is_ceil ^= is_neg;
+ if ((radix & (radix - 1)) == 0) {
+ int radix_bits;
+ /* radix is a power of two */
+ radix_bits = ceil_log2(radix);
+ if (is_inv) {
+ if (is_ceil)
+ a += radix_bits - 1;
+ a = a / radix_bits;
+ } else {
+ a = a * radix_bits;
+ }
+ } else {
+ const uint32_t *tab;
+ limb_t b0, b1;
+ dlimb_t t;
+
+ if (is_inv) {
+ tab = inv_log2_radix[radix - 2];
+#if LIMB_BITS == 32
+ b1 = tab[0];
+ b0 = tab[1];
+#else
+ b1 = ((limb_t)tab[0] << 32) | tab[1];
+ b0 = (limb_t)tab[2] << 32;
+#endif
+ t = (dlimb_t)b0 * (dlimb_t)a;
+ t = (dlimb_t)b1 * (dlimb_t)a + (t >> LIMB_BITS);
+ a = t >> (LIMB_BITS - 1);
+ } else {
+ b0 = log2_radix[radix - 2];
+ t = (dlimb_t)b0 * (dlimb_t)a;
+ a = t >> (LIMB_BITS - 3);
+ }
+ /* a = floor(result) and 'result' cannot be an integer */
+ a += is_ceil;
+ }
+ if (is_neg)
+ a = -a;
+ return a;
+}
+
+/* 'n' is the number of output limbs */
+static void bf_integer_to_radix_rec(bf_t *pow_tab,
+ limb_t *out, const bf_t *a, limb_t n,
+ int level, limb_t n0, limb_t radixl,
+ unsigned int radixl_bits)
+{
+ limb_t n1, n2, q_prec;
+ assert(n >= 1);
+ if (n == 1) {
+ out[0] = get_bits(a->tab, a->len, a->len * LIMB_BITS - a->expn);
+ } else if (n == 2) {
+ dlimb_t t;
+ slimb_t pos;
+ pos = a->len * LIMB_BITS - a->expn;
+ t = ((dlimb_t)get_bits(a->tab, a->len, pos + LIMB_BITS) << LIMB_BITS) |
+ get_bits(a->tab, a->len, pos);
+ if (likely(radixl == RADIXL_10)) {
+ /* use division by a constant when possible */
+ out[0] = t % RADIXL_10;
+ out[1] = t / RADIXL_10;
+ } else {
+ out[0] = t % radixl;
+ out[1] = t / radixl;
+ }
+ } else {
+ bf_t Q, R, *B, *B_inv;
+ int q_add;
+ bf_init(a->ctx, &Q);
+ bf_init(a->ctx, &R);
+ n2 = (((n0 * 2) >> (level + 1)) + 1) / 2;
+ n1 = n - n2;
+ B = &pow_tab[2 * level];
+ B_inv = &pow_tab[2 * level + 1];
+ if (B->len == 0) {
+ /* compute BASE^n2 */
+ bf_pow_ui_ui(B, radixl, n2, BF_PREC_INF, BF_RNDZ);
+ /* we use enough bits for the maximum possible 'n1' value,
+ i.e. n2 + 1 */
+ bf_set_ui(&R, 1);
+ bf_div(B_inv, &R, B, (n2 + 1) * radixl_bits + 2, BF_RNDN);
+ }
+ // printf("%d: n1=% " PRId64 " n2=%" PRId64 "\n", level, n1, n2);
+ q_prec = n1 * radixl_bits;
+ bf_mul(&Q, a, B_inv, q_prec, BF_RNDN);
+ bf_rint(&Q, BF_RNDZ);
+
+ bf_mul(&R, &Q, B, BF_PREC_INF, BF_RNDZ);
+ bf_sub(&R, a, &R, BF_PREC_INF, BF_RNDZ);
+ /* adjust if necessary */
+ q_add = 0;
+ while (R.sign && R.len != 0) {
+ bf_add(&R, &R, B, BF_PREC_INF, BF_RNDZ);
+ q_add--;
+ }
+ while (bf_cmpu(&R, B) >= 0) {
+ bf_sub(&R, &R, B, BF_PREC_INF, BF_RNDZ);
+ q_add++;
+ }
+ if (q_add != 0) {
+ bf_add_si(&Q, &Q, q_add, BF_PREC_INF, BF_RNDZ);
+ }
+ bf_integer_to_radix_rec(pow_tab, out + n2, &Q, n1, level + 1, n0,
+ radixl, radixl_bits);
+ bf_integer_to_radix_rec(pow_tab, out, &R, n2, level + 1, n0,
+ radixl, radixl_bits);
+ bf_delete(&Q);
+ bf_delete(&R);
+ }
+}
+
+static void bf_integer_to_radix(bf_t *r, const bf_t *a, limb_t radixl)
+{
+ bf_context_t *s = r->ctx;
+ limb_t r_len;
+ bf_t *pow_tab;
+ int i, pow_tab_len;
+
+ r_len = r->len;
+ pow_tab_len = (ceil_log2(r_len) + 2) * 2; /* XXX: check */
+ pow_tab = bf_malloc(s, sizeof(pow_tab[0]) * pow_tab_len);
+ for(i = 0; i < pow_tab_len; i++)
+ bf_init(r->ctx, &pow_tab[i]);
+
+ bf_integer_to_radix_rec(pow_tab, r->tab, a, r_len, 0, r_len, radixl,
+ ceil_log2(radixl));
+
+ for(i = 0; i < pow_tab_len; i++) {
+ bf_delete(&pow_tab[i]);
+ }
+ bf_free(s, pow_tab);
+}
+
+/* a must be >= 0. 'P' is the wanted number of digits in radix
+ 'radix'. 'r' is the mantissa represented as an integer. *pE
+ contains the exponent. Return != 0 if memory error. */
+static int bf_convert_to_radix(bf_t *r, slimb_t *pE,
+ const bf_t *a, int radix,
+ limb_t P, bf_rnd_t rnd_mode,
+ BOOL is_fixed_exponent)
+{
+ slimb_t E, e, prec, extra_bits, ziv_extra_bits, prec0;
+ bf_t B_s, *B = &B_s;
+ int e_sign, ret, res;
+
+ if (a->len == 0) {
+ /* zero case */
+ *pE = 0;
+ return bf_set(r, a);
+ }
+
+ if (is_fixed_exponent) {
+ E = *pE;
+ } else {
+ /* compute the new exponent */
+ E = 1 + bf_mul_log2_radix(a->expn - 1, radix, TRUE, FALSE);
+ }
+ // bf_print_str("a", a);
+ // printf("E=%ld P=%ld radix=%d\n", E, P, radix);
+
+ for(;;) {
+ e = P - E;
+ e_sign = 0;
+ if (e < 0) {
+ e = -e;
+ e_sign = 1;
+ }
+ /* Note: precision for log2(radix) is not critical here */
+ prec0 = bf_mul_log2_radix(P, radix, FALSE, TRUE);
+ ziv_extra_bits = 16;
+ for(;;) {
+ prec = prec0 + ziv_extra_bits;
+ /* XXX: rigorous error analysis needed */
+ extra_bits = ceil_log2(e) * 2 + 1;
+ ret = bf_pow_ui_ui(r, radix, e, prec + extra_bits, BF_RNDN);
+ if (!e_sign)
+ ret |= bf_mul(r, r, a, prec + extra_bits, BF_RNDN);
+ else
+ ret |= bf_div(r, a, r, prec + extra_bits, BF_RNDN);
+ if (ret & BF_ST_MEM_ERROR)
+ return BF_ST_MEM_ERROR;
+ /* if the result is not exact, check that it can be safely
+ rounded to an integer */
+ if ((ret & BF_ST_INEXACT) &&
+ !bf_can_round(r, r->expn, rnd_mode, prec)) {
+ /* and more precision and retry */
+ ziv_extra_bits = ziv_extra_bits + (ziv_extra_bits / 2);
+ continue;
+ } else {
+ ret = bf_rint(r, rnd_mode);
+ if (ret & BF_ST_MEM_ERROR)
+ return BF_ST_MEM_ERROR;
+ break;
+ }
+ }
+ if (is_fixed_exponent)
+ break;
+ /* check that the result is < B^P */
+ /* XXX: do a fast approximate test first ? */
+ bf_init(r->ctx, B);
+ ret = bf_pow_ui_ui(B, radix, P, BF_PREC_INF, BF_RNDZ);
+ if (ret) {
+ bf_delete(B);
+ return ret;
+ }
+ res = bf_cmpu(r, B);
+ bf_delete(B);
+ if (res < 0)
+ break;
+ /* try a larger exponent */
+ E++;
+ }
+ *pE = E;
+ return 0;
+}
+
+static void limb_to_a(char *buf, limb_t n, unsigned int radix, int len)
+{
+ int digit, i;
+
+ if (radix == 10) {
+ /* specific case with constant divisor */
+ for(i = len - 1; i >= 0; i--) {
+ digit = (limb_t)n % 10;
+ n = (limb_t)n / 10;
+ buf[i] = digit + '0';
+ }
+ } else {
+ for(i = len - 1; i >= 0; i--) {
+ digit = (limb_t)n % radix;
+ n = (limb_t)n / radix;
+ if (digit < 10)
+ digit += '0';
+ else
+ digit += 'a' - 10;
+ buf[i] = digit;
+ }
+ }
+}
+
+/* for power of 2 radixes */
+static void limb_to_a2(char *buf, limb_t n, unsigned int radix_bits, int len)
+{
+ int digit, i;
+ unsigned int mask;
+
+ mask = (1 << radix_bits) - 1;
+ for(i = len - 1; i >= 0; i--) {
+ digit = n & mask;
+ n >>= radix_bits;
+ if (digit < 10)
+ digit += '0';
+ else
+ digit += 'a' - 10;
+ buf[i] = digit;
+ }
+}
+
+/* 'a' must be an integer if the is_dec = FALSE or if the radix is not
+ a power of two. A dot is added before the 'dot_pos' digit. dot_pos
+ = n_digits does not display the dot. 0 <= dot_pos <=
+ n_digits. n_digits >= 1. */
+static void output_digits(DynBuf *s, const bf_t *a1, int radix, limb_t n_digits,
+ limb_t dot_pos, BOOL is_dec)
+{
+ limb_t i, v, l;
+ slimb_t pos, pos_incr;
+ int digits_per_limb, buf_pos, radix_bits, first_buf_pos;
+ char buf[65];
+ bf_t a_s, *a;
+
+ if (is_dec) {
+ digits_per_limb = LIMB_DIGITS;
+ a = (bf_t *)a1;
+ radix_bits = 0;
+ pos = a->len;
+ pos_incr = 1;
+ first_buf_pos = 0;
+ } else if ((radix & (radix - 1)) != 0) {
+ limb_t n, radixl;
+
+ digits_per_limb = digits_per_limb_table[radix - 2];
+ radixl = get_limb_radix(radix);
+ a = &a_s;
+ bf_init(a1->ctx, a);
+ n = (n_digits + digits_per_limb - 1) / digits_per_limb;
+ bf_resize(a, n);
+ bf_integer_to_radix(a, a1, radixl);
+ radix_bits = 0;
+ pos = n;
+ pos_incr = 1;
+ first_buf_pos = pos * digits_per_limb - n_digits;
+ } else {
+ a = (bf_t *)a1;
+ radix_bits = ceil_log2(radix);
+ digits_per_limb = LIMB_BITS / radix_bits;
+ pos_incr = digits_per_limb * radix_bits;
+ pos = a->len * LIMB_BITS - a->expn + n_digits * radix_bits;
+ first_buf_pos = 0;
+ }
+ buf_pos = digits_per_limb;
+ i = 0;
+ while (i < n_digits) {
+ if (buf_pos == digits_per_limb) {
+ pos -= pos_incr;
+ if (radix_bits == 0) {
+ v = get_limbz(a, pos);
+ limb_to_a(buf, v, radix, digits_per_limb);
+ } else {
+ v = get_bits(a->tab, a->len, pos);
+ limb_to_a2(buf, v, radix_bits, digits_per_limb);
+ }
+ buf_pos = first_buf_pos;
+ first_buf_pos = 0;
+ }
+ if (i < dot_pos) {
+ l = dot_pos;
+ } else {
+ if (i == dot_pos)
+ dbuf_putc(s, '.');
+ l = n_digits;
+ }
+ l = bf_min(digits_per_limb - buf_pos, l - i);
+ dbuf_put(s, (uint8_t *)(buf + buf_pos), l);
+ buf_pos += l;
+ i += l;
+ }
+ if (a != a1)
+ bf_delete(a);
+}
+
+static void *bf_dbuf_realloc(void *opaque, void *ptr, size_t size)
+{
+ bf_context_t *s = opaque;
+ return bf_realloc(s, ptr, size);
+}
+
+/* return the length in bytes. A trailing '\0' is added */
+static char *bf_ftoa_internal(size_t *plen, const bf_t *a2, int radix,
+ limb_t prec, bf_flags_t flags, BOOL is_dec)
+{
+ DynBuf s_s, *s = &s_s;
+ int radix_bits;
+
+ // bf_print_str("ftoa", a2);
+ // printf("radix=%d\n", radix);
+ dbuf_init2(s, a2->ctx, bf_dbuf_realloc);
+ if (a2->expn == BF_EXP_NAN) {
+ dbuf_putstr(s, "NaN");
+ } else {
+ if (a2->sign)
+ dbuf_putc(s, '-');
+ if (a2->expn == BF_EXP_INF) {
+ if (flags & BF_FTOA_JS_QUIRKS)
+ dbuf_putstr(s, "Infinity");
+ else
+ dbuf_putstr(s, "Inf");
+ } else {
+ int fmt, ret;
+ slimb_t n_digits, n, i, n_max, n1;
+ bf_t a1_s, *a1;
+ bf_t a_s, *a = &a_s;
+
+ /* make a positive number */
+ a->tab = a2->tab;
+ a->len = a2->len;
+ a->expn = a2->expn;
+ a->sign = 0;
+
+ if ((radix & (radix - 1)) != 0)
+ radix_bits = 0;
+ else
+ radix_bits = ceil_log2(radix);
+
+ fmt = flags & BF_FTOA_FORMAT_MASK;
+ a1 = &a1_s;
+ bf_init(a2->ctx, a1);
+ if (fmt == BF_FTOA_FORMAT_FRAC) {
+ size_t pos, start;
+ assert(!is_dec);
+ /* one more digit for the rounding */
+ n = 1 + bf_mul_log2_radix(bf_max(a->expn, 0), radix, TRUE, TRUE);
+ n_digits = n + prec;
+ n1 = n;
+ if (bf_convert_to_radix(a1, &n1, a, radix, n_digits,
+ flags & BF_RND_MASK, TRUE))
+ goto fail1;
+ start = s->size;
+ output_digits(s, a1, radix, n_digits, n, is_dec);
+ /* remove leading zeros because we allocated one more digit */
+ pos = start;
+ while ((pos + 1) < s->size && s->buf[pos] == '0' &&
+ s->buf[pos + 1] != '.')
+ pos++;
+ if (pos > start) {
+ memmove(s->buf + start, s->buf + pos, s->size - pos);
+ s->size -= (pos - start);
+ }
+ } else {
+#ifdef USE_BF_DEC
+ if (is_dec) {
+ if (fmt == BF_FTOA_FORMAT_FIXED) {
+ n_digits = prec;
+ n_max = n_digits;
+ } else {
+ /* prec is ignored */
+ prec = n_digits = a->len * LIMB_DIGITS;
+ /* remove trailing zero digits */
+ while (n_digits > 1 &&
+ get_digit(a->tab, a->len, prec - n_digits) == 0) {
+ n_digits--;
+ }
+ n_max = n_digits + 4;
+ }
+ bf_init(a2->ctx, a1);
+ bf_set(a1, a);
+ n = a1->expn;
+ } else
+#endif
+ {
+ if (fmt == BF_FTOA_FORMAT_FIXED) {
+ n_digits = prec;
+ n_max = n_digits;
+ } else {
+ slimb_t n_digits_max, n_digits_min;
+
+ if (prec == BF_PREC_INF) {
+ assert(radix_bits != 0);
+ /* XXX: could use the exact number of bits */
+ prec = a->len * LIMB_BITS;
+ }
+ n_digits = 1 + bf_mul_log2_radix(prec, radix, TRUE, TRUE);
+ /* max number of digits for non exponential
+ notation. The rational is to have the same rule
+ as JS i.e. n_max = 21 for 64 bit float in base 10. */
+ n_max = n_digits + 4;
+ if (fmt == BF_FTOA_FORMAT_FREE_MIN) {
+ bf_t b_s, *b = &b_s;
+
+ /* find the minimum number of digits by
+ dichotomy. */
+ /* XXX: inefficient */
+ n_digits_max = n_digits;
+ n_digits_min = 1;
+ bf_init(a2->ctx, b);
+ while (n_digits_min < n_digits_max) {
+ n_digits = (n_digits_min + n_digits_max) / 2;
+ if (bf_convert_to_radix(a1, &n, a, radix, n_digits,
+ flags & BF_RND_MASK, FALSE)) {
+ bf_delete(b);
+ goto fail1;
+ }
+ /* convert back to a number and compare */
+ ret = bf_mul_pow_radix(b, a1, radix, n - n_digits,
+ prec,
+ (flags & ~BF_RND_MASK) |
+ BF_RNDN);
+ if (ret & BF_ST_MEM_ERROR) {
+ bf_delete(b);
+ goto fail1;
+ }
+ if (bf_cmpu(b, a) == 0) {
+ n_digits_max = n_digits;
+ } else {
+ n_digits_min = n_digits + 1;
+ }
+ }
+ bf_delete(b);
+ n_digits = n_digits_max;
+ }
+ }
+ if (bf_convert_to_radix(a1, &n, a, radix, n_digits,
+ flags & BF_RND_MASK, FALSE)) {
+ fail1:
+ bf_delete(a1);
+ goto fail;
+ }
+ }
+ if (a1->expn == BF_EXP_ZERO &&
+ fmt != BF_FTOA_FORMAT_FIXED &&
+ !(flags & BF_FTOA_FORCE_EXP)) {
+ /* just output zero */
+ dbuf_putstr(s, "0");
+ } else {
+ if (flags & BF_FTOA_ADD_PREFIX) {
+ if (radix == 16)
+ dbuf_putstr(s, "0x");
+ else if (radix == 8)
+ dbuf_putstr(s, "0o");
+ else if (radix == 2)
+ dbuf_putstr(s, "0b");
+ }
+ if (a1->expn == BF_EXP_ZERO)
+ n = 1;
+ if ((flags & BF_FTOA_FORCE_EXP) ||
+ n <= -6 || n > n_max) {
+ const char *fmt;
+ /* exponential notation */
+ output_digits(s, a1, radix, n_digits, 1, is_dec);
+ if (radix_bits != 0 && radix <= 16) {
+ if (flags & BF_FTOA_JS_QUIRKS)
+ fmt = "p%+" PRId_LIMB;
+ else
+ fmt = "p%" PRId_LIMB;
+ dbuf_printf(s, fmt, (n - 1) * radix_bits);
+ } else {
+ if (flags & BF_FTOA_JS_QUIRKS)
+ fmt = "%c%+" PRId_LIMB;
+ else
+ fmt = "%c%" PRId_LIMB;
+ dbuf_printf(s, fmt,
+ radix <= 10 ? 'e' : '@', n - 1);
+ }
+ } else if (n <= 0) {
+ /* 0.x */
+ dbuf_putstr(s, "0.");
+ for(i = 0; i < -n; i++) {
+ dbuf_putc(s, '0');
+ }
+ output_digits(s, a1, radix, n_digits, n_digits, is_dec);
+ } else {
+ if (n_digits <= n) {
+ /* no dot */
+ output_digits(s, a1, radix, n_digits, n_digits, is_dec);
+ for(i = 0; i < (n - n_digits); i++)
+ dbuf_putc(s, '0');
+ } else {
+ output_digits(s, a1, radix, n_digits, n, is_dec);
+ }
+ }
+ }
+ }
+ bf_delete(a1);
+ }
+ }
+ dbuf_putc(s, '\0');
+ if (dbuf_error(s))
+ goto fail;
+ if (plen)
+ *plen = s->size - 1;
+ return (char *)s->buf;
+ fail:
+ bf_free(a2->ctx, s->buf);
+ if (plen)
+ *plen = 0;
+ return NULL;
+}
+
+char *bf_ftoa(size_t *plen, const bf_t *a, int radix, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_ftoa_internal(plen, a, radix, prec, flags, FALSE);
+}
+
+/***************************************************************/
+/* transcendental functions */
+
+/* Note: the algorithm is from MPFR */
+static void bf_const_log2_rec(bf_t *T, bf_t *P, bf_t *Q, limb_t n1,
+ limb_t n2, BOOL need_P)
+{
+ bf_context_t *s = T->ctx;
+ if ((n2 - n1) == 1) {
+ if (n1 == 0) {
+ bf_set_ui(P, 3);
+ } else {
+ bf_set_ui(P, n1);
+ P->sign = 1;
+ }
+ bf_set_ui(Q, 2 * n1 + 1);
+ Q->expn += 2;
+ bf_set(T, P);
+ } else {
+ limb_t m;
+ bf_t T1_s, *T1 = &T1_s;
+ bf_t P1_s, *P1 = &P1_s;
+ bf_t Q1_s, *Q1 = &Q1_s;
+
+ m = n1 + ((n2 - n1) >> 1);
+ bf_const_log2_rec(T, P, Q, n1, m, TRUE);
+ bf_init(s, T1);
+ bf_init(s, P1);
+ bf_init(s, Q1);
+ bf_const_log2_rec(T1, P1, Q1, m, n2, need_P);
+ bf_mul(T, T, Q1, BF_PREC_INF, BF_RNDZ);
+ bf_mul(T1, T1, P, BF_PREC_INF, BF_RNDZ);
+ bf_add(T, T, T1, BF_PREC_INF, BF_RNDZ);
+ if (need_P)
+ bf_mul(P, P, P1, BF_PREC_INF, BF_RNDZ);
+ bf_mul(Q, Q, Q1, BF_PREC_INF, BF_RNDZ);
+ bf_delete(T1);
+ bf_delete(P1);
+ bf_delete(Q1);
+ }
+}
+
+/* compute log(2) with faithful rounding at precision 'prec' */
+static void bf_const_log2_internal(bf_t *T, limb_t prec)
+{
+ limb_t w, N;
+ bf_t P_s, *P = &P_s;
+ bf_t Q_s, *Q = &Q_s;
+
+ w = prec + 15;
+ N = w / 3 + 1;
+ bf_init(T->ctx, P);
+ bf_init(T->ctx, Q);
+ bf_const_log2_rec(T, P, Q, 0, N, FALSE);
+ bf_div(T, T, Q, prec, BF_RNDN);
+ bf_delete(P);
+ bf_delete(Q);
+}
+
+/* PI constant */
+
+#define CHUD_A 13591409
+#define CHUD_B 545140134
+#define CHUD_C 640320
+#define CHUD_BITS_PER_TERM 47
+
+static void chud_bs(bf_t *P, bf_t *Q, bf_t *G, int64_t a, int64_t b, int need_g,
+ limb_t prec)
+{
+ bf_context_t *s = P->ctx;
+ int64_t c;
+
+ if (a == (b - 1)) {
+ bf_t T0, T1;
+
+ bf_init(s, &T0);
+ bf_init(s, &T1);
+ bf_set_ui(G, 2 * b - 1);
+ bf_mul_ui(G, G, 6 * b - 1, prec, BF_RNDN);
+ bf_mul_ui(G, G, 6 * b - 5, prec, BF_RNDN);
+ bf_set_ui(&T0, CHUD_B);
+ bf_mul_ui(&T0, &T0, b, prec, BF_RNDN);
+ bf_set_ui(&T1, CHUD_A);
+ bf_add(&T0, &T0, &T1, prec, BF_RNDN);
+ bf_mul(P, G, &T0, prec, BF_RNDN);
+ P->sign = b & 1;
+
+ bf_set_ui(Q, b);
+ bf_mul_ui(Q, Q, b, prec, BF_RNDN);
+ bf_mul_ui(Q, Q, b, prec, BF_RNDN);
+ bf_mul_ui(Q, Q, (uint64_t)CHUD_C * CHUD_C * CHUD_C / 24, prec, BF_RNDN);
+ bf_delete(&T0);
+ bf_delete(&T1);
+ } else {
+ bf_t P2, Q2, G2;
+
+ bf_init(s, &P2);
+ bf_init(s, &Q2);
+ bf_init(s, &G2);
+
+ c = (a + b) / 2;
+ chud_bs(P, Q, G, a, c, 1, prec);
+ chud_bs(&P2, &Q2, &G2, c, b, need_g, prec);
+
+ /* Q = Q1 * Q2 */
+ /* G = G1 * G2 */
+ /* P = P1 * Q2 + P2 * G1 */
+ bf_mul(&P2, &P2, G, prec, BF_RNDN);
+ if (!need_g)
+ bf_set_ui(G, 0);
+ bf_mul(P, P, &Q2, prec, BF_RNDN);
+ bf_add(P, P, &P2, prec, BF_RNDN);
+ bf_delete(&P2);
+
+ bf_mul(Q, Q, &Q2, prec, BF_RNDN);
+ bf_delete(&Q2);
+ if (need_g)
+ bf_mul(G, G, &G2, prec, BF_RNDN);
+ bf_delete(&G2);
+ }
+}
+
+/* compute Pi with faithful rounding at precision 'prec' using the
+ Chudnovsky formula */
+static void bf_const_pi_internal(bf_t *Q, limb_t prec)
+{
+ bf_context_t *s = Q->ctx;
+ int64_t n, prec1;
+ bf_t P, G;
+
+ /* number of serie terms */
+ n = prec / CHUD_BITS_PER_TERM + 1;
+ /* XXX: precision analysis */
+ prec1 = prec + 32;
+
+ bf_init(s, &P);
+ bf_init(s, &G);
+
+ chud_bs(&P, Q, &G, 0, n, 0, BF_PREC_INF);
+
+ bf_mul_ui(&G, Q, CHUD_A, prec1, BF_RNDN);
+ bf_add(&P, &G, &P, prec1, BF_RNDN);
+ bf_div(Q, Q, &P, prec1, BF_RNDF);
+
+ bf_set_ui(&P, CHUD_C);
+ bf_sqrt(&G, &P, prec1, BF_RNDF);
+ bf_mul_ui(&G, &G, (uint64_t)CHUD_C / 12, prec1, BF_RNDF);
+ bf_mul(Q, Q, &G, prec, BF_RNDN);
+ bf_delete(&P);
+ bf_delete(&G);
+}
+
+static int bf_const_get(bf_t *T, limb_t prec, bf_flags_t flags,
+ BFConstCache *c,
+ void (*func)(bf_t *res, limb_t prec))
+{
+ limb_t ziv_extra_bits, prec1;
+
+ ziv_extra_bits = 32;
+ for(;;) {
+ prec1 = prec + ziv_extra_bits;
+ if (c->prec < prec1) {
+ if (c->val.len == 0)
+ bf_init(T->ctx, &c->val);
+ func(&c->val, prec1);
+ c->prec = prec1;
+ } else {
+ prec1 = c->prec;
+ }
+ bf_set(T, &c->val);
+ if (!bf_can_round(T, prec, flags & BF_RND_MASK, prec1)) {
+ /* and more precision and retry */
+ ziv_extra_bits = ziv_extra_bits + (ziv_extra_bits / 2);
+ } else {
+ break;
+ }
+ }
+ return bf_round(T, prec, flags);
+}
+
+static void bf_const_free(BFConstCache *c)
+{
+ bf_delete(&c->val);
+ memset(c, 0, sizeof(*c));
+}
+
+int bf_const_log2(bf_t *T, limb_t prec, bf_flags_t flags)
+{
+ bf_context_t *s = T->ctx;
+ return bf_const_get(T, prec, flags, &s->log2_cache, bf_const_log2_internal);
+}
+
+int bf_const_pi(bf_t *T, limb_t prec, bf_flags_t flags)
+{
+ bf_context_t *s = T->ctx;
+ return bf_const_get(T, prec, flags, &s->pi_cache, bf_const_pi_internal);
+}
+
+void bf_clear_cache(bf_context_t *s)
+{
+#ifdef USE_FFT_MUL
+ fft_clear_cache(s);
+#endif
+ bf_const_free(&s->log2_cache);
+ bf_const_free(&s->pi_cache);
+}
+
+/* ZivFunc should compute the result 'r' with faithful rounding at
+ precision 'prec'. For efficiency purposes, the final bf_round()
+ does not need to be done in the function. */
+typedef int ZivFunc(bf_t *r, const bf_t *a, limb_t prec, void *opaque);
+
+static int bf_ziv_rounding(bf_t *r, const bf_t *a,
+ limb_t prec, bf_flags_t flags,
+ ZivFunc *f, void *opaque)
+{
+ int rnd_mode, ret;
+ slimb_t prec1, ziv_extra_bits;
+
+ rnd_mode = flags & BF_RND_MASK;
+ if (rnd_mode == BF_RNDF) {
+ /* no need to iterate */
+ f(r, a, prec, opaque);
+ ret = 0;
+ } else {
+ ziv_extra_bits = 32;
+ for(;;) {
+ prec1 = prec + ziv_extra_bits;
+ ret = f(r, a, prec1, opaque);
+ if (ret & (BF_ST_OVERFLOW | BF_ST_UNDERFLOW | BF_ST_MEM_ERROR)) {
+ /* overflow or underflow should never happen because
+ it indicates the rounding cannot be done correctly,
+ but we do not catch all the cases */
+ return ret;
+ }
+ /* if the result is exact, we can stop */
+ if (!(ret & BF_ST_INEXACT)) {
+ ret = 0;
+ break;
+ }
+ if (bf_can_round(r, prec, rnd_mode, prec1)) {
+ ret = BF_ST_INEXACT;
+ break;
+ }
+ ziv_extra_bits = ziv_extra_bits * 2;
+ }
+ }
+ return bf_round(r, prec, flags) | ret;
+}
+
+/* Compute the exponential using faithful rounding at precision 'prec'.
+ Note: the algorithm is from MPFR */
+static int bf_exp_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ bf_t T_s, *T = &T_s;
+ slimb_t n, K, l, i, prec1;
+
+ assert(r != a);
+
+ /* argument reduction:
+ T = a - n*log(2) with 0 <= T < log(2) and n integer.
+ */
+ bf_init(s, T);
+ if (a->expn <= -1) {
+ /* 0 <= abs(a) <= 0.5 */
+ if (a->sign)
+ n = -1;
+ else
+ n = 0;
+ } else {
+ bf_const_log2(T, LIMB_BITS, BF_RNDZ);
+ bf_div(T, a, T, LIMB_BITS, BF_RNDD);
+ bf_get_limb(&n, T, 0);
+ }
+
+ K = bf_isqrt((prec + 1) / 2);
+ l = (prec - 1) / K + 1;
+ /* XXX: precision analysis ? */
+ prec1 = prec + (K + 2 * l + 18) + K + 8;
+ if (a->expn > 0)
+ prec1 += a->expn;
+ // printf("n=%ld K=%ld prec1=%ld\n", n, K, prec1);
+
+ bf_const_log2(T, prec1, BF_RNDF);
+ bf_mul_si(T, T, n, prec1, BF_RNDN);
+ bf_sub(T, a, T, prec1, BF_RNDN);
+
+ /* reduce the range of T */
+ bf_mul_2exp(T, -K, BF_PREC_INF, BF_RNDZ);
+
+ /* Taylor expansion around zero :
+ 1 + x + x^2/2 + ... + x^n/n!
+ = (1 + x * (1 + x/2 * (1 + ... (x/n))))
+ */
+ {
+ bf_t U_s, *U = &U_s;
+
+ bf_init(s, U);
+ bf_set_ui(r, 1);
+ for(i = l ; i >= 1; i--) {
+ bf_set_ui(U, i);
+ bf_div(U, T, U, prec1, BF_RNDN);
+ bf_mul(r, r, U, prec1, BF_RNDN);
+ bf_add_si(r, r, 1, prec1, BF_RNDN);
+ }
+ bf_delete(U);
+ }
+ bf_delete(T);
+
+ /* undo the range reduction */
+ for(i = 0; i < K; i++) {
+ bf_mul(r, r, r, prec1, BF_RNDN);
+ }
+
+ /* undo the argument reduction */
+ bf_mul_2exp(r, n, BF_PREC_INF, BF_RNDZ);
+
+ return BF_ST_INEXACT;
+}
+
+int bf_exp(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ bf_context_t *s = r->ctx;
+ assert(r != a);
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ } else if (a->expn == BF_EXP_INF) {
+ if (a->sign)
+ bf_set_zero(r, 0);
+ else
+ bf_set_inf(r, 0);
+ } else {
+ bf_set_ui(r, 1);
+ }
+ return 0;
+ }
+
+ /* crude overflow and underflow tests */
+ if (a->expn > 0) {
+ bf_t T_s, *T = &T_s;
+ bf_t log2_s, *log2 = &log2_s;
+ slimb_t e_min, e_max;
+ e_max = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
+ e_min = -e_max + 3;
+ if (flags & BF_FLAG_SUBNORMAL)
+ e_min -= (prec - 1);
+
+ bf_init(s, T);
+ bf_init(s, log2);
+ bf_const_log2(log2, LIMB_BITS, BF_RNDU);
+ bf_mul_ui(T, log2, e_max, LIMB_BITS, BF_RNDU);
+ /* a > e_max * log(2) implies exp(a) > e_max */
+ if (bf_cmp_lt(T, a) > 0) {
+ /* overflow */
+ bf_delete(T);
+ bf_delete(log2);
+ return bf_set_overflow(r, 0, prec, flags);
+ }
+ /* a < e_min * log(2) implies exp(a) < e_min */
+ bf_mul_si(T, log2, e_min, LIMB_BITS, BF_RNDD);
+ if (bf_cmp_lt(a, T)) {
+ int rnd_mode = flags & BF_RND_MASK;
+
+ /* underflow */
+ bf_delete(T);
+ bf_delete(log2);
+ if (rnd_mode == BF_RNDU) {
+ /* set the smallest value */
+ bf_set_ui(r, 1);
+ r->expn = e_min;
+ } else {
+ bf_set_zero(r, 0);
+ }
+ return BF_ST_UNDERFLOW | BF_ST_INEXACT;
+ }
+ bf_delete(log2);
+ bf_delete(T);
+ }
+
+ return bf_ziv_rounding(r, a, prec, flags, bf_exp_internal, NULL);
+}
+
+static int bf_log_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ bf_t T_s, *T = &T_s;
+ bf_t U_s, *U = &U_s;
+ bf_t V_s, *V = &V_s;
+ slimb_t n, prec1, l, i, K;
+
+ assert(r != a);
+
+ bf_init(s, T);
+ /* argument reduction 1 */
+ /* T=a*2^n with 2/3 <= T <= 4/3 */
+ {
+ bf_t U_s, *U = &U_s;
+ bf_set(T, a);
+ n = T->expn;
+ T->expn = 0;
+ /* U= ~ 2/3 */
+ bf_init(s, U);
+ bf_set_ui(U, 0xaaaaaaaa);
+ U->expn = 0;
+ if (bf_cmp_lt(T, U)) {
+ T->expn++;
+ n--;
+ }
+ bf_delete(U);
+ }
+ // printf("n=%ld\n", n);
+ // bf_print_str("T", T);
+
+ /* XXX: precision analysis */
+ /* number of iterations for argument reduction 2 */
+ K = bf_isqrt((prec + 1) / 2);
+ /* order of Taylor expansion */
+ l = prec / (2 * K) + 1;
+ /* precision of the intermediate computations */
+ prec1 = prec + K + 2 * l + 32;
+
+ bf_init(s, U);
+ bf_init(s, V);
+
+ /* Note: cancellation occurs here, so we use more precision (XXX:
+ reduce the precision by computing the exact cancellation) */
+ bf_add_si(T, T, -1, BF_PREC_INF, BF_RNDN);
+
+ /* argument reduction 2 */
+ for(i = 0; i < K; i++) {
+ /* T = T / (1 + sqrt(1 + T)) */
+ bf_add_si(U, T, 1, prec1, BF_RNDN);
+ bf_sqrt(V, U, prec1, BF_RNDF);
+ bf_add_si(U, V, 1, prec1, BF_RNDN);
+ bf_div(T, T, U, prec1, BF_RNDN);
+ }
+
+ {
+ bf_t Y_s, *Y = &Y_s;
+ bf_t Y2_s, *Y2 = &Y2_s;
+ bf_init(s, Y);
+ bf_init(s, Y2);
+
+ /* compute ln(1+x) = ln((1+y)/(1-y)) with y=x/(2+x)
+ = y + y^3/3 + ... + y^(2*l + 1) / (2*l+1)
+ with Y=Y^2
+ = y*(1+Y/3+Y^2/5+...) = y*(1+Y*(1/3+Y*(1/5 + ...)))
+ */
+ bf_add_si(Y, T, 2, prec1, BF_RNDN);
+ bf_div(Y, T, Y, prec1, BF_RNDN);
+
+ bf_mul(Y2, Y, Y, prec1, BF_RNDN);
+ bf_set_ui(r, 0);
+ for(i = l; i >= 1; i--) {
+ bf_set_ui(U, 1);
+ bf_set_ui(V, 2 * i + 1);
+ bf_div(U, U, V, prec1, BF_RNDN);
+ bf_add(r, r, U, prec1, BF_RNDN);
+ bf_mul(r, r, Y2, prec1, BF_RNDN);
+ }
+ bf_add_si(r, r, 1, prec1, BF_RNDN);
+ bf_mul(r, r, Y, prec1, BF_RNDN);
+ bf_delete(Y);
+ bf_delete(Y2);
+ }
+ bf_delete(V);
+ bf_delete(U);
+
+ /* multiplication by 2 for the Taylor expansion and undo the
+ argument reduction 2*/
+ bf_mul_2exp(r, K + 1, BF_PREC_INF, BF_RNDZ);
+
+ /* undo the argument reduction 1 */
+ bf_const_log2(T, prec1, BF_RNDF);
+ bf_mul_si(T, T, n, prec1, BF_RNDN);
+ bf_add(r, r, T, prec1, BF_RNDN);
+
+ bf_delete(T);
+ return BF_ST_INEXACT;
+}
+
+int bf_log(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ bf_context_t *s = r->ctx;
+ bf_t T_s, *T = &T_s;
+
+ assert(r != a);
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ return 0;
+ } else if (a->expn == BF_EXP_INF) {
+ if (a->sign) {
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ bf_set_inf(r, 0);
+ return 0;
+ }
+ } else {
+ bf_set_inf(r, 1);
+ return 0;
+ }
+ }
+ if (a->sign) {
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ }
+ bf_init(s, T);
+ bf_set_ui(T, 1);
+ if (bf_cmp_eq(a, T)) {
+ bf_set_zero(r, 0);
+ bf_delete(T);
+ return 0;
+ }
+ bf_delete(T);
+
+ return bf_ziv_rounding(r, a, prec, flags, bf_log_internal, NULL);
+}
+
+/* x and y finite and x > 0 */
+/* XXX: overflow/underflow handling */
+static int bf_pow_generic(bf_t *r, const bf_t *x, limb_t prec, void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ const bf_t *y = opaque;
+ bf_t T_s, *T = &T_s;
+ limb_t prec1;
+
+ bf_init(s, T);
+ /* XXX: proof for the added precision */
+ prec1 = prec + 32;
+ bf_log(T, x, prec1, BF_RNDF);
+ bf_mul(T, T, y, prec1, BF_RNDF);
+ bf_exp(r, T, prec1, BF_RNDF);
+ bf_delete(T);
+ return BF_ST_INEXACT;
+}
+
+/* x and y finite, x > 0, y integer and y fits on one limb */
+/* XXX: overflow/underflow handling */
+static int bf_pow_int(bf_t *r, const bf_t *x, limb_t prec, void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ const bf_t *y = opaque;
+ bf_t T_s, *T = &T_s;
+ limb_t prec1;
+ int ret;
+ slimb_t y1;
+
+ bf_get_limb(&y1, y, 0);
+ if (y1 < 0)
+ y1 = -y1;
+ /* XXX: proof for the added precision */
+ prec1 = prec + ceil_log2(y1) * 2 + 8;
+ ret = bf_pow_ui(r, x, y1 < 0 ? -y1 : y1, prec1, BF_RNDN);
+ if (y->sign) {
+ bf_init(s, T);
+ bf_set_ui(T, 1);
+ ret |= bf_div(r, T, r, prec1, BF_RNDN);
+ bf_delete(T);
+ }
+ return ret;
+}
+
+/* x must be a finite non zero float. Return TRUE if there is a
+ floating point number r such as x=r^(2^n) and return this floating
+ point number 'r'. Otherwise return FALSE and r is undefined. */
+static BOOL check_exact_power2n(bf_t *r, const bf_t *x, slimb_t n)
+{
+ bf_context_t *s = r->ctx;
+ bf_t T_s, *T = &T_s;
+ slimb_t e, i, er;
+ limb_t v;
+
+ /* x = m*2^e with m odd integer */
+ e = bf_get_exp_min(x);
+ /* fast check on the exponent */
+ if (n > (LIMB_BITS - 1)) {
+ if (e != 0)
+ return FALSE;
+ er = 0;
+ } else {
+ if ((e & (((limb_t)1 << n) - 1)) != 0)
+ return FALSE;
+ er = e >> n;
+ }
+ /* every perfect odd square = 1 modulo 8 */
+ v = get_bits(x->tab, x->len, x->len * LIMB_BITS - x->expn + e);
+ if ((v & 7) != 1)
+ return FALSE;
+
+ bf_init(s, T);
+ bf_set(T, x);
+ T->expn -= e;
+ for(i = 0; i < n; i++) {
+ if (i != 0)
+ bf_set(T, r);
+ if (bf_sqrtrem(r, NULL, T) != 0)
+ return FALSE;
+ }
+ r->expn += er;
+ return TRUE;
+}
+
+/* prec = BF_PREC_INF is accepted for x and y integers and y >= 0 */
+int bf_pow(bf_t *r, const bf_t *x, const bf_t *y, limb_t prec, bf_flags_t flags)
+{
+ bf_context_t *s = r->ctx;
+ bf_t T_s, *T = &T_s;
+ bf_t ytmp_s;
+ BOOL y_is_int, y_is_odd;
+ int r_sign, ret, rnd_mode;
+ slimb_t y_emin;
+
+ if (x->len == 0 || y->len == 0) {
+ if (y->expn == BF_EXP_ZERO) {
+ /* pow(x, 0) = 1 */
+ bf_set_ui(r, 1);
+ } else if (x->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ } else {
+ int cmp_x_abs_1;
+ bf_set_ui(r, 1);
+ cmp_x_abs_1 = bf_cmpu(x, r);
+ if (cmp_x_abs_1 == 0 && (flags & BF_POW_JS_QUICKS) &&
+ (y->expn >= BF_EXP_INF)) {
+ bf_set_nan(r);
+ } else if (cmp_x_abs_1 == 0 &&
+ (!x->sign || y->expn != BF_EXP_NAN)) {
+ /* pow(1, y) = 1 even if y = NaN */
+ /* pow(-1, +/-inf) = 1 */
+ } else if (y->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ } else if (y->expn == BF_EXP_INF) {
+ if (y->sign == (cmp_x_abs_1 > 0)) {
+ bf_set_zero(r, 0);
+ } else {
+ bf_set_inf(r, 0);
+ }
+ } else {
+ y_emin = bf_get_exp_min(y);
+ y_is_odd = (y_emin == 0);
+ if (y->sign == (x->expn == BF_EXP_ZERO)) {
+ bf_set_inf(r, y_is_odd & x->sign);
+ if (y->sign) {
+ /* pow(0, y) with y < 0 */
+ return BF_ST_DIVIDE_ZERO;
+ }
+ } else {
+ bf_set_zero(r, y_is_odd & x->sign);
+ }
+ }
+ }
+ return 0;
+ }
+ bf_init(s, T);
+ bf_set(T, x);
+ y_emin = bf_get_exp_min(y);
+ y_is_int = (y_emin >= 0);
+ rnd_mode = flags & BF_RND_MASK;
+ if (x->sign) {
+ if (!y_is_int) {
+ bf_set_nan(r);
+ bf_delete(T);
+ return BF_ST_INVALID_OP;
+ }
+ y_is_odd = (y_emin == 0);
+ r_sign = y_is_odd;
+ /* change the directed rounding mode if the sign of the result
+ is changed */
+ if (r_sign && (rnd_mode == BF_RNDD || rnd_mode == BF_RNDU))
+ flags ^= 1;
+ bf_neg(T);
+ } else {
+ r_sign = 0;
+ }
+
+ bf_set_ui(r, 1);
+ if (bf_cmp_eq(T, r)) {
+ /* abs(x) = 1: nothing more to do */
+ ret = 0;
+ } else if (y_is_int) {
+ slimb_t T_bits, e;
+ int_pow:
+ T_bits = T->expn - bf_get_exp_min(T);
+ if (T_bits == 1) {
+ /* pow(2^b, y) = 2^(b*y) */
+ bf_mul_si(T, y, T->expn - 1, LIMB_BITS, BF_RNDZ);
+ bf_get_limb(&e, T, 0);
+ bf_set_ui(r, 1);
+ ret = bf_mul_2exp(r, e, prec, flags);
+ } else if (prec == BF_PREC_INF) {
+ slimb_t y1;
+ /* specific case for infinite precision (integer case) */
+ bf_get_limb(&y1, y, 0);
+ assert(!y->sign);
+ /* x must be an integer, so abs(x) >= 2 */
+ if (y1 >= ((slimb_t)1 << BF_EXP_BITS_MAX)) {
+ bf_delete(T);
+ return bf_set_overflow(r, 0, BF_PREC_INF, flags);
+ }
+ ret = bf_pow_ui(r, T, y1, BF_PREC_INF, BF_RNDZ);
+ } else {
+ if (y->expn <= 31) {
+ /* small enough power: use exponentiation in all cases */
+ } else if (y->sign) {
+ /* cannot be exact */
+ goto general_case;
+ } else {
+ if (rnd_mode == BF_RNDF)
+ goto general_case; /* no need to track exact results */
+ /* see if the result has a chance to be exact:
+ if x=a*2^b (a odd), x^y=a^y*2^(b*y)
+ x^y needs a precision of at least floor_log2(a)*y bits
+ */
+ bf_mul_si(r, y, T_bits - 1, LIMB_BITS, BF_RNDZ);
+ bf_get_limb(&e, r, 0);
+ if (prec < e)
+ goto general_case;
+ }
+ ret = bf_ziv_rounding(r, T, prec, flags, bf_pow_int, (void *)y);
+ }
+ } else {
+ if (rnd_mode != BF_RNDF) {
+ bf_t *y1;
+ if (y_emin < 0 && check_exact_power2n(r, T, -y_emin)) {
+ /* the problem is reduced to a power to an integer */
+#if 0
+ printf("\nn=%ld\n", -y_emin);
+ bf_print_str("T", T);
+ bf_print_str("r", r);
+#endif
+ bf_set(T, r);
+ y1 = &ytmp_s;
+ y1->tab = y->tab;
+ y1->len = y->len;
+ y1->sign = y->sign;
+ y1->expn = y->expn - y_emin;
+ y = y1;
+ goto int_pow;
+ }
+ }
+ general_case:
+ ret = bf_ziv_rounding(r, T, prec, flags, bf_pow_generic, (void *)y);
+ }
+ bf_delete(T);
+ r->sign = r_sign;
+ return ret;
+}
+
+/* compute sqrt(-2*x-x^2) to get |sin(x)| from cos(x) - 1. */
+static void bf_sqrt_sin(bf_t *r, const bf_t *x, limb_t prec1)
+{
+ bf_context_t *s = r->ctx;
+ bf_t T_s, *T = &T_s;
+ bf_init(s, T);
+ bf_set(T, x);
+ bf_mul(r, T, T, prec1, BF_RNDN);
+ bf_mul_2exp(T, 1, BF_PREC_INF, BF_RNDZ);
+ bf_add(T, T, r, prec1, BF_RNDN);
+ bf_neg(T);
+ bf_sqrt(r, T, prec1, BF_RNDF);
+ bf_delete(T);
+}
+
+int bf_sincos(bf_t *s, bf_t *c, const bf_t *a, limb_t prec)
+{
+ bf_context_t *s1 = a->ctx;
+ bf_t T_s, *T = &T_s;
+ bf_t U_s, *U = &U_s;
+ bf_t r_s, *r = &r_s;
+ slimb_t K, prec1, i, l, mod, prec2;
+ int is_neg;
+
+ assert(c != a && s != a);
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ if (c)
+ bf_set_nan(c);
+ if (s)
+ bf_set_nan(s);
+ return 0;
+ } else if (a->expn == BF_EXP_INF) {
+ if (c)
+ bf_set_nan(c);
+ if (s)
+ bf_set_nan(s);
+ return BF_ST_INVALID_OP;
+ } else {
+ if (c)
+ bf_set_ui(c, 1);
+ if (s)
+ bf_set_zero(s, a->sign);
+ return 0;
+ }
+ }
+
+ bf_init(s1, T);
+ bf_init(s1, U);
+ bf_init(s1, r);
+
+ /* XXX: precision analysis */
+ K = bf_isqrt(prec / 2);
+ l = prec / (2 * K) + 1;
+ prec1 = prec + 2 * K + l + 8;
+
+ /* after the modulo reduction, -pi/4 <= T <= pi/4 */
+ if (a->expn <= -1) {
+ /* abs(a) <= 0.25: no modulo reduction needed */
+ bf_set(T, a);
+ mod = 0;
+ } else {
+ slimb_t cancel;
+ cancel = 0;
+ for(;;) {
+ prec2 = prec1 + cancel;
+ bf_const_pi(U, prec2, BF_RNDF);
+ bf_mul_2exp(U, -1, BF_PREC_INF, BF_RNDZ);
+ bf_remquo(&mod, T, a, U, prec2, BF_RNDN);
+ // printf("T.expn=%ld prec2=%ld\n", T->expn, prec2);
+ if (mod == 0 || (T->expn != BF_EXP_ZERO &&
+ (T->expn + prec2) >= (prec1 - 1)))
+ break;
+ /* increase the number of bits until the precision is good enough */
+ cancel = bf_max(-T->expn, (cancel + 1) * 3 / 2);
+ }
+ mod &= 3;
+ }
+
+ is_neg = T->sign;
+
+ /* compute cosm1(x) = cos(x) - 1 */
+ bf_mul(T, T, T, prec1, BF_RNDN);
+ bf_mul_2exp(T, -2 * K, BF_PREC_INF, BF_RNDZ);
+
+ /* Taylor expansion:
+ -x^2/2 + x^4/4! - x^6/6! + ...
+ */
+ bf_set_ui(r, 1);
+ for(i = l ; i >= 1; i--) {
+ bf_set_ui(U, 2 * i - 1);
+ bf_mul_ui(U, U, 2 * i, BF_PREC_INF, BF_RNDZ);
+ bf_div(U, T, U, prec1, BF_RNDN);
+ bf_mul(r, r, U, prec1, BF_RNDN);
+ bf_neg(r);
+ if (i != 1)
+ bf_add_si(r, r, 1, prec1, BF_RNDN);
+ }
+ bf_delete(U);
+
+ /* undo argument reduction:
+ cosm1(2*x)= 2*(2*cosm1(x)+cosm1(x)^2)
+ */
+ for(i = 0; i < K; i++) {
+ bf_mul(T, r, r, prec1, BF_RNDN);
+ bf_mul_2exp(r, 1, BF_PREC_INF, BF_RNDZ);
+ bf_add(r, r, T, prec1, BF_RNDN);
+ bf_mul_2exp(r, 1, BF_PREC_INF, BF_RNDZ);
+ }
+ bf_delete(T);
+
+ if (c) {
+ if ((mod & 1) == 0) {
+ bf_add_si(c, r, 1, prec1, BF_RNDN);
+ } else {
+ bf_sqrt_sin(c, r, prec1);
+ c->sign = is_neg ^ 1;
+ }
+ c->sign ^= mod >> 1;
+ }
+ if (s) {
+ if ((mod & 1) == 0) {
+ bf_sqrt_sin(s, r, prec1);
+ s->sign = is_neg;
+ } else {
+ bf_add_si(s, r, 1, prec1, BF_RNDN);
+ }
+ s->sign ^= mod >> 1;
+ }
+ bf_delete(r);
+ return BF_ST_INEXACT;
+}
+
+static int bf_cos_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
+{
+ return bf_sincos(NULL, r, a, prec);
+}
+
+int bf_cos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ return bf_ziv_rounding(r, a, prec, flags, bf_cos_internal, NULL);
+}
+
+static int bf_sin_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
+{
+ return bf_sincos(r, NULL, a, prec);
+}
+
+int bf_sin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ return bf_ziv_rounding(r, a, prec, flags, bf_sin_internal, NULL);
+}
+
+static int bf_tan_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ bf_t T_s, *T = &T_s;
+ limb_t prec1;
+
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ return 0;
+ } else if (a->expn == BF_EXP_INF) {
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ bf_set_zero(r, a->sign);
+ return 0;
+ }
+ }
+
+ /* XXX: precision analysis */
+ prec1 = prec + 8;
+ bf_init(s, T);
+ bf_sincos(r, T, a, prec1);
+ bf_div(r, r, T, prec1, BF_RNDF);
+ bf_delete(T);
+ return BF_ST_INEXACT;
+}
+
+int bf_tan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ return bf_ziv_rounding(r, a, prec, flags, bf_tan_internal, NULL);
+}
+
+/* if add_pi2 is true, add pi/2 to the result (used for acos(x) to
+ avoid cancellation) */
+static int bf_atan_internal(bf_t *r, const bf_t *a, limb_t prec,
+ void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ BOOL add_pi2 = (BOOL)(intptr_t)opaque;
+ bf_t T_s, *T = &T_s;
+ bf_t U_s, *U = &U_s;
+ bf_t V_s, *V = &V_s;
+ bf_t X2_s, *X2 = &X2_s;
+ int cmp_1;
+ slimb_t prec1, i, K, l;
+
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ return 0;
+ } else {
+ if (a->expn == BF_EXP_INF)
+ i = 1 - 2 * a->sign;
+ else
+ i = 0;
+ i += add_pi2;
+ /* return i*(pi/2) with -1 <= i <= 2 */
+ if (i == 0) {
+ bf_set_zero(r, add_pi2 ? 0 : a->sign);
+ return 0;
+ } else {
+ /* PI or PI/2 */
+ bf_const_pi(r, prec, BF_RNDF);
+ if (i != 2)
+ bf_mul_2exp(r, -1, BF_PREC_INF, BF_RNDZ);
+ r->sign = (i < 0);
+ return BF_ST_INEXACT;
+ }
+ }
+ }
+
+ bf_init(s, T);
+ bf_set_ui(T, 1);
+ cmp_1 = bf_cmpu(a, T);
+ if (cmp_1 == 0 && !add_pi2) {
+ /* short cut: abs(a) == 1 -> +/-pi/4 */
+ bf_const_pi(r, prec, BF_RNDF);
+ bf_mul_2exp(r, -2, BF_PREC_INF, BF_RNDZ);
+ r->sign = a->sign;
+ bf_delete(T);
+ return BF_ST_INEXACT;
+ }
+
+ /* XXX: precision analysis */
+ K = bf_isqrt((prec + 1) / 2);
+ l = prec / (2 * K) + 1;
+ prec1 = prec + K + 2 * l + 32;
+ // printf("prec=%ld K=%ld l=%ld prec1=%ld\n", prec, K, l, prec1);
+
+ if (cmp_1 > 0) {
+ bf_set_ui(T, 1);
+ bf_div(T, T, a, prec1, BF_RNDN);
+ } else {
+ bf_set(T, a);
+ }
+
+ /* abs(T) <= 1 */
+
+ /* argument reduction */
+
+ bf_init(s, U);
+ bf_init(s, V);
+ bf_init(s, X2);
+ for(i = 0; i < K; i++) {
+ /* T = T / (1 + sqrt(1 + T^2)) */
+ bf_mul(U, T, T, prec1, BF_RNDN);
+ bf_add_si(U, U, 1, prec1, BF_RNDN);
+ bf_sqrt(V, U, prec1, BF_RNDN);
+ bf_add_si(V, V, 1, prec1, BF_RNDN);
+ bf_div(T, T, V, prec1, BF_RNDN);
+ }
+
+ /* Taylor series:
+ x - x^3/3 + ... + (-1)^ l * y^(2*l + 1) / (2*l+1)
+ */
+ bf_mul(X2, T, T, prec1, BF_RNDN);
+ bf_set_ui(r, 0);
+ for(i = l; i >= 1; i--) {
+ bf_set_si(U, 1);
+ bf_set_ui(V, 2 * i + 1);
+ bf_div(U, U, V, prec1, BF_RNDN);
+ bf_neg(r);
+ bf_add(r, r, U, prec1, BF_RNDN);
+ bf_mul(r, r, X2, prec1, BF_RNDN);
+ }
+ bf_neg(r);
+ bf_add_si(r, r, 1, prec1, BF_RNDN);
+ bf_mul(r, r, T, prec1, BF_RNDN);
+
+ /* undo the argument reduction */
+ bf_mul_2exp(r, K, BF_PREC_INF, BF_RNDZ);
+
+ bf_delete(U);
+ bf_delete(V);
+ bf_delete(X2);
+
+ i = add_pi2;
+ if (cmp_1 > 0) {
+ /* undo the inversion : r = sign(a)*PI/2 - r */
+ bf_neg(r);
+ i += 1 - 2 * a->sign;
+ }
+ /* add i*(pi/2) with -1 <= i <= 2 */
+ if (i != 0) {
+ bf_const_pi(T, prec1, BF_RNDF);
+ if (i != 2)
+ bf_mul_2exp(T, -1, BF_PREC_INF, BF_RNDZ);
+ T->sign = (i < 0);
+ bf_add(r, T, r, prec1, BF_RNDN);
+ }
+
+ bf_delete(T);
+ return BF_ST_INEXACT;
+}
+
+int bf_atan(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ return bf_ziv_rounding(r, a, prec, flags, bf_atan_internal, (void *)FALSE);
+}
+
+static int bf_atan2_internal(bf_t *r, const bf_t *y, limb_t prec, void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ const bf_t *x = opaque;
+ bf_t T_s, *T = &T_s;
+ limb_t prec1;
+ int ret;
+
+ if (y->expn == BF_EXP_NAN || x->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ return 0;
+ }
+
+ /* compute atan(y/x) assumming inf/inf = 1 and 0/0 = 0 */
+ bf_init(s, T);
+ prec1 = prec + 32;
+ if (y->expn == BF_EXP_INF && x->expn == BF_EXP_INF) {
+ bf_set_ui(T, 1);
+ T->sign = y->sign ^ x->sign;
+ } else if (y->expn == BF_EXP_ZERO && x->expn == BF_EXP_ZERO) {
+ bf_set_zero(T, y->sign ^ x->sign);
+ } else {
+ bf_div(T, y, x, prec1, BF_RNDF);
+ }
+ ret = bf_atan(r, T, prec1, BF_RNDF);
+
+ if (x->sign) {
+ /* if x < 0 (it includes -0), return sign(y)*pi + atan(y/x) */
+ bf_const_pi(T, prec1, BF_RNDF);
+ T->sign = y->sign;
+ bf_add(r, r, T, prec1, BF_RNDN);
+ ret |= BF_ST_INEXACT;
+ }
+
+ bf_delete(T);
+ return ret;
+}
+
+int bf_atan2(bf_t *r, const bf_t *y, const bf_t *x,
+ limb_t prec, bf_flags_t flags)
+{
+ return bf_ziv_rounding(r, y, prec, flags, bf_atan2_internal, (void *)x);
+}
+
+static int bf_asin_internal(bf_t *r, const bf_t *a, limb_t prec, void *opaque)
+{
+ bf_context_t *s = r->ctx;
+ BOOL is_acos = (BOOL)(intptr_t)opaque;
+ bf_t T_s, *T = &T_s;
+ limb_t prec1, prec2;
+ int res;
+
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bf_set_nan(r);
+ return 0;
+ } else if (a->expn == BF_EXP_INF) {
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ if (is_acos) {
+ bf_const_pi(r, prec, BF_RNDF);
+ bf_mul_2exp(r, -1, BF_PREC_INF, BF_RNDZ);
+ return BF_ST_INEXACT;
+ } else {
+ bf_set_zero(r, a->sign);
+ return 0;
+ }
+ }
+ }
+ bf_init(s, T);
+ bf_set_ui(T, 1);
+ res = bf_cmpu(a, T);
+ if (res > 0) {
+ bf_delete(T);
+ bf_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else if (res == 0 && a->sign == 0 && is_acos) {
+ bf_set_zero(r, 0);
+ bf_delete(T);
+ return 0;
+ }
+
+ /* asin(x) = atan(x/sqrt(1-x^2))
+ acos(x) = pi/2 - asin(x) */
+ prec1 = prec + 8;
+ /* increase the precision in x^2 to compensate the cancellation in
+ (1-x^2) if x is close to 1 */
+ /* XXX: use less precision when possible */
+ if (a->expn >= 0)
+ prec2 = BF_PREC_INF;
+ else
+ prec2 = prec1;
+ bf_mul(T, a, a, prec2, BF_RNDN);
+ bf_neg(T);
+ bf_add_si(T, T, 1, prec2, BF_RNDN);
+
+ bf_sqrt(r, T, prec1, BF_RNDN);
+ bf_div(T, a, r, prec1, BF_RNDN);
+ if (is_acos)
+ bf_neg(T);
+ bf_atan_internal(r, T, prec1, (void *)(intptr_t)is_acos);
+ bf_delete(T);
+ return BF_ST_INEXACT;
+}
+
+int bf_asin(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ return bf_ziv_rounding(r, a, prec, flags, bf_asin_internal, (void *)FALSE);
+}
+
+int bf_acos(bf_t *r, const bf_t *a, limb_t prec, bf_flags_t flags)
+{
+ return bf_ziv_rounding(r, a, prec, flags, bf_asin_internal, (void *)TRUE);
+}
+
+/***************************************************************/
+/* decimal floating point numbers */
+
+#ifdef USE_BF_DEC
+
+#define adddq(r1, r0, a1, a0) \
+ do { \
+ limb_t __t = r0; \
+ r0 += (a0); \
+ r1 += (a1) + (r0 < __t); \
+ } while (0)
+
+#define subdq(r1, r0, a1, a0) \
+ do { \
+ limb_t __t = r0; \
+ r0 -= (a0); \
+ r1 -= (a1) + (r0 > __t); \
+ } while (0)
+
+#if LIMB_BITS == 64
+
+/* Note: we assume __int128 is available */
+#define muldq(r1, r0, a, b) \
+ do { \
+ unsigned __int128 __t; \
+ __t = (unsigned __int128)(a) * (unsigned __int128)(b); \
+ r0 = __t; \
+ r1 = __t >> 64; \
+ } while (0)
+
+#define divdq(q, r, a1, a0, b) \
+ do { \
+ unsigned __int128 __t; \
+ limb_t __b = (b); \
+ __t = ((unsigned __int128)(a1) << 64) | (a0); \
+ q = __t / __b; \
+ r = __t % __b; \
+ } while (0)
+
+#else
+
+#define muldq(r1, r0, a, b) \
+ do { \
+ uint64_t __t; \
+ __t = (uint64_t)(a) * (uint64_t)(b); \
+ r0 = __t; \
+ r1 = __t >> 32; \
+ } while (0)
+
+#define divdq(q, r, a1, a0, b) \
+ do { \
+ uint64_t __t; \
+ limb_t __b = (b); \
+ __t = ((uint64_t)(a1) << 32) | (a0); \
+ q = __t / __b; \
+ r = __t % __b; \
+ } while (0)
+
+#endif /* LIMB_BITS != 64 */
+
+static inline limb_t shrd(limb_t low, limb_t high, long shift)
+{
+ if (shift != 0)
+ low = (low >> shift) | (high << (LIMB_BITS - shift));
+ return low;
+}
+
+static inline limb_t shld(limb_t a1, limb_t a0, long shift)
+{
+ if (shift != 0)
+ return (a1 << shift) | (a0 >> (LIMB_BITS - shift));
+ else
+ return a1;
+}
+
+#if LIMB_DIGITS == 19
+
+/* WARNING: hardcoded for b = 1e19. It is assumed that:
+ 0 <= a1 < 2^63 */
+#define divdq_base(q, r, a1, a0)\
+do {\
+ uint64_t __a0, __a1, __t0, __t1, __b = BF_DEC_BASE; \
+ __a0 = a0;\
+ __a1 = a1;\
+ __t0 = __a1;\
+ __t0 = shld(__t0, __a0, 1);\
+ muldq(q, __t1, __t0, UINT64_C(17014118346046923173)); \
+ muldq(__t1, __t0, q, __b);\
+ subdq(__a1, __a0, __t1, __t0);\
+ subdq(__a1, __a0, 1, __b * 2); \
+ __t0 = (slimb_t)__a1 >> 1; \
+ q += 2 + __t0;\
+ adddq(__a1, __a0, 0, __b & __t0);\
+ q += __a1; \
+ __a0 += __b & __a1; \
+ r = __a0;\
+} while(0)
+
+#elif LIMB_DIGITS == 9
+
+/* WARNING: hardcoded for b = 1e9. It is assumed that:
+ 0 <= a1 < 2^29 */
+#define divdq_base(q, r, a1, a0)\
+do {\
+ uint32_t __t0, __t1, __b = BF_DEC_BASE; \
+ __t0 = a1;\
+ __t1 = a0;\
+ __t0 = (__t0 << 3) | (__t1 >> (32 - 3)); \
+ muldq(q, __t1, __t0, 2305843009U);\
+ r = a0 - q * __b;\
+ __t1 = (r >= __b);\
+ q += __t1;\
+ if (__t1)\
+ r -= __b;\
+} while(0)
+
+#endif
+
+/* fast integer division by a fixed constant */
+
+typedef struct FastDivData {
+ limb_t d; /* divisor (only user visible field) */
+ limb_t m1; /* multiplier */
+ int shift1;
+ int shift2;
+} FastDivData;
+
+#if 1
+/* From "Division by Invariant Integers using Multiplication" by
+ Torborn Granlund and Peter L. Montgomery */
+/* d must be != 0 */
+static inline void fast_udiv_init(FastDivData *s, limb_t d)
+{
+ int l;
+ limb_t q, r, m1;
+ s->d = d;
+ if (d == 1)
+ l = 0;
+ else
+ l = 64 - clz64(d - 1);
+ divdq(q, r, ((limb_t)1 << l) - d, 0, d);
+ (void)r;
+ m1 = q + 1;
+ // printf("d=%lu l=%d m1=0x%016lx\n", d, l, m1);
+ s->m1 = m1;
+ s->shift1 = l;
+ if (s->shift1 > 1)
+ s->shift1 = 1;
+ s->shift2 = l - 1;
+ if (s->shift2 < 0)
+ s->shift2 = 0;
+}
+
+static inline limb_t fast_udiv(limb_t a, const FastDivData *s)
+{
+ limb_t t0, t1;
+ muldq(t1, t0, s->m1, a);
+ t0 = (a - t1) >> s->shift1;
+ return (t1 + t0) >> s->shift2;
+}
+
+static inline limb_t fast_urem(limb_t a, const FastDivData *s)
+{
+ limb_t q;
+ q = fast_udiv(a, s);
+ return a - q * s->d;
+}
+
+#define fast_udivrem(q, r, a, s) q = fast_udiv(a, s), r = a - q * (s)->d
+
+#else
+
+static inline void fast_udiv_init(FastDivData *s, limb_t d)
+{
+ s->d = d;
+}
+static inline limb_t fast_udiv(limb_t a, const FastDivData *s)
+{
+ return a / s->d;
+}
+static inline limb_t fast_urem(limb_t a, const FastDivData *s)
+{
+ return a % s->d;
+}
+
+#define fast_udivrem(q, r, a, s) q = a / (s)->d, r = a % (s)->d
+
+#endif
+
+/* contains 10^i */
+/* XXX: make it const */
+limb_t mp_pow_dec[LIMB_DIGITS + 1];
+static FastDivData mp_pow_div[LIMB_DIGITS + 1];
+
+static void mp_pow_init(void)
+{
+ limb_t a;
+ int i;
+
+ a = 1;
+ for(i = 0; i <= LIMB_DIGITS; i++) {
+ mp_pow_dec[i] = a;
+ fast_udiv_init(&mp_pow_div[i], a);
+ a = a * 10;
+ }
+}
+
+limb_t mp_add_dec(limb_t *res, const limb_t *op1, const limb_t *op2,
+ mp_size_t n, limb_t carry)
+{
+ limb_t base = BF_DEC_BASE;
+ mp_size_t i;
+ limb_t k, a, v;
+
+ k=carry;
+ for(i=0;i<n;i++) {
+ /* XXX: reuse the trick in add_mod */
+ v = op1[i];
+ a = v + op2[i] + k - base;
+ k = a <= v;
+ if (!k)
+ a += base;
+ res[i]=a;
+ }
+ return k;
+}
+
+limb_t mp_add_ui_dec(limb_t *tab, limb_t b, mp_size_t n)
+{
+ limb_t base = BF_DEC_BASE;
+ mp_size_t i;
+ limb_t k, a, v;
+
+ k=b;
+ for(i=0;i<n;i++) {
+ v = tab[i];
+ a = v + k - base;
+ k = a <= v;
+ if (!k)
+ a += base;
+ tab[i] = a;
+ if (k == 0)
+ break;
+ }
+ return k;
+}
+
+limb_t mp_sub_dec(limb_t *res, const limb_t *op1, const limb_t *op2,
+ mp_size_t n, limb_t carry)
+{
+ limb_t base = BF_DEC_BASE;
+ mp_size_t i;
+ limb_t k, v, a;
+
+ k=carry;
+ for(i=0;i<n;i++) {
+ v = op1[i];
+ a = v - op2[i] - k;
+ k = a > v;
+ if (k)
+ a += base;
+ res[i] = a;
+ }
+ return k;
+}
+
+limb_t mp_sub_ui_dec(limb_t *tab, limb_t b, mp_size_t n)
+{
+ limb_t base = BF_DEC_BASE;
+ mp_size_t i;
+ limb_t k, v, a;
+
+ k=b;
+ for(i=0;i<n;i++) {
+ v = tab[i];
+ a = v - k;
+ k = a > v;
+ if (k)
+ a += base;
+ tab[i]=a;
+ if (k == 0)
+ break;
+ }
+ return k;
+}
+
+/* taba[] = taba[] * b + l. 0 <= b, l <= base - 1. Return the high carry */
+limb_t mp_mul1_dec(limb_t *tabr, const limb_t *taba, mp_size_t n,
+ limb_t b, limb_t l)
+{
+ mp_size_t i;
+ limb_t t0, t1, r;
+
+ for(i = 0; i < n; i++) {
+ muldq(t1, t0, taba[i], b);
+ adddq(t1, t0, 0, l);
+ divdq_base(l, r, t1, t0);
+ tabr[i] = r;
+ }
+ return l;
+}
+
+/* tabr[] += taba[] * b. 0 <= b <= base - 1. Return the value to add
+ to the high word */
+limb_t mp_add_mul1_dec(limb_t *tabr, const limb_t *taba, mp_size_t n,
+ limb_t b)
+{
+ mp_size_t i;
+ limb_t l, t0, t1, r;
+
+ l = 0;
+ for(i = 0; i < n; i++) {
+ muldq(t1, t0, taba[i], b);
+ adddq(t1, t0, 0, l);
+ adddq(t1, t0, 0, tabr[i]);
+ divdq_base(l, r, t1, t0);
+ tabr[i] = r;
+ }
+ return l;
+}
+
+/* tabr[] -= taba[] * b. 0 <= b <= base - 1. Return the value to
+ substract to the high word. */
+limb_t mp_sub_mul1_dec(limb_t *tabr, const limb_t *taba, mp_size_t n,
+ limb_t b)
+{
+ limb_t base = BF_DEC_BASE;
+ mp_size_t i;
+ limb_t l, t0, t1, r, a, v, c;
+
+ /* XXX: optimize */
+ l = 0;
+ for(i = 0; i < n; i++) {
+ muldq(t1, t0, taba[i], b);
+ adddq(t1, t0, 0, l);
+ divdq_base(l, r, t1, t0);
+ v = tabr[i];
+ a = v - r;
+ c = a > v;
+ if (c)
+ a += base;
+ /* never bigger than base because r = 0 when l = base - 1 */
+ l += c;
+ tabr[i] = a;
+ }
+ return l;
+}
+
+/* size of the result : op1_size + op2_size. */
+void mp_mul_basecase_dec(limb_t *result,
+ const limb_t *op1, mp_size_t op1_size,
+ const limb_t *op2, mp_size_t op2_size)
+{
+ mp_size_t i;
+ limb_t r;
+
+ result[op1_size] = mp_mul1_dec(result, op1, op1_size, op2[0], 0);
+
+ for(i=1;i<op2_size;i++) {
+ r = mp_add_mul1_dec(result + i, op1, op1_size, op2[i]);
+ result[i + op1_size] = r;
+ }
+}
+
+/* taba[] = (taba[] + r*base^na) / b. 0 <= b < base. 0 <= r <
+ b. Return the remainder. */
+limb_t mp_div1_dec(limb_t *tabr, const limb_t *taba, mp_size_t na,
+ limb_t b, limb_t r)
+{
+ limb_t base = BF_DEC_BASE;
+ mp_size_t i;
+ limb_t t0, t1, q;
+ int shift;
+
+#if (BF_DEC_BASE % 2) == 0
+ if (b == 2) {
+ limb_t base_div2;
+ /* Note: only works if base is even */
+ base_div2 = base >> 1;
+ if (r)
+ r = base_div2;
+ for(i = na - 1; i >= 0; i--) {
+ t0 = taba[i];
+ tabr[i] = (t0 >> 1) + r;
+ r = 0;
+ if (t0 & 1)
+ r = base_div2;
+ }
+ if (r)
+ r = 1;
+ } else
+#endif
+ if (na >= UDIV1NORM_THRESHOLD) {
+ shift = clz(b);
+ if (shift == 0) {
+ /* normalized case: b >= 2^(LIMB_BITS-1) */
+ limb_t b_inv;
+ b_inv = udiv1norm_init(b);
+ for(i = na - 1; i >= 0; i--) {
+ muldq(t1, t0, r, base);
+ adddq(t1, t0, 0, taba[i]);
+ q = udiv1norm(&r, t1, t0, b, b_inv);
+ tabr[i] = q;
+ }
+ } else {
+ limb_t b_inv;
+ b <<= shift;
+ b_inv = udiv1norm_init(b);
+ for(i = na - 1; i >= 0; i--) {
+ muldq(t1, t0, r, base);
+ adddq(t1, t0, 0, taba[i]);
+ t1 = (t1 << shift) | (t0 >> (LIMB_BITS - shift));
+ t0 <<= shift;
+ q = udiv1norm(&r, t1, t0, b, b_inv);
+ r >>= shift;
+ tabr[i] = q;
+ }
+ }
+ } else {
+ for(i = na - 1; i >= 0; i--) {
+ muldq(t1, t0, r, base);
+ adddq(t1, t0, 0, taba[i]);
+ divdq(q, r, t1, t0, b);
+ tabr[i] = q;
+ }
+ }
+ return r;
+}
+
+static __maybe_unused void mp_print_str_dec(const char *str,
+ const limb_t *tab, slimb_t n)
+{
+ slimb_t i;
+ printf("%s=", str);
+ for(i = n - 1; i >= 0; i--) {
+ if (i != n - 1)
+ printf("_");
+ printf("%0*" PRIu_LIMB, LIMB_DIGITS, tab[i]);
+ }
+ printf("\n");
+}
+
+static __maybe_unused void mp_print_str_h_dec(const char *str,
+ const limb_t *tab, slimb_t n,
+ limb_t high)
+{
+ slimb_t i;
+ printf("%s=", str);
+ printf("%0*" PRIu_LIMB, LIMB_DIGITS, high);
+ for(i = n - 1; i >= 0; i--) {
+ printf("_");
+ printf("%0*" PRIu_LIMB, LIMB_DIGITS, tab[i]);
+ }
+ printf("\n");
+}
+
+//#define DEBUG_DIV_SLOW
+
+#define DIV_STATIC_ALLOC_LEN 16
+
+/* return q = a / b and r = a % b.
+
+ taba[na] must be allocated if tabb1[nb - 1] < B / 2. tabb1[nb - 1]
+ must be != zero. na must be >= nb. 's' can be NULL if tabb1[nb - 1]
+ >= B / 2.
+
+ The remainder is is returned in taba and contains nb libms. tabq
+ contains na - nb + 1 limbs. No overlap is permitted.
+
+ Running time of the standard method: (na - nb + 1) * nb
+ Return 0 if OK, -1 if memory alloc error
+*/
+/* XXX: optimize */
+static int mp_div_dec(bf_context_t *s, limb_t *tabq,
+ limb_t *taba, mp_size_t na,
+ const limb_t *tabb1, mp_size_t nb)
+{
+ limb_t base = BF_DEC_BASE;
+ limb_t r, mult, t0, t1, a, c, q, v, *tabb;
+ mp_size_t i, j;
+ limb_t static_tabb[DIV_STATIC_ALLOC_LEN];
+
+#ifdef DEBUG_DIV_SLOW
+ mp_print_str_dec("a", taba, na);
+ mp_print_str_dec("b", tabb1, nb);
+#endif
+
+ /* normalize tabb */
+ r = tabb1[nb - 1];
+ assert(r != 0);
+ i = na - nb;
+ if (r >= BF_DEC_BASE / 2) {
+ mult = 1;
+ tabb = (limb_t *)tabb1;
+ q = 1;
+ for(j = nb - 1; j >= 0; j--) {
+ if (taba[i + j] != tabb[j]) {
+ if (taba[i + j] < tabb[j])
+ q = 0;
+ break;
+ }
+ }
+ tabq[i] = q;
+ if (q) {
+ mp_sub_dec(taba + i, taba + i, tabb, nb, 0);
+ }
+ i--;
+ } else {
+ mult = base / (r + 1);
+ if (likely(nb <= DIV_STATIC_ALLOC_LEN)) {
+ tabb = static_tabb;
+ } else {
+ tabb = bf_malloc(s, sizeof(limb_t) * nb);
+ if (!tabb)
+ return -1;
+ }
+ mp_mul1_dec(tabb, tabb1, nb, mult, 0);
+ taba[na] = mp_mul1_dec(taba, taba, na, mult, 0);
+ }
+
+#ifdef DEBUG_DIV_SLOW
+ printf("mult=" FMT_LIMB "\n", mult);
+ mp_print_str_dec("a_norm", taba, na + 1);
+ mp_print_str_dec("b_norm", tabb, nb);
+#endif
+
+ for(; i >= 0; i--) {
+ if (unlikely(taba[i + nb] >= tabb[nb - 1])) {
+ /* XXX: check if it is really possible */
+ q = base - 1;
+ } else {
+ muldq(t1, t0, taba[i + nb], base);
+ adddq(t1, t0, 0, taba[i + nb - 1]);
+ divdq(q, r, t1, t0, tabb[nb - 1]);
+ }
+ // printf("i=%d q1=%ld\n", i, q);
+
+ r = mp_sub_mul1_dec(taba + i, tabb, nb, q);
+ // mp_dump("r1", taba + i, nb, bd);
+ // printf("r2=%ld\n", r);
+
+ v = taba[i + nb];
+ a = v - r;
+ c = a > v;
+ if (c)
+ a += base;
+ taba[i + nb] = a;
+
+ if (c != 0) {
+ /* negative result */
+ for(;;) {
+ q--;
+ c = mp_add_dec(taba + i, taba + i, tabb, nb, 0);
+ /* propagate carry and test if positive result */
+ if (c != 0) {
+ if (++taba[i + nb] == base) {
+ break;
+ }
+ }
+ }
+ }
+ tabq[i] = q;
+ }
+
+#ifdef DEBUG_DIV_SLOW
+ mp_print_str_dec("q", tabq, na - nb + 1);
+ mp_print_str_dec("r", taba, nb);
+#endif
+
+ /* remove the normalization */
+ if (mult != 1) {
+ mp_div1_dec(taba, taba, nb, mult, 0);
+ if (unlikely(tabb != static_tabb))
+ bf_free(s, tabb);
+ }
+ return 0;
+}
+
+/* divide by 10^shift */
+static limb_t mp_shr_dec(limb_t *tab_r, const limb_t *tab, mp_size_t n,
+ limb_t shift, limb_t high)
+{
+ mp_size_t i;
+ limb_t l, a, q, r;
+
+ assert(shift >= 1 && shift < LIMB_DIGITS);
+ l = high;
+ for(i = n - 1; i >= 0; i--) {
+ a = tab[i];
+ fast_udivrem(q, r, a, &mp_pow_div[shift]);
+ tab_r[i] = q + l * mp_pow_dec[LIMB_DIGITS - shift];
+ l = r;
+ }
+ return l;
+}
+
+/* multiply by 10^shift */
+static limb_t mp_shl_dec(limb_t *tab_r, const limb_t *tab, mp_size_t n,
+ limb_t shift, limb_t low)
+{
+ mp_size_t i;
+ limb_t l, a, q, r;
+
+ assert(shift >= 1 && shift < LIMB_DIGITS);
+ l = low;
+ for(i = 0; i < n; i++) {
+ a = tab[i];
+ fast_udivrem(q, r, a, &mp_pow_div[LIMB_DIGITS - shift]);
+ tab_r[i] = r * mp_pow_dec[shift] + l;
+ l = q;
+ }
+ return l;
+}
+
+static limb_t mp_sqrtrem2_dec(limb_t *tabs, limb_t *taba)
+{
+ int k;
+ dlimb_t a, b, r;
+ limb_t taba1[2], s, r0, r1;
+
+ /* convert to binary and normalize */
+ a = (dlimb_t)taba[1] * BF_DEC_BASE + taba[0];
+ k = clz(a >> LIMB_BITS) & ~1;
+ b = a << k;
+ taba1[0] = b;
+ taba1[1] = b >> LIMB_BITS;
+ mp_sqrtrem2(&s, taba1);
+ s >>= (k >> 1);
+ /* convert the remainder back to decimal */
+ r = a - (dlimb_t)s * (dlimb_t)s;
+ divdq_base(r1, r0, r >> LIMB_BITS, r);
+ taba[0] = r0;
+ tabs[0] = s;
+ return r1;
+}
+
+//#define DEBUG_SQRTREM_DEC
+
+/* tmp_buf must contain (n / 2 + 1 limbs) */
+static limb_t mp_sqrtrem_rec_dec(limb_t *tabs, limb_t *taba, limb_t n,
+ limb_t *tmp_buf)
+{
+ limb_t l, h, rh, ql, qh, c, i;
+
+ if (n == 1)
+ return mp_sqrtrem2_dec(tabs, taba);
+#ifdef DEBUG_SQRTREM_DEC
+ mp_print_str_dec("a", taba, 2 * n);
+#endif
+ l = n / 2;
+ h = n - l;
+ qh = mp_sqrtrem_rec_dec(tabs + l, taba + 2 * l, h, tmp_buf);
+#ifdef DEBUG_SQRTREM_DEC
+ mp_print_str_dec("s1", tabs + l, h);
+ mp_print_str_h_dec("r1", taba + 2 * l, h, qh);
+ mp_print_str_h_dec("r2", taba + l, n, qh);
+#endif
+
+ /* the remainder is in taba + 2 * l. Its high bit is in qh */
+ if (qh) {
+ mp_sub_dec(taba + 2 * l, taba + 2 * l, tabs + l, h, 0);
+ }
+ /* instead of dividing by 2*s, divide by s (which is normalized)
+ and update q and r */
+ mp_div_dec(NULL, tmp_buf, taba + l, n, tabs + l, h);
+ qh += tmp_buf[l];
+ for(i = 0; i < l; i++)
+ tabs[i] = tmp_buf[i];
+ ql = mp_div1_dec(tabs, tabs, l, 2, qh & 1);
+ qh = qh >> 1; /* 0 or 1 */
+ if (ql)
+ rh = mp_add_dec(taba + l, taba + l, tabs + l, h, 0);
+ else
+ rh = 0;
+#ifdef DEBUG_SQRTREM_DEC
+ mp_print_str_h_dec("q", tabs, l, qh);
+ mp_print_str_h_dec("u", taba + l, h, rh);
+#endif
+
+ mp_add_ui_dec(tabs + l, qh, h);
+#ifdef DEBUG_SQRTREM_DEC
+ mp_print_str_dec("s2", tabs, n);
+#endif
+
+ /* q = qh, tabs[l - 1 ... 0], r = taba[n - 1 ... l] */
+ /* subtract q^2. if qh = 1 then q = B^l, so we can take shortcuts */
+ if (qh) {
+ c = qh;
+ } else {
+ mp_mul_basecase_dec(taba + n, tabs, l, tabs, l);
+ c = mp_sub_dec(taba, taba, taba + n, 2 * l, 0);
+ }
+ rh -= mp_sub_ui_dec(taba + 2 * l, c, n - 2 * l);
+ if ((slimb_t)rh < 0) {
+ mp_sub_ui_dec(tabs, 1, n);
+ rh += mp_add_mul1_dec(taba, tabs, n, 2);
+ rh += mp_add_ui_dec(taba, 1, n);
+ }
+ return rh;
+}
+
+/* 'taba' has 2*n limbs with n >= 1 and taba[2*n-1] >= B/4. Return (s,
+ r) with s=floor(sqrt(a)) and r=a-s^2. 0 <= r <= 2 * s. tabs has n
+ limbs. r is returned in the lower n limbs of taba. Its r[n] is the
+ returned value of the function. */
+int mp_sqrtrem_dec(bf_context_t *s, limb_t *tabs, limb_t *taba, limb_t n)
+{
+ limb_t tmp_buf1[8];
+ limb_t *tmp_buf;
+ mp_size_t n2;
+ n2 = n / 2 + 1;
+ if (n2 <= countof(tmp_buf1)) {
+ tmp_buf = tmp_buf1;
+ } else {
+ tmp_buf = bf_malloc(s, sizeof(limb_t) * n2);
+ if (!tmp_buf)
+ return -1;
+ }
+ taba[n] = mp_sqrtrem_rec_dec(tabs, taba, n, tmp_buf);
+ if (tmp_buf != tmp_buf1)
+ bf_free(s, tmp_buf);
+ return 0;
+}
+
+/* return the number of leading zero digits, from 0 to LIMB_DIGITS */
+static int clz_dec(limb_t a)
+{
+ if (a == 0)
+ return LIMB_DIGITS;
+ switch(LIMB_BITS - 1 - clz(a)) {
+ case 0: /* 1-1 */
+ return LIMB_DIGITS - 1;
+ case 1: /* 2-3 */
+ return LIMB_DIGITS - 1;
+ case 2: /* 4-7 */
+ return LIMB_DIGITS - 1;
+ case 3: /* 8-15 */
+ if (a < 10)
+ return LIMB_DIGITS - 1;
+ else
+ return LIMB_DIGITS - 2;
+ case 4: /* 16-31 */
+ return LIMB_DIGITS - 2;
+ case 5: /* 32-63 */
+ return LIMB_DIGITS - 2;
+ case 6: /* 64-127 */
+ if (a < 100)
+ return LIMB_DIGITS - 2;
+ else
+ return LIMB_DIGITS - 3;
+ case 7: /* 128-255 */
+ return LIMB_DIGITS - 3;
+ case 8: /* 256-511 */
+ return LIMB_DIGITS - 3;
+ case 9: /* 512-1023 */
+ if (a < 1000)
+ return LIMB_DIGITS - 3;
+ else
+ return LIMB_DIGITS - 4;
+ case 10: /* 1024-2047 */
+ return LIMB_DIGITS - 4;
+ case 11: /* 2048-4095 */
+ return LIMB_DIGITS - 4;
+ case 12: /* 4096-8191 */
+ return LIMB_DIGITS - 4;
+ case 13: /* 8192-16383 */
+ if (a < 10000)
+ return LIMB_DIGITS - 4;
+ else
+ return LIMB_DIGITS - 5;
+ case 14: /* 16384-32767 */
+ return LIMB_DIGITS - 5;
+ case 15: /* 32768-65535 */
+ return LIMB_DIGITS - 5;
+ case 16: /* 65536-131071 */
+ if (a < 100000)
+ return LIMB_DIGITS - 5;
+ else
+ return LIMB_DIGITS - 6;
+ case 17: /* 131072-262143 */
+ return LIMB_DIGITS - 6;
+ case 18: /* 262144-524287 */
+ return LIMB_DIGITS - 6;
+ case 19: /* 524288-1048575 */
+ if (a < 1000000)
+ return LIMB_DIGITS - 6;
+ else
+ return LIMB_DIGITS - 7;
+ case 20: /* 1048576-2097151 */
+ return LIMB_DIGITS - 7;
+ case 21: /* 2097152-4194303 */
+ return LIMB_DIGITS - 7;
+ case 22: /* 4194304-8388607 */
+ return LIMB_DIGITS - 7;
+ case 23: /* 8388608-16777215 */
+ if (a < 10000000)
+ return LIMB_DIGITS - 7;
+ else
+ return LIMB_DIGITS - 8;
+ case 24: /* 16777216-33554431 */
+ return LIMB_DIGITS - 8;
+ case 25: /* 33554432-67108863 */
+ return LIMB_DIGITS - 8;
+ case 26: /* 67108864-134217727 */
+ if (a < 100000000)
+ return LIMB_DIGITS - 8;
+ else
+ return LIMB_DIGITS - 9;
+#if LIMB_BITS == 64
+ case 27: /* 134217728-268435455 */
+ return LIMB_DIGITS - 9;
+ case 28: /* 268435456-536870911 */
+ return LIMB_DIGITS - 9;
+ case 29: /* 536870912-1073741823 */
+ if (a < 1000000000)
+ return LIMB_DIGITS - 9;
+ else
+ return LIMB_DIGITS - 10;
+ case 30: /* 1073741824-2147483647 */
+ return LIMB_DIGITS - 10;
+ case 31: /* 2147483648-4294967295 */
+ return LIMB_DIGITS - 10;
+ case 32: /* 4294967296-8589934591 */
+ return LIMB_DIGITS - 10;
+ case 33: /* 8589934592-17179869183 */
+ if (a < 10000000000)
+ return LIMB_DIGITS - 10;
+ else
+ return LIMB_DIGITS - 11;
+ case 34: /* 17179869184-34359738367 */
+ return LIMB_DIGITS - 11;
+ case 35: /* 34359738368-68719476735 */
+ return LIMB_DIGITS - 11;
+ case 36: /* 68719476736-137438953471 */
+ if (a < 100000000000)
+ return LIMB_DIGITS - 11;
+ else
+ return LIMB_DIGITS - 12;
+ case 37: /* 137438953472-274877906943 */
+ return LIMB_DIGITS - 12;
+ case 38: /* 274877906944-549755813887 */
+ return LIMB_DIGITS - 12;
+ case 39: /* 549755813888-1099511627775 */
+ if (a < 1000000000000)
+ return LIMB_DIGITS - 12;
+ else
+ return LIMB_DIGITS - 13;
+ case 40: /* 1099511627776-2199023255551 */
+ return LIMB_DIGITS - 13;
+ case 41: /* 2199023255552-4398046511103 */
+ return LIMB_DIGITS - 13;
+ case 42: /* 4398046511104-8796093022207 */
+ return LIMB_DIGITS - 13;
+ case 43: /* 8796093022208-17592186044415 */
+ if (a < 10000000000000)
+ return LIMB_DIGITS - 13;
+ else
+ return LIMB_DIGITS - 14;
+ case 44: /* 17592186044416-35184372088831 */
+ return LIMB_DIGITS - 14;
+ case 45: /* 35184372088832-70368744177663 */
+ return LIMB_DIGITS - 14;
+ case 46: /* 70368744177664-140737488355327 */
+ if (a < 100000000000000)
+ return LIMB_DIGITS - 14;
+ else
+ return LIMB_DIGITS - 15;
+ case 47: /* 140737488355328-281474976710655 */
+ return LIMB_DIGITS - 15;
+ case 48: /* 281474976710656-562949953421311 */
+ return LIMB_DIGITS - 15;
+ case 49: /* 562949953421312-1125899906842623 */
+ if (a < 1000000000000000)
+ return LIMB_DIGITS - 15;
+ else
+ return LIMB_DIGITS - 16;
+ case 50: /* 1125899906842624-2251799813685247 */
+ return LIMB_DIGITS - 16;
+ case 51: /* 2251799813685248-4503599627370495 */
+ return LIMB_DIGITS - 16;
+ case 52: /* 4503599627370496-9007199254740991 */
+ return LIMB_DIGITS - 16;
+ case 53: /* 9007199254740992-18014398509481983 */
+ if (a < 10000000000000000)
+ return LIMB_DIGITS - 16;
+ else
+ return LIMB_DIGITS - 17;
+ case 54: /* 18014398509481984-36028797018963967 */
+ return LIMB_DIGITS - 17;
+ case 55: /* 36028797018963968-72057594037927935 */
+ return LIMB_DIGITS - 17;
+ case 56: /* 72057594037927936-144115188075855871 */
+ if (a < 100000000000000000)
+ return LIMB_DIGITS - 17;
+ else
+ return LIMB_DIGITS - 18;
+ case 57: /* 144115188075855872-288230376151711743 */
+ return LIMB_DIGITS - 18;
+ case 58: /* 288230376151711744-576460752303423487 */
+ return LIMB_DIGITS - 18;
+ case 59: /* 576460752303423488-1152921504606846975 */
+ if (a < 1000000000000000000)
+ return LIMB_DIGITS - 18;
+ else
+ return LIMB_DIGITS - 19;
+#endif
+ default:
+ return 0;
+ }
+}
+
+/* for debugging */
+void bfdec_print_str(const char *str, const bfdec_t *a)
+{
+ slimb_t i;
+ printf("%s=", str);
+
+ if (a->expn == BF_EXP_NAN) {
+ printf("NaN");
+ } else {
+ if (a->sign)
+ putchar('-');
+ if (a->expn == BF_EXP_ZERO) {
+ putchar('0');
+ } else if (a->expn == BF_EXP_INF) {
+ printf("Inf");
+ } else {
+ printf("0.");
+ for(i = a->len - 1; i >= 0; i--)
+ printf("%0*" PRIu_LIMB, LIMB_DIGITS, a->tab[i]);
+ printf("e%" PRId_LIMB, a->expn);
+ }
+ }
+ printf("\n");
+}
+
+/* return != 0 if one digit between 0 and bit_pos inclusive is not zero. */
+static inline limb_t scan_digit_nz(const bfdec_t *r, slimb_t bit_pos)
+{
+ slimb_t pos;
+ limb_t v, q;
+ int shift;
+
+ if (bit_pos < 0)
+ return 0;
+ pos = (limb_t)bit_pos / LIMB_DIGITS;
+ shift = (limb_t)bit_pos % LIMB_DIGITS;
+ fast_udivrem(q, v, r->tab[pos], &mp_pow_div[shift + 1]);
+ (void)q;
+ if (v != 0)
+ return 1;
+ pos--;
+ while (pos >= 0) {
+ if (r->tab[pos] != 0)
+ return 1;
+ pos--;
+ }
+ return 0;
+}
+
+static limb_t get_digit(const limb_t *tab, limb_t len, slimb_t pos)
+{
+ slimb_t i;
+ int shift;
+ i = floor_div(pos, LIMB_DIGITS);
+ if (i < 0 || i >= len)
+ return 0;
+ shift = pos - i * LIMB_DIGITS;
+ return fast_udiv(tab[i], &mp_pow_div[shift]) % 10;
+}
+
+#if 0
+static limb_t get_digits(const limb_t *tab, limb_t len, slimb_t pos)
+{
+ limb_t a0, a1;
+ int shift;
+ slimb_t i;
+
+ i = floor_div(pos, LIMB_DIGITS);
+ shift = pos - i * LIMB_DIGITS;
+ if (i >= 0 && i < len)
+ a0 = tab[i];
+ else
+ a0 = 0;
+ if (shift == 0) {
+ return a0;
+ } else {
+ i++;
+ if (i >= 0 && i < len)
+ a1 = tab[i];
+ else
+ a1 = 0;
+ return fast_udiv(a0, &mp_pow_div[shift]) +
+ fast_urem(a1, &mp_pow_div[LIMB_DIGITS - shift]) *
+ mp_pow_dec[shift];
+ }
+}
+#endif
+
+/* return the addend for rounding. Note that prec can be <= 0 for bf_rint() */
+static int bfdec_get_rnd_add(int *pret, const bfdec_t *r, limb_t l,
+ slimb_t prec, int rnd_mode)
+{
+ int add_one, inexact;
+ limb_t digit1, digit0;
+
+ // bfdec_print_str("get_rnd_add", r);
+ if (rnd_mode == BF_RNDF) {
+ digit0 = 1; /* faithful rounding does not honor the INEXACT flag */
+ } else {
+ /* starting limb for bit 'prec + 1' */
+ digit0 = scan_digit_nz(r, l * LIMB_DIGITS - 1 - bf_max(0, prec + 1));
+ }
+
+ /* get the digit at 'prec' */
+ digit1 = get_digit(r->tab, l, l * LIMB_DIGITS - 1 - prec);
+ inexact = (digit1 | digit0) != 0;
+
+ add_one = 0;
+ switch(rnd_mode) {
+ case BF_RNDZ:
+ break;
+ case BF_RNDN:
+ if (digit1 == 5) {
+ if (digit0) {
+ add_one = 1;
+ } else {
+ /* round to even */
+ add_one =
+ get_digit(r->tab, l, l * LIMB_DIGITS - 1 - (prec - 1)) & 1;
+ }
+ } else if (digit1 > 5) {
+ add_one = 1;
+ }
+ break;
+ case BF_RNDD:
+ case BF_RNDU:
+ if (r->sign == (rnd_mode == BF_RNDD))
+ add_one = inexact;
+ break;
+ case BF_RNDNA:
+ case BF_RNDF:
+ add_one = (digit1 >= 5);
+ break;
+ case BF_RNDNU:
+ if (digit1 >= 5) {
+ if (r->sign)
+ add_one = (digit0 != 0);
+ else
+ add_one = 1;
+ }
+ break;
+ default:
+ abort();
+ }
+
+ if (inexact)
+ *pret |= BF_ST_INEXACT;
+ return add_one;
+}
+
+/* round to prec1 bits assuming 'r' is non zero and finite. 'r' is
+ assumed to have length 'l' (1 <= l <= r->len). prec1 can be
+ BF_PREC_INF. BF_FLAG_SUBNORMAL is not supported. Cannot fail with
+ BF_ST_MEM_ERROR.
+ */
+static int __bfdec_round(bfdec_t *r, limb_t prec1, bf_flags_t flags, limb_t l)
+{
+ int shift, add_one, rnd_mode, ret;
+ slimb_t i, bit_pos, pos, e_min, e_max, e_range, prec;
+
+ /* e_min and e_max are computed to match the IEEE 754 conventions */
+ /* XXX: does not matter for decimal numbers */
+ e_range = (limb_t)1 << (bf_get_exp_bits(flags) - 1);
+ e_min = -e_range + 3;
+ e_max = e_range;
+
+ if (flags & BF_FLAG_RADPNT_PREC) {
+ /* 'prec' is the precision after the decimal point */
+ if (prec1 != BF_PREC_INF)
+ prec = r->expn + prec1;
+ else
+ prec = prec1;
+ } else {
+ prec = prec1;
+ }
+
+ /* round to prec bits */
+ rnd_mode = flags & BF_RND_MASK;
+ ret = 0;
+ add_one = bfdec_get_rnd_add(&ret, r, l, prec, rnd_mode);
+
+ if (prec <= 0) {
+ if (add_one) {
+ bfdec_resize(r, 1); /* cannot fail because r is non zero */
+ r->tab[0] = BF_DEC_BASE / 10;
+ r->expn += 1 - prec;
+ ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
+ return ret;
+ } else {
+ goto underflow;
+ }
+ } else if (add_one) {
+ limb_t carry;
+
+ /* add one starting at digit 'prec - 1' */
+ bit_pos = l * LIMB_DIGITS - 1 - (prec - 1);
+ pos = bit_pos / LIMB_DIGITS;
+ carry = mp_pow_dec[bit_pos % LIMB_DIGITS];
+ carry = mp_add_ui_dec(r->tab + pos, carry, l - pos);
+ if (carry) {
+ /* shift right by one digit */
+ mp_shr_dec(r->tab + pos, r->tab + pos, l - pos, 1, 1);
+ r->expn++;
+ }
+ }
+
+ /* check underflow */
+ if (unlikely(r->expn < e_min)) {
+ underflow:
+ bfdec_set_zero(r, r->sign);
+ ret |= BF_ST_UNDERFLOW | BF_ST_INEXACT;
+ return ret;
+ }
+
+ /* check overflow */
+ if (unlikely(r->expn > e_max)) {
+ bfdec_set_inf(r, r->sign);
+ ret |= BF_ST_OVERFLOW | BF_ST_INEXACT;
+ return ret;
+ }
+
+ /* keep the bits starting at 'prec - 1' */
+ bit_pos = l * LIMB_DIGITS - 1 - (prec - 1);
+ i = floor_div(bit_pos, LIMB_DIGITS);
+ if (i >= 0) {
+ shift = smod(bit_pos, LIMB_DIGITS);
+ if (shift != 0) {
+ r->tab[i] = fast_udiv(r->tab[i], &mp_pow_div[shift]) *
+ mp_pow_dec[shift];
+ }
+ } else {
+ i = 0;
+ }
+ /* remove trailing zeros */
+ while (r->tab[i] == 0)
+ i++;
+ if (i > 0) {
+ l -= i;
+ memmove(r->tab, r->tab + i, l * sizeof(limb_t));
+ }
+ bfdec_resize(r, l); /* cannot fail */
+ return ret;
+}
+
+/* Cannot fail with BF_ST_MEM_ERROR. */
+int bfdec_round(bfdec_t *r, limb_t prec, bf_flags_t flags)
+{
+ if (r->len == 0)
+ return 0;
+ return __bfdec_round(r, prec, flags, r->len);
+}
+
+/* 'r' must be a finite number. Cannot fail with BF_ST_MEM_ERROR. */
+int bfdec_normalize_and_round(bfdec_t *r, limb_t prec1, bf_flags_t flags)
+{
+ limb_t l, v;
+ int shift, ret;
+
+ // bfdec_print_str("bf_renorm", r);
+ l = r->len;
+ while (l > 0 && r->tab[l - 1] == 0)
+ l--;
+ if (l == 0) {
+ /* zero */
+ r->expn = BF_EXP_ZERO;
+ bfdec_resize(r, 0); /* cannot fail */
+ ret = 0;
+ } else {
+ r->expn -= (r->len - l) * LIMB_DIGITS;
+ /* shift to have the MSB set to '1' */
+ v = r->tab[l - 1];
+ shift = clz_dec(v);
+ if (shift != 0) {
+ mp_shl_dec(r->tab, r->tab, l, shift, 0);
+ r->expn -= shift;
+ }
+ ret = __bfdec_round(r, prec1, flags, l);
+ }
+ // bf_print_str("r_final", r);
+ return ret;
+}
+
+int bfdec_set_ui(bfdec_t *r, uint64_t v)
+{
+#if LIMB_BITS == 32
+ if (v >= BF_DEC_BASE * BF_DEC_BASE) {
+ if (bfdec_resize(r, 3))
+ goto fail;
+ r->tab[0] = v % BF_DEC_BASE;
+ v /= BF_DEC_BASE;
+ r->tab[1] = v % BF_DEC_BASE;
+ r->tab[2] = v / BF_DEC_BASE;
+ r->expn = 3 * LIMB_DIGITS;
+ } else
+#endif
+ if (v >= BF_DEC_BASE) {
+ if (bfdec_resize(r, 2))
+ goto fail;
+ r->tab[0] = v % BF_DEC_BASE;
+ r->tab[1] = v / BF_DEC_BASE;
+ r->expn = 2 * LIMB_DIGITS;
+ } else {
+ if (bfdec_resize(r, 1))
+ goto fail;
+ r->tab[0] = v;
+ r->expn = LIMB_DIGITS;
+ }
+ r->sign = 0;
+ return bfdec_normalize_and_round(r, BF_PREC_INF, 0);
+ fail:
+ bfdec_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+int bfdec_set_si(bfdec_t *r, int64_t v)
+{
+ int ret;
+ if (v < 0) {
+ ret = bfdec_set_ui(r, -v);
+ r->sign = 1;
+ } else {
+ ret = bfdec_set_ui(r, v);
+ }
+ return ret;
+}
+
+static int bfdec_add_internal(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec, bf_flags_t flags, int b_neg)
+{
+ bf_context_t *s = r->ctx;
+ int is_sub, cmp_res, a_sign, b_sign, ret;
+
+ a_sign = a->sign;
+ b_sign = b->sign ^ b_neg;
+ is_sub = a_sign ^ b_sign;
+ cmp_res = bfdec_cmpu(a, b);
+ if (cmp_res < 0) {
+ const bfdec_t *tmp;
+ tmp = a;
+ a = b;
+ b = tmp;
+ a_sign = b_sign; /* b_sign is never used later */
+ }
+ /* abs(a) >= abs(b) */
+ if (cmp_res == 0 && is_sub && a->expn < BF_EXP_INF) {
+ /* zero result */
+ bfdec_set_zero(r, (flags & BF_RND_MASK) == BF_RNDD);
+ ret = 0;
+ } else if (a->len == 0 || b->len == 0) {
+ ret = 0;
+ if (a->expn >= BF_EXP_INF) {
+ if (a->expn == BF_EXP_NAN) {
+ /* at least one operand is NaN */
+ bfdec_set_nan(r);
+ ret = 0;
+ } else if (b->expn == BF_EXP_INF && is_sub) {
+ /* infinities with different signs */
+ bfdec_set_nan(r);
+ ret = BF_ST_INVALID_OP;
+ } else {
+ bfdec_set_inf(r, a_sign);
+ }
+ } else {
+ /* at least one zero and not subtract */
+ if (bfdec_set(r, a))
+ return BF_ST_MEM_ERROR;
+ r->sign = a_sign;
+ goto renorm;
+ }
+ } else {
+ slimb_t d, a_offset, b_offset, i, r_len;
+ limb_t carry;
+ limb_t *b1_tab;
+ int b_shift;
+ mp_size_t b1_len;
+
+ d = a->expn - b->expn;
+
+ /* XXX: not efficient in time and memory if the precision is
+ not infinite */
+ r_len = bf_max(a->len, b->len + (d + LIMB_DIGITS - 1) / LIMB_DIGITS);
+ if (bfdec_resize(r, r_len))
+ goto fail;
+ r->sign = a_sign;
+ r->expn = a->expn;
+
+ a_offset = r_len - a->len;
+ for(i = 0; i < a_offset; i++)
+ r->tab[i] = 0;
+ for(i = 0; i < a->len; i++)
+ r->tab[a_offset + i] = a->tab[i];
+
+ b_shift = d % LIMB_DIGITS;
+ if (b_shift == 0) {
+ b1_len = b->len;
+ b1_tab = (limb_t *)b->tab;
+ } else {
+ b1_len = b->len + 1;
+ b1_tab = bf_malloc(s, sizeof(limb_t) * b1_len);
+ if (!b1_tab)
+ goto fail;
+ b1_tab[0] = mp_shr_dec(b1_tab + 1, b->tab, b->len, b_shift, 0) *
+ mp_pow_dec[LIMB_DIGITS - b_shift];
+ }
+ b_offset = r_len - (b->len + (d + LIMB_DIGITS - 1) / LIMB_DIGITS);
+
+ if (is_sub) {
+ carry = mp_sub_dec(r->tab + b_offset, r->tab + b_offset,
+ b1_tab, b1_len, 0);
+ if (carry != 0) {
+ carry = mp_sub_ui_dec(r->tab + b_offset + b1_len, carry,
+ r_len - (b_offset + b1_len));
+ assert(carry == 0);
+ }
+ } else {
+ carry = mp_add_dec(r->tab + b_offset, r->tab + b_offset,
+ b1_tab, b1_len, 0);
+ if (carry != 0) {
+ carry = mp_add_ui_dec(r->tab + b_offset + b1_len, carry,
+ r_len - (b_offset + b1_len));
+ }
+ if (carry != 0) {
+ if (bfdec_resize(r, r_len + 1)) {
+ if (b_shift != 0)
+ bf_free(s, b1_tab);
+ goto fail;
+ }
+ r->tab[r_len] = 1;
+ r->expn += LIMB_DIGITS;
+ }
+ }
+ if (b_shift != 0)
+ bf_free(s, b1_tab);
+ renorm:
+ ret = bfdec_normalize_and_round(r, prec, flags);
+ }
+ return ret;
+ fail:
+ bfdec_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+static int __bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bfdec_add_internal(r, a, b, prec, flags, 0);
+}
+
+static int __bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bfdec_add_internal(r, a, b, prec, flags, 1);
+}
+
+int bfdec_add(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_op2((bf_t *)r, (bf_t *)a, (bf_t *)b, prec, flags,
+ (bf_op2_func_t *)__bfdec_add);
+}
+
+int bfdec_sub(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_op2((bf_t *)r, (bf_t *)a, (bf_t *)b, prec, flags,
+ (bf_op2_func_t *)__bfdec_sub);
+}
+
+int bfdec_mul(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ int ret, r_sign;
+
+ if (a->len < b->len) {
+ const bfdec_t *tmp = a;
+ a = b;
+ b = tmp;
+ }
+ r_sign = a->sign ^ b->sign;
+ /* here b->len <= a->len */
+ if (b->len == 0) {
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
+ bfdec_set_nan(r);
+ ret = 0;
+ } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_INF) {
+ if ((a->expn == BF_EXP_INF && b->expn == BF_EXP_ZERO) ||
+ (a->expn == BF_EXP_ZERO && b->expn == BF_EXP_INF)) {
+ bfdec_set_nan(r);
+ ret = BF_ST_INVALID_OP;
+ } else {
+ bfdec_set_inf(r, r_sign);
+ ret = 0;
+ }
+ } else {
+ bfdec_set_zero(r, r_sign);
+ ret = 0;
+ }
+ } else {
+ bfdec_t tmp, *r1 = NULL;
+ limb_t a_len, b_len;
+ limb_t *a_tab, *b_tab;
+
+ a_len = a->len;
+ b_len = b->len;
+ a_tab = a->tab;
+ b_tab = b->tab;
+
+ if (r == a || r == b) {
+ bfdec_init(r->ctx, &tmp);
+ r1 = r;
+ r = &tmp;
+ }
+ if (bfdec_resize(r, a_len + b_len)) {
+ bfdec_set_nan(r);
+ ret = BF_ST_MEM_ERROR;
+ goto done;
+ }
+ mp_mul_basecase_dec(r->tab, a_tab, a_len, b_tab, b_len);
+ r->sign = r_sign;
+ r->expn = a->expn + b->expn;
+ ret = bfdec_normalize_and_round(r, prec, flags);
+ done:
+ if (r == &tmp)
+ bfdec_move(r1, &tmp);
+ }
+ return ret;
+}
+
+int bfdec_mul_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
+ bf_flags_t flags)
+{
+ bfdec_t b;
+ int ret;
+ bfdec_init(r->ctx, &b);
+ ret = bfdec_set_si(&b, b1);
+ ret |= bfdec_mul(r, a, &b, prec, flags);
+ bfdec_delete(&b);
+ return ret;
+}
+
+int bfdec_add_si(bfdec_t *r, const bfdec_t *a, int64_t b1, limb_t prec,
+ bf_flags_t flags)
+{
+ bfdec_t b;
+ int ret;
+
+ bfdec_init(r->ctx, &b);
+ ret = bfdec_set_si(&b, b1);
+ ret |= bfdec_add(r, a, &b, prec, flags);
+ bfdec_delete(&b);
+ return ret;
+}
+
+static int __bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
+ limb_t prec, bf_flags_t flags)
+{
+ int ret, r_sign;
+ limb_t n, nb, precl;
+
+ r_sign = a->sign ^ b->sign;
+ if (a->expn >= BF_EXP_INF || b->expn >= BF_EXP_INF) {
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
+ bfdec_set_nan(r);
+ return 0;
+ } else if (a->expn == BF_EXP_INF && b->expn == BF_EXP_INF) {
+ bfdec_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else if (a->expn == BF_EXP_INF) {
+ bfdec_set_inf(r, r_sign);
+ return 0;
+ } else {
+ bfdec_set_zero(r, r_sign);
+ return 0;
+ }
+ } else if (a->expn == BF_EXP_ZERO) {
+ if (b->expn == BF_EXP_ZERO) {
+ bfdec_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ bfdec_set_zero(r, r_sign);
+ return 0;
+ }
+ } else if (b->expn == BF_EXP_ZERO) {
+ bfdec_set_inf(r, r_sign);
+ return BF_ST_DIVIDE_ZERO;
+ }
+
+ nb = b->len;
+ if (prec == BF_PREC_INF) {
+ /* infinite precision: return BF_ST_INVALID_OP if not an exact
+ result */
+ /* XXX: check */
+ precl = nb + 1;
+ } else if (flags & BF_FLAG_RADPNT_PREC) {
+ /* number of digits after the decimal point */
+ /* XXX: check (2 extra digits for rounding + 2 digits) */
+ precl = (bf_max(a->expn - b->expn, 0) + 2 +
+ 2 + LIMB_DIGITS - 1) / LIMB_DIGITS;
+ } else {
+ /* number of limbs of the quotient (2 extra digits for rounding) */
+ precl = (prec + 2 + LIMB_DIGITS - 1) / LIMB_DIGITS;
+ }
+ n = bf_max(a->len, precl);
+
+ {
+ limb_t *taba, na, i;
+ slimb_t d;
+
+ na = n + nb;
+ taba = bf_malloc(r->ctx, (na + 1) * sizeof(limb_t));
+ if (!taba)
+ goto fail;
+ d = na - a->len;
+ memset(taba, 0, d * sizeof(limb_t));
+ memcpy(taba + d, a->tab, a->len * sizeof(limb_t));
+ if (bfdec_resize(r, n + 1))
+ goto fail1;
+ if (mp_div_dec(r->ctx, r->tab, taba, na, b->tab, nb)) {
+ fail1:
+ bf_free(r->ctx, taba);
+ goto fail;
+ }
+ /* see if non zero remainder */
+ for(i = 0; i < nb; i++) {
+ if (taba[i] != 0)
+ break;
+ }
+ bf_free(r->ctx, taba);
+ if (i != nb) {
+ if (prec == BF_PREC_INF) {
+ bfdec_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ r->tab[0] |= 1;
+ }
+ }
+ r->expn = a->expn - b->expn + LIMB_DIGITS;
+ r->sign = r_sign;
+ ret = bfdec_normalize_and_round(r, prec, flags);
+ }
+ return ret;
+ fail:
+ bfdec_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+int bfdec_div(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ return bf_op2((bf_t *)r, (bf_t *)a, (bf_t *)b, prec, flags,
+ (bf_op2_func_t *)__bfdec_div);
+}
+
+/* a and b must be finite numbers with a >= 0 and b > 0. 'q' is the
+ integer defined as floor(a/b) and r = a - q * b. */
+static void bfdec_tdivremu(bf_context_t *s, bfdec_t *q, bfdec_t *r,
+ const bfdec_t *a, const bfdec_t *b)
+{
+ if (bfdec_cmpu(a, b) < 0) {
+ bfdec_set_ui(q, 0);
+ bfdec_set(r, a);
+ } else {
+ bfdec_div(q, a, b, 0, BF_RNDZ | BF_FLAG_RADPNT_PREC);
+ bfdec_mul(r, q, b, BF_PREC_INF, BF_RNDZ);
+ bfdec_sub(r, a, r, BF_PREC_INF, BF_RNDZ);
+ }
+}
+
+/* division and remainder.
+
+ rnd_mode is the rounding mode for the quotient. The additional
+ rounding mode BF_RND_EUCLIDIAN is supported.
+
+ 'q' is an integer. 'r' is rounded with prec and flags (prec can be
+ BF_PREC_INF).
+*/
+int bfdec_divrem(bfdec_t *q, bfdec_t *r, const bfdec_t *a, const bfdec_t *b,
+ limb_t prec, bf_flags_t flags, int rnd_mode)
+{
+ bf_context_t *s = q->ctx;
+ bfdec_t a1_s, *a1 = &a1_s;
+ bfdec_t b1_s, *b1 = &b1_s;
+ bfdec_t r1_s, *r1 = &r1_s;
+ int q_sign, res;
+ BOOL is_ceil, is_rndn;
+
+ assert(q != a && q != b);
+ assert(r != a && r != b);
+ assert(q != r);
+
+ if (a->len == 0 || b->len == 0) {
+ bfdec_set_zero(q, 0);
+ if (a->expn == BF_EXP_NAN || b->expn == BF_EXP_NAN) {
+ bfdec_set_nan(r);
+ return 0;
+ } else if (a->expn == BF_EXP_INF || b->expn == BF_EXP_ZERO) {
+ bfdec_set_nan(r);
+ return BF_ST_INVALID_OP;
+ } else {
+ bfdec_set(r, a);
+ return bfdec_round(r, prec, flags);
+ }
+ }
+
+ q_sign = a->sign ^ b->sign;
+ is_rndn = (rnd_mode == BF_RNDN || rnd_mode == BF_RNDNA ||
+ rnd_mode == BF_RNDNU);
+ switch(rnd_mode) {
+ default:
+ case BF_RNDZ:
+ case BF_RNDN:
+ case BF_RNDNA:
+ is_ceil = FALSE;
+ break;
+ case BF_RNDD:
+ is_ceil = q_sign;
+ break;
+ case BF_RNDU:
+ is_ceil = q_sign ^ 1;
+ break;
+ case BF_DIVREM_EUCLIDIAN:
+ is_ceil = a->sign;
+ break;
+ case BF_RNDNU:
+ /* XXX: unsupported yet */
+ abort();
+ }
+
+ a1->expn = a->expn;
+ a1->tab = a->tab;
+ a1->len = a->len;
+ a1->sign = 0;
+
+ b1->expn = b->expn;
+ b1->tab = b->tab;
+ b1->len = b->len;
+ b1->sign = 0;
+
+ // bfdec_print_str("a1", a1);
+ // bfdec_print_str("b1", b1);
+ /* XXX: could improve to avoid having a large 'q' */
+ bfdec_tdivremu(s, q, r, a1, b1);
+ if (bfdec_is_nan(q) || bfdec_is_nan(r))
+ goto fail;
+ // bfdec_print_str("q", q);
+ // bfdec_print_str("r", r);
+
+ if (r->len != 0) {
+ if (is_rndn) {
+ bfdec_init(s, r1);
+ if (bfdec_set(r1, r))
+ goto fail;
+ if (bfdec_mul_si(r1, r1, 2, BF_PREC_INF, BF_RNDZ)) {
+ bfdec_delete(r1);
+ goto fail;
+ }
+ res = bfdec_cmpu(r1, b);
+ bfdec_delete(r1);
+ if (res > 0 ||
+ (res == 0 &&
+ (rnd_mode == BF_RNDNA ||
+ (get_digit(q->tab, q->len, q->len * LIMB_DIGITS - q->expn) & 1) != 0))) {
+ goto do_sub_r;
+ }
+ } else if (is_ceil) {
+ do_sub_r:
+ res = bfdec_add_si(q, q, 1, BF_PREC_INF, BF_RNDZ);
+ res |= bfdec_sub(r, r, b1, BF_PREC_INF, BF_RNDZ);
+ if (res & BF_ST_MEM_ERROR)
+ goto fail;
+ }
+ }
+
+ r->sign ^= a->sign;
+ q->sign = q_sign;
+ return bfdec_round(r, prec, flags);
+ fail:
+ bfdec_set_nan(q);
+ bfdec_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+int bfdec_fmod(bfdec_t *r, const bfdec_t *a, const bfdec_t *b, limb_t prec,
+ bf_flags_t flags)
+{
+ bfdec_t q_s, *q = &q_s;
+ int ret;
+
+ bfdec_init(r->ctx, q);
+ ret = bfdec_divrem(q, r, a, b, prec, flags, BF_RNDZ);
+ bfdec_delete(q);
+ return ret;
+}
+
+/* convert to integer (infinite precision) */
+int bfdec_rint(bfdec_t *r, int rnd_mode)
+{
+ return bfdec_round(r, 0, rnd_mode | BF_FLAG_RADPNT_PREC);
+}
+
+int bfdec_sqrt(bfdec_t *r, const bfdec_t *a, limb_t prec, bf_flags_t flags)
+{
+ bf_context_t *s = a->ctx;
+ int ret, k;
+ limb_t *a1, v;
+ slimb_t n, n1;
+ limb_t res;
+
+ assert(r != a);
+
+ if (a->len == 0) {
+ if (a->expn == BF_EXP_NAN) {
+ bfdec_set_nan(r);
+ } else if (a->expn == BF_EXP_INF && a->sign) {
+ goto invalid_op;
+ } else {
+ bfdec_set(r, a);
+ }
+ ret = 0;
+ } else if (a->sign || prec == BF_PREC_INF) {
+ invalid_op:
+ bfdec_set_nan(r);
+ ret = BF_ST_INVALID_OP;
+ } else {
+ /* convert the mantissa to an integer with at least 2 *
+ prec + 4 digits */
+ n = (2 * (prec + 2) + 2 * LIMB_DIGITS - 1) / (2 * LIMB_DIGITS);
+ if (bfdec_resize(r, n))
+ goto fail;
+ a1 = bf_malloc(s, sizeof(limb_t) * 2 * n);
+ if (!a1)
+ goto fail;
+ n1 = bf_min(2 * n, a->len);
+ memset(a1, 0, (2 * n - n1) * sizeof(limb_t));
+ memcpy(a1 + 2 * n - n1, a->tab + a->len - n1, n1 * sizeof(limb_t));
+ if (a->expn & 1) {
+ res = mp_shr_dec(a1, a1, 2 * n, 1, 0);
+ } else {
+ res = 0;
+ }
+ /* normalize so that a1 >= B^(2*n)/4. Not need for n = 1
+ because mp_sqrtrem2_dec already does it */
+ k = 0;
+ if (n > 1) {
+ v = a1[2 * n - 1];
+ while (v < BF_DEC_BASE / 4) {
+ k++;
+ v *= 4;
+ }
+ if (k != 0)
+ mp_mul1_dec(a1, a1, 2 * n, 1 << (2 * k), 0);
+ }
+ if (mp_sqrtrem_dec(s, r->tab, a1, n)) {
+ bf_free(s, a1);
+ goto fail;
+ }
+ if (k != 0)
+ mp_div1_dec(r->tab, r->tab, n, 1 << k, 0);
+ if (!res) {
+ res = mp_scan_nz(a1, n + 1);
+ }
+ bf_free(s, a1);
+ if (!res) {
+ res = mp_scan_nz(a->tab, a->len - n1);
+ }
+ if (res != 0)
+ r->tab[0] |= 1;
+ r->sign = 0;
+ r->expn = (a->expn + 1) >> 1;
+ ret = bfdec_round(r, prec, flags);
+ }
+ return ret;
+ fail:
+ bfdec_set_nan(r);
+ return BF_ST_MEM_ERROR;
+}
+
+/* The rounding mode is always BF_RNDZ. Return BF_ST_OVERFLOW if there
+ is an overflow and 0 otherwise. No memory error is possible. */
+int bfdec_get_int32(int *pres, const bfdec_t *a)
+{
+ uint32_t v;
+ int ret;
+ if (a->expn >= BF_EXP_INF) {
+ ret = 0;
+ if (a->expn == BF_EXP_INF) {
+ v = (uint32_t)INT32_MAX + a->sign;
+ /* XXX: return overflow ? */
+ } else {
+ v = INT32_MAX;
+ }
+ } else if (a->expn <= 0) {
+ v = 0;
+ ret = 0;
+ } else if (a->expn <= 9) {
+ v = fast_udiv(a->tab[a->len - 1], &mp_pow_div[LIMB_DIGITS - a->expn]);
+ if (a->sign)
+ v = -v;
+ ret = 0;
+ } else if (a->expn == 10) {
+ uint64_t v1;
+ uint32_t v_max;
+#if LIMB_BITS == 64
+ v1 = fast_udiv(a->tab[a->len - 1], &mp_pow_div[LIMB_DIGITS - a->expn]);
+#else
+ v1 = (uint64_t)a->tab[a->len - 1] * 10 +
+ get_digit(a->tab, a->len, (a->len - 1) * LIMB_DIGITS - 1);
+#endif
+ v_max = (uint32_t)INT32_MAX + a->sign;
+ if (v1 > v_max) {
+ v = v_max;
+ ret = BF_ST_OVERFLOW;
+ } else {
+ v = v1;
+ if (a->sign)
+ v = -v;
+ ret = 0;
+ }
+ } else {
+ v = (uint32_t)INT32_MAX + a->sign;
+ ret = BF_ST_OVERFLOW;
+ }
+ *pres = v;
+ return ret;
+}
+
+/* power to an integer with infinite precision */
+int bfdec_pow_ui(bfdec_t *r, const bfdec_t *a, limb_t b)
+{
+ int ret, n_bits, i;
+
+ assert(r != a);
+ if (b == 0)
+ return bfdec_set_ui(r, 1);
+ ret = bfdec_set(r, a);
+ n_bits = LIMB_BITS - clz(b);
+ for(i = n_bits - 2; i >= 0; i--) {
+ ret |= bfdec_mul(r, r, r, BF_PREC_INF, BF_RNDZ);
+ if ((b >> i) & 1)
+ ret |= bfdec_mul(r, r, a, BF_PREC_INF, BF_RNDZ);
+ }
+ return ret;
+}
+
+char *bfdec_ftoa(size_t *plen, const bfdec_t *a, limb_t prec, bf_flags_t flags)
+{
+ return bf_ftoa_internal(plen, (const bf_t *)a, 10, prec, flags, TRUE);
+}
+
+int bfdec_atof(bfdec_t *r, const char *str, const char **pnext,
+ limb_t prec, bf_flags_t flags)
+{
+ slimb_t dummy_exp;
+ return bf_atof_internal((bf_t *)r, &dummy_exp, str, pnext, 10, prec,
+ flags, TRUE);
+}
+
+#endif /* USE_BF_DEC */
+
+#ifdef USE_FFT_MUL
+/***************************************************************/
+/* Integer multiplication with FFT */
+
+/* or LIMB_BITS at bit position 'pos' in tab */
+static inline void put_bits(limb_t *tab, limb_t len, slimb_t pos, limb_t val)
+{
+ limb_t i;
+ int p;
+
+ i = pos >> LIMB_LOG2_BITS;
+ p = pos & (LIMB_BITS - 1);
+ if (i < len)
+ tab[i] |= val << p;
+ if (p != 0) {
+ i++;
+ if (i < len) {
+ tab[i] |= val >> (LIMB_BITS - p);
+ }
+ }
+}
+
+#if defined(__AVX2__)
+
+typedef double NTTLimb;
+
+/* we must have: modulo >= 1 << NTT_MOD_LOG2_MIN */
+#define NTT_MOD_LOG2_MIN 50
+#define NTT_MOD_LOG2_MAX 51
+#define NB_MODS 5
+#define NTT_PROOT_2EXP 39
+static const int ntt_int_bits[NB_MODS] = { 254, 203, 152, 101, 50, };
+
+static const limb_t ntt_mods[NB_MODS] = { 0x00073a8000000001, 0x0007858000000001, 0x0007a38000000001, 0x0007a68000000001, 0x0007fd8000000001,
+};
+
+static const limb_t ntt_proot[2][NB_MODS] = {
+ { 0x00056198d44332c8, 0x0002eb5d640aad39, 0x00047e31eaa35fd0, 0x0005271ac118a150, 0x00075e0ce8442bd5, },
+ { 0x000461169761bcc5, 0x0002dac3cb2da688, 0x0004abc97751e3bf, 0x000656778fc8c485, 0x0000dc6469c269fa, },
+};
+
+static const limb_t ntt_mods_cr[NB_MODS * (NB_MODS - 1) / 2] = {
+ 0x00020e4da740da8e, 0x0004c3dc09c09c1d, 0x000063bd097b4271, 0x000799d8f18f18fd,
+ 0x0005384222222264, 0x000572b07c1f07fe, 0x00035cd08888889a,
+ 0x00066015555557e3, 0x000725960b60b623,
+ 0x0002fc1fa1d6ce12,
+};
+
+#else
+
+typedef limb_t NTTLimb;
+
+#if LIMB_BITS == 64
+
+#define NTT_MOD_LOG2_MIN 61
+#define NTT_MOD_LOG2_MAX 62
+#define NB_MODS 5
+#define NTT_PROOT_2EXP 51
+static const int ntt_int_bits[NB_MODS] = { 307, 246, 185, 123, 61, };
+
+static const limb_t ntt_mods[NB_MODS] = { 0x28d8000000000001, 0x2a88000000000001, 0x2ed8000000000001, 0x3508000000000001, 0x3aa8000000000001,
+};
+
+static const limb_t ntt_proot[2][NB_MODS] = {
+ { 0x1b8ea61034a2bea7, 0x21a9762de58206fb, 0x02ca782f0756a8ea, 0x278384537a3e50a1, 0x106e13fee74ce0ab, },
+ { 0x233513af133e13b8, 0x1d13140d1c6f75f1, 0x12cde57f97e3eeda, 0x0d6149e23cbe654f, 0x36cd204f522a1379, },
+};
+
+static const limb_t ntt_mods_cr[NB_MODS * (NB_MODS - 1) / 2] = {
+ 0x08a9ed097b425eea, 0x18a44aaaaaaaaab3, 0x2493f57f57f57f5d, 0x126b8d0649a7f8d4,
+ 0x09d80ed7303b5ccc, 0x25b8bcf3cf3cf3d5, 0x2ce6ce63398ce638,
+ 0x0e31fad40a57eb59, 0x02a3529fd4a7f52f,
+ 0x3a5493e93e93e94a,
+};
+
+#elif LIMB_BITS == 32
+
+/* we must have: modulo >= 1 << NTT_MOD_LOG2_MIN */
+#define NTT_MOD_LOG2_MIN 29
+#define NTT_MOD_LOG2_MAX 30
+#define NB_MODS 5
+#define NTT_PROOT_2EXP 20
+static const int ntt_int_bits[NB_MODS] = { 148, 119, 89, 59, 29, };
+
+static const limb_t ntt_mods[NB_MODS] = { 0x0000000032b00001, 0x0000000033700001, 0x0000000036d00001, 0x0000000037300001, 0x000000003e500001,
+};
+
+static const limb_t ntt_proot[2][NB_MODS] = {
+ { 0x0000000032525f31, 0x0000000005eb3b37, 0x00000000246eda9f, 0x0000000035f25901, 0x00000000022f5768, },
+ { 0x00000000051eba1a, 0x00000000107be10e, 0x000000001cd574e0, 0x00000000053806e6, 0x000000002cd6bf98, },
+};
+
+static const limb_t ntt_mods_cr[NB_MODS * (NB_MODS - 1) / 2] = {
+ 0x000000000449559a, 0x000000001eba6ca9, 0x000000002ec18e46, 0x000000000860160b,
+ 0x000000000d321307, 0x000000000bf51120, 0x000000000f662938,
+ 0x000000000932ab3e, 0x000000002f40eef8,
+ 0x000000002e760905,
+};
+
+#endif /* LIMB_BITS */
+
+#endif /* !AVX2 */
+
+#if defined(__AVX2__)
+#define NTT_TRIG_K_MAX 18
+#else
+#define NTT_TRIG_K_MAX 19
+#endif
+
+typedef struct BFNTTState {
+ bf_context_t *ctx;
+
+ /* used for mul_mod_fast() */
+ limb_t ntt_mods_div[NB_MODS];
+
+ limb_t ntt_proot_pow[NB_MODS][2][NTT_PROOT_2EXP + 1];
+ limb_t ntt_proot_pow_inv[NB_MODS][2][NTT_PROOT_2EXP + 1];
+ NTTLimb *ntt_trig[NB_MODS][2][NTT_TRIG_K_MAX + 1];
+ /* 1/2^n mod m */
+ limb_t ntt_len_inv[NB_MODS][NTT_PROOT_2EXP + 1][2];
+#if defined(__AVX2__)
+ __m256d ntt_mods_cr_vec[NB_MODS * (NB_MODS - 1) / 2];
+ __m256d ntt_mods_vec[NB_MODS];
+ __m256d ntt_mods_inv_vec[NB_MODS];
+#else
+ limb_t ntt_mods_cr_inv[NB_MODS * (NB_MODS - 1) / 2];
+#endif
+} BFNTTState;
+
+static NTTLimb *get_trig(BFNTTState *s, int k, int inverse, int m_idx);
+
+/* add modulo with up to (LIMB_BITS-1) bit modulo */
+static inline limb_t add_mod(limb_t a, limb_t b, limb_t m)
+{
+ limb_t r;
+ r = a + b;
+ if (r >= m)
+ r -= m;
+ return r;
+}
+
+/* sub modulo with up to LIMB_BITS bit modulo */
+static inline limb_t sub_mod(limb_t a, limb_t b, limb_t m)
+{
+ limb_t r;
+ r = a - b;
+ if (r > a)
+ r += m;
+ return r;
+}
+
+/* return (r0+r1*B) mod m
+ precondition: 0 <= r0+r1*B < 2^(64+NTT_MOD_LOG2_MIN)
+*/
+static inline limb_t mod_fast(dlimb_t r,
+ limb_t m, limb_t m_inv)
+{
+ limb_t a1, q, t0, r1, r0;
+
+ a1 = r >> NTT_MOD_LOG2_MIN;
+
+ q = ((dlimb_t)a1 * m_inv) >> LIMB_BITS;
+ r = r - (dlimb_t)q * m - m * 2;
+ r1 = r >> LIMB_BITS;
+ t0 = (slimb_t)r1 >> 1;
+ r += m & t0;
+ r0 = r;
+ r1 = r >> LIMB_BITS;
+ r0 += m & r1;
+ return r0;
+}
+
+/* faster version using precomputed modulo inverse.
+ precondition: 0 <= a * b < 2^(64+NTT_MOD_LOG2_MIN) */
+static inline limb_t mul_mod_fast(limb_t a, limb_t b,
+ limb_t m, limb_t m_inv)
+{
+ dlimb_t r;
+ r = (dlimb_t)a * (dlimb_t)b;
+ return mod_fast(r, m, m_inv);
+}
+
+static inline limb_t init_mul_mod_fast(limb_t m)
+{
+ dlimb_t t;
+ assert(m < (limb_t)1 << NTT_MOD_LOG2_MAX);
+ assert(m >= (limb_t)1 << NTT_MOD_LOG2_MIN);
+ t = (dlimb_t)1 << (LIMB_BITS + NTT_MOD_LOG2_MIN);
+ return t / m;
+}
+
+/* Faster version used when the multiplier is constant. 0 <= a < 2^64,
+ 0 <= b < m. */
+static inline limb_t mul_mod_fast2(limb_t a, limb_t b,
+ limb_t m, limb_t b_inv)
+{
+ limb_t r, q;
+
+ q = ((dlimb_t)a * (dlimb_t)b_inv) >> LIMB_BITS;
+ r = a * b - q * m;
+ if (r >= m)
+ r -= m;
+ return r;
+}
+
+/* Faster version used when the multiplier is constant. 0 <= a < 2^64,
+ 0 <= b < m. Let r = a * b mod m. The return value is 'r' or 'r +
+ m'. */
+static inline limb_t mul_mod_fast3(limb_t a, limb_t b,
+ limb_t m, limb_t b_inv)
+{
+ limb_t r, q;
+
+ q = ((dlimb_t)a * (dlimb_t)b_inv) >> LIMB_BITS;
+ r = a * b - q * m;
+ return r;
+}
+
+static inline limb_t init_mul_mod_fast2(limb_t b, limb_t m)
+{
+ return ((dlimb_t)b << LIMB_BITS) / m;
+}
+
+#ifdef __AVX2__
+
+static inline limb_t ntt_limb_to_int(NTTLimb a, limb_t m)
+{
+ slimb_t v;
+ v = a;
+ if (v < 0)
+ v += m;
+ if (v >= m)
+ v -= m;
+ return v;
+}
+
+static inline NTTLimb int_to_ntt_limb(limb_t a, limb_t m)
+{
+ return (slimb_t)a;
+}
+
+static inline NTTLimb int_to_ntt_limb2(limb_t a, limb_t m)
+{
+ if (a >= (m / 2))
+ a -= m;
+ return (slimb_t)a;
+}
+
+/* return r + m if r < 0 otherwise r. */
+static inline __m256d ntt_mod1(__m256d r, __m256d m)
+{
+ return _mm256_blendv_pd(r, r + m, r);
+}
+
+/* input: abs(r) < 2 * m. Output: abs(r) < m */
+static inline __m256d ntt_mod(__m256d r, __m256d mf, __m256d m2f)
+{
+ return _mm256_blendv_pd(r, r + m2f, r) - mf;
+}
+
+/* input: abs(a*b) < 2 * m^2, output: abs(r) < m */
+static inline __m256d ntt_mul_mod(__m256d a, __m256d b, __m256d mf,
+ __m256d m_inv)
+{
+ __m256d r, q, ab1, ab0, qm0, qm1;
+ ab1 = a * b;
+ q = _mm256_round_pd(ab1 * m_inv, 0); /* round to nearest */
+ qm1 = q * mf;
+ qm0 = _mm256_fmsub_pd(q, mf, qm1); /* low part */
+ ab0 = _mm256_fmsub_pd(a, b, ab1); /* low part */
+ r = (ab1 - qm1) + (ab0 - qm0);
+ return r;
+}
+
+static void *bf_aligned_malloc(bf_context_t *s, size_t size, size_t align)
+{
+ void *ptr;
+ void **ptr1;
+ ptr = bf_malloc(s, size + sizeof(void *) + align - 1);
+ if (!ptr)
+ return NULL;
+ ptr1 = (void **)(((uintptr_t)ptr + sizeof(void *) + align - 1) &
+ ~(align - 1));
+ ptr1[-1] = ptr;
+ return ptr1;
+}
+
+static void bf_aligned_free(bf_context_t *s, void *ptr)
+{
+ if (!ptr)
+ return;
+ bf_free(s, ((void **)ptr)[-1]);
+}
+
+static void *ntt_malloc(BFNTTState *s, size_t size)
+{
+ return bf_aligned_malloc(s->ctx, size, 64);
+}
+
+static void ntt_free(BFNTTState *s, void *ptr)
+{
+ bf_aligned_free(s->ctx, ptr);
+}
+
+static no_inline int ntt_fft(BFNTTState *s,
+ NTTLimb *out_buf, NTTLimb *in_buf,
+ NTTLimb *tmp_buf, int fft_len_log2,
+ int inverse, int m_idx)
+{
+ limb_t nb_blocks, fft_per_block, p, k, n, stride_in, i, j;
+ NTTLimb *tab_in, *tab_out, *tmp, *trig;
+ __m256d m_inv, mf, m2f, c, a0, a1, b0, b1;
+ limb_t m;
+ int l;
+
+ m = ntt_mods[m_idx];
+
+ m_inv = _mm256_set1_pd(1.0 / (double)m);
+ mf = _mm256_set1_pd(m);
+ m2f = _mm256_set1_pd(m * 2);
+
+ n = (limb_t)1 << fft_len_log2;
+ assert(n >= 8);
+ stride_in = n / 2;
+
+ tab_in = in_buf;
+ tab_out = tmp_buf;
+ trig = get_trig(s, fft_len_log2, inverse, m_idx);
+ if (!trig)
+ return -1;
+ p = 0;
+ for(k = 0; k < stride_in; k += 4) {
+ a0 = _mm256_load_pd(&tab_in[k]);
+ a1 = _mm256_load_pd(&tab_in[k + stride_in]);
+ c = _mm256_load_pd(trig);
+ trig += 4;
+ b0 = ntt_mod(a0 + a1, mf, m2f);
+ b1 = ntt_mul_mod(a0 - a1, c, mf, m_inv);
+ a0 = _mm256_permute2f128_pd(b0, b1, 0x20);
+ a1 = _mm256_permute2f128_pd(b0, b1, 0x31);
+ a0 = _mm256_permute4x64_pd(a0, 0xd8);
+ a1 = _mm256_permute4x64_pd(a1, 0xd8);
+ _mm256_store_pd(&tab_out[p], a0);
+ _mm256_store_pd(&tab_out[p + 4], a1);
+ p += 2 * 4;
+ }
+ tmp = tab_in;
+ tab_in = tab_out;
+ tab_out = tmp;
+
+ trig = get_trig(s, fft_len_log2 - 1, inverse, m_idx);
+ if (!trig)
+ return -1;
+ p = 0;
+ for(k = 0; k < stride_in; k += 4) {
+ a0 = _mm256_load_pd(&tab_in[k]);
+ a1 = _mm256_load_pd(&tab_in[k + stride_in]);
+ c = _mm256_setr_pd(trig[0], trig[0], trig[1], trig[1]);
+ trig += 2;
+ b0 = ntt_mod(a0 + a1, mf, m2f);
+ b1 = ntt_mul_mod(a0 - a1, c, mf, m_inv);
+ a0 = _mm256_permute2f128_pd(b0, b1, 0x20);
+ a1 = _mm256_permute2f128_pd(b0, b1, 0x31);
+ _mm256_store_pd(&tab_out[p], a0);
+ _mm256_store_pd(&tab_out[p + 4], a1);
+ p += 2 * 4;
+ }
+ tmp = tab_in;
+ tab_in = tab_out;
+ tab_out = tmp;
+
+ nb_blocks = n / 4;
+ fft_per_block = 4;
+
+ l = fft_len_log2 - 2;
+ while (nb_blocks != 2) {
+ nb_blocks >>= 1;
+ p = 0;
+ k = 0;
+ trig = get_trig(s, l, inverse, m_idx);
+ if (!trig)
+ return -1;
+ for(i = 0; i < nb_blocks; i++) {
+ c = _mm256_set1_pd(trig[0]);
+ trig++;
+ for(j = 0; j < fft_per_block; j += 4) {
+ a0 = _mm256_load_pd(&tab_in[k + j]);
+ a1 = _mm256_load_pd(&tab_in[k + j + stride_in]);
+ b0 = ntt_mod(a0 + a1, mf, m2f);
+ b1 = ntt_mul_mod(a0 - a1, c, mf, m_inv);
+ _mm256_store_pd(&tab_out[p + j], b0);
+ _mm256_store_pd(&tab_out[p + j + fft_per_block], b1);
+ }
+ k += fft_per_block;
+ p += 2 * fft_per_block;
+ }
+ fft_per_block <<= 1;
+ l--;
+ tmp = tab_in;
+ tab_in = tab_out;
+ tab_out = tmp;
+ }
+
+ tab_out = out_buf;
+ for(k = 0; k < stride_in; k += 4) {
+ a0 = _mm256_load_pd(&tab_in[k]);
+ a1 = _mm256_load_pd(&tab_in[k + stride_in]);
+ b0 = ntt_mod(a0 + a1, mf, m2f);
+ b1 = ntt_mod(a0 - a1, mf, m2f);
+ _mm256_store_pd(&tab_out[k], b0);
+ _mm256_store_pd(&tab_out[k + stride_in], b1);
+ }
+ return 0;
+}
+
+static void ntt_vec_mul(BFNTTState *s,
+ NTTLimb *tab1, NTTLimb *tab2, limb_t fft_len_log2,
+ int k_tot, int m_idx)
+{
+ limb_t i, c_inv, n, m;
+ __m256d m_inv, mf, a, b, c;
+
+ m = ntt_mods[m_idx];
+ c_inv = s->ntt_len_inv[m_idx][k_tot][0];
+ m_inv = _mm256_set1_pd(1.0 / (double)m);
+ mf = _mm256_set1_pd(m);
+ c = _mm256_set1_pd(int_to_ntt_limb(c_inv, m));
+ n = (limb_t)1 << fft_len_log2;
+ for(i = 0; i < n; i += 4) {
+ a = _mm256_load_pd(&tab1[i]);
+ b = _mm256_load_pd(&tab2[i]);
+ a = ntt_mul_mod(a, b, mf, m_inv);
+ a = ntt_mul_mod(a, c, mf, m_inv);
+ _mm256_store_pd(&tab1[i], a);
+ }
+}
+
+static no_inline void mul_trig(NTTLimb *buf,
+ limb_t n, limb_t c1, limb_t m, limb_t m_inv1)
+{
+ limb_t i, c2, c3, c4;
+ __m256d c, c_mul, a0, mf, m_inv;
+ assert(n >= 2);
+
+ mf = _mm256_set1_pd(m);
+ m_inv = _mm256_set1_pd(1.0 / (double)m);
+
+ c2 = mul_mod_fast(c1, c1, m, m_inv1);
+ c3 = mul_mod_fast(c2, c1, m, m_inv1);
+ c4 = mul_mod_fast(c2, c2, m, m_inv1);
+ c = _mm256_setr_pd(1, int_to_ntt_limb(c1, m),
+ int_to_ntt_limb(c2, m), int_to_ntt_limb(c3, m));
+ c_mul = _mm256_set1_pd(int_to_ntt_limb(c4, m));
+ for(i = 0; i < n; i += 4) {
+ a0 = _mm256_load_pd(&buf[i]);
+ a0 = ntt_mul_mod(a0, c, mf, m_inv);
+ _mm256_store_pd(&buf[i], a0);
+ c = ntt_mul_mod(c, c_mul, mf, m_inv);
+ }
+}
+
+#else
+
+static void *ntt_malloc(BFNTTState *s, size_t size)
+{
+ return bf_malloc(s->ctx, size);
+}
+
+static void ntt_free(BFNTTState *s, void *ptr)
+{
+ bf_free(s->ctx, ptr);
+}
+
+static inline limb_t ntt_limb_to_int(NTTLimb a, limb_t m)
+{
+ if (a >= m)
+ a -= m;
+ return a;
+}
+
+static inline NTTLimb int_to_ntt_limb(slimb_t a, limb_t m)
+{
+ return a;
+}
+
+static no_inline int ntt_fft(BFNTTState *s, NTTLimb *out_buf, NTTLimb *in_buf,
+ NTTLimb *tmp_buf, int fft_len_log2,
+ int inverse, int m_idx)
+{
+ limb_t nb_blocks, fft_per_block, p, k, n, stride_in, i, j, m, m2;
+ NTTLimb *tab_in, *tab_out, *tmp, a0, a1, b0, b1, c, *trig, c_inv;
+ int l;
+
+ m = ntt_mods[m_idx];
+ m2 = 2 * m;
+ n = (limb_t)1 << fft_len_log2;
+ nb_blocks = n;
+ fft_per_block = 1;
+ stride_in = n / 2;
+ tab_in = in_buf;
+ tab_out = tmp_buf;
+ l = fft_len_log2;
+ while (nb_blocks != 2) {
+ nb_blocks >>= 1;
+ p = 0;
+ k = 0;
+ trig = get_trig(s, l, inverse, m_idx);
+ if (!trig)
+ return -1;
+ for(i = 0; i < nb_blocks; i++) {
+ c = trig[0];
+ c_inv = trig[1];
+ trig += 2;
+ for(j = 0; j < fft_per_block; j++) {
+ a0 = tab_in[k + j];
+ a1 = tab_in[k + j + stride_in];
+ b0 = add_mod(a0, a1, m2);
+ b1 = a0 - a1 + m2;
+ b1 = mul_mod_fast3(b1, c, m, c_inv);
+ tab_out[p + j] = b0;
+ tab_out[p + j + fft_per_block] = b1;
+ }
+ k += fft_per_block;
+ p += 2 * fft_per_block;
+ }
+ fft_per_block <<= 1;
+ l--;
+ tmp = tab_in;
+ tab_in = tab_out;
+ tab_out = tmp;
+ }
+ /* no twiddle in last step */
+ tab_out = out_buf;
+ for(k = 0; k < stride_in; k++) {
+ a0 = tab_in[k];
+ a1 = tab_in[k + stride_in];
+ b0 = add_mod(a0, a1, m2);
+ b1 = sub_mod(a0, a1, m2);
+ tab_out[k] = b0;
+ tab_out[k + stride_in] = b1;
+ }
+ return 0;
+}
+
+static void ntt_vec_mul(BFNTTState *s,
+ NTTLimb *tab1, NTTLimb *tab2, int fft_len_log2,
+ int k_tot, int m_idx)
+{
+ limb_t i, norm, norm_inv, a, n, m, m_inv;
+
+ m = ntt_mods[m_idx];
+ m_inv = s->ntt_mods_div[m_idx];
+ norm = s->ntt_len_inv[m_idx][k_tot][0];
+ norm_inv = s->ntt_len_inv[m_idx][k_tot][1];
+ n = (limb_t)1 << fft_len_log2;
+ for(i = 0; i < n; i++) {
+ a = tab1[i];
+ /* need to reduce the range so that the product is <
+ 2^(LIMB_BITS+NTT_MOD_LOG2_MIN) */
+ if (a >= m)
+ a -= m;
+ a = mul_mod_fast(a, tab2[i], m, m_inv);
+ a = mul_mod_fast3(a, norm, m, norm_inv);
+ tab1[i] = a;
+ }
+}
+
+static no_inline void mul_trig(NTTLimb *buf,
+ limb_t n, limb_t c_mul, limb_t m, limb_t m_inv)
+{
+ limb_t i, c0, c_mul_inv;
+
+ c0 = 1;
+ c_mul_inv = init_mul_mod_fast2(c_mul, m);
+ for(i = 0; i < n; i++) {
+ buf[i] = mul_mod_fast(buf[i], c0, m, m_inv);
+ c0 = mul_mod_fast2(c0, c_mul, m, c_mul_inv);
+ }
+}
+
+#endif /* !AVX2 */
+
+static no_inline NTTLimb *get_trig(BFNTTState *s,
+ int k, int inverse, int m_idx)
+{
+ NTTLimb *tab;
+ limb_t i, n2, c, c_mul, m, c_mul_inv;
+
+ if (k > NTT_TRIG_K_MAX)
+ return NULL;
+
+ tab = s->ntt_trig[m_idx][inverse][k];
+ if (tab)
+ return tab;
+ n2 = (limb_t)1 << (k - 1);
+ m = ntt_mods[m_idx];
+#ifdef __AVX2__
+ tab = ntt_malloc(s, sizeof(NTTLimb) * n2);
+#else
+ tab = ntt_malloc(s, sizeof(NTTLimb) * n2 * 2);
+#endif
+ if (!tab)
+ return NULL;
+ c = 1;
+ c_mul = s->ntt_proot_pow[m_idx][inverse][k];
+ c_mul_inv = s->ntt_proot_pow_inv[m_idx][inverse][k];
+ for(i = 0; i < n2; i++) {
+#ifdef __AVX2__
+ tab[i] = int_to_ntt_limb2(c, m);
+#else
+ tab[2 * i] = int_to_ntt_limb(c, m);
+ tab[2 * i + 1] = init_mul_mod_fast2(c, m);
+#endif
+ c = mul_mod_fast2(c, c_mul, m, c_mul_inv);
+ }
+ s->ntt_trig[m_idx][inverse][k] = tab;
+ return tab;
+}
+
+void fft_clear_cache(bf_context_t *s1)
+{
+ int m_idx, inverse, k;
+ BFNTTState *s = s1->ntt_state;
+ if (s) {
+ for(m_idx = 0; m_idx < NB_MODS; m_idx++) {
+ for(inverse = 0; inverse < 2; inverse++) {
+ for(k = 0; k < NTT_TRIG_K_MAX + 1; k++) {
+ if (s->ntt_trig[m_idx][inverse][k]) {
+ ntt_free(s, s->ntt_trig[m_idx][inverse][k]);
+ s->ntt_trig[m_idx][inverse][k] = NULL;
+ }
+ }
+ }
+ }
+#if defined(__AVX2__)
+ bf_aligned_free(s1, s);
+#else
+ bf_free(s1, s);
+#endif
+ s1->ntt_state = NULL;
+ }
+}
+
+#define STRIP_LEN 16
+
+/* dst = buf1, src = buf2 */
+static int ntt_fft_partial(BFNTTState *s, NTTLimb *buf1,
+ int k1, int k2, limb_t n1, limb_t n2, int inverse,
+ limb_t m_idx)
+{
+ limb_t i, j, c_mul, c0, m, m_inv, strip_len, l;
+ NTTLimb *buf2, *buf3;
+
+ buf2 = NULL;
+ buf3 = ntt_malloc(s, sizeof(NTTLimb) * n1);
+ if (!buf3)
+ goto fail;
+ if (k2 == 0) {
+ if (ntt_fft(s, buf1, buf1, buf3, k1, inverse, m_idx))
+ goto fail;
+ } else {
+ strip_len = STRIP_LEN;
+ buf2 = ntt_malloc(s, sizeof(NTTLimb) * n1 * strip_len);
+ if (!buf2)
+ goto fail;
+ m = ntt_mods[m_idx];
+ m_inv = s->ntt_mods_div[m_idx];
+ c0 = s->ntt_proot_pow[m_idx][inverse][k1 + k2];
+ c_mul = 1;
+ assert((n2 % strip_len) == 0);
+ for(j = 0; j < n2; j += strip_len) {
+ for(i = 0; i < n1; i++) {
+ for(l = 0; l < strip_len; l++) {
+ buf2[i + l * n1] = buf1[i * n2 + (j + l)];
+ }
+ }
+ for(l = 0; l < strip_len; l++) {
+ if (inverse)
+ mul_trig(buf2 + l * n1, n1, c_mul, m, m_inv);
+ if (ntt_fft(s, buf2 + l * n1, buf2 + l * n1, buf3, k1, inverse, m_idx))
+ goto fail;
+ if (!inverse)
+ mul_trig(buf2 + l * n1, n1, c_mul, m, m_inv);
+ c_mul = mul_mod_fast(c_mul, c0, m, m_inv);
+ }
+
+ for(i = 0; i < n1; i++) {
+ for(l = 0; l < strip_len; l++) {
+ buf1[i * n2 + (j + l)] = buf2[i + l *n1];
+ }
+ }
+ }
+ ntt_free(s, buf2);
+ }
+ ntt_free(s, buf3);
+ return 0;
+ fail:
+ ntt_free(s, buf2);
+ ntt_free(s, buf3);
+ return -1;
+}
+
+
+/* dst = buf1, src = buf2, tmp = buf3 */
+static int ntt_conv(BFNTTState *s, NTTLimb *buf1, NTTLimb *buf2,
+ int k, int k_tot, limb_t m_idx)
+{
+ limb_t n1, n2, i;
+ int k1, k2;
+
+ if (k <= NTT_TRIG_K_MAX) {
+ k1 = k;
+ } else {
+ /* recursive split of the FFT */
+ k1 = bf_min(k / 2, NTT_TRIG_K_MAX);
+ }
+ k2 = k - k1;
+ n1 = (limb_t)1 << k1;
+ n2 = (limb_t)1 << k2;
+
+ if (ntt_fft_partial(s, buf1, k1, k2, n1, n2, 0, m_idx))
+ return -1;
+ if (ntt_fft_partial(s, buf2, k1, k2, n1, n2, 0, m_idx))
+ return -1;
+ if (k2 == 0) {
+ ntt_vec_mul(s, buf1, buf2, k, k_tot, m_idx);
+ } else {
+ for(i = 0; i < n1; i++) {
+ ntt_conv(s, buf1 + i * n2, buf2 + i * n2, k2, k_tot, m_idx);
+ }
+ }
+ if (ntt_fft_partial(s, buf1, k1, k2, n1, n2, 1, m_idx))
+ return -1;
+ return 0;
+}
+
+
+static no_inline void limb_to_ntt(BFNTTState *s,
+ NTTLimb *tabr, limb_t fft_len,
+ const limb_t *taba, limb_t a_len, int dpl,
+ int first_m_idx, int nb_mods)
+{
+ slimb_t i, n;
+ dlimb_t a, b;
+ int j, shift;
+ limb_t base_mask1, a0, a1, a2, r, m, m_inv;
+
+#if 0
+ for(i = 0; i < a_len; i++) {
+ printf("%" PRId64 ": " FMT_LIMB "\n",
+ (int64_t)i, taba[i]);
+ }
+#endif
+ memset(tabr, 0, sizeof(NTTLimb) * fft_len * nb_mods);
+ shift = dpl & (LIMB_BITS - 1);
+ if (shift == 0)
+ base_mask1 = -1;
+ else
+ base_mask1 = ((limb_t)1 << shift) - 1;
+ n = bf_min(fft_len, (a_len * LIMB_BITS + dpl - 1) / dpl);
+ for(i = 0; i < n; i++) {
+ a0 = get_bits(taba, a_len, i * dpl);
+ if (dpl <= LIMB_BITS) {
+ a0 &= base_mask1;
+ a = a0;
+ } else {
+ a1 = get_bits(taba, a_len, i * dpl + LIMB_BITS);
+ if (dpl <= (LIMB_BITS + NTT_MOD_LOG2_MIN)) {
+ a = a0 | ((dlimb_t)(a1 & base_mask1) << LIMB_BITS);
+ } else {
+ if (dpl > 2 * LIMB_BITS) {
+ a2 = get_bits(taba, a_len, i * dpl + LIMB_BITS * 2) &
+ base_mask1;
+ } else {
+ a1 &= base_mask1;
+ a2 = 0;
+ }
+ // printf("a=0x%016lx%016lx%016lx\n", a2, a1, a0);
+ a = (a0 >> (LIMB_BITS - NTT_MOD_LOG2_MAX + NTT_MOD_LOG2_MIN)) |
+ ((dlimb_t)a1 << (NTT_MOD_LOG2_MAX - NTT_MOD_LOG2_MIN)) |
+ ((dlimb_t)a2 << (LIMB_BITS + NTT_MOD_LOG2_MAX - NTT_MOD_LOG2_MIN));
+ a0 &= ((limb_t)1 << (LIMB_BITS - NTT_MOD_LOG2_MAX + NTT_MOD_LOG2_MIN)) - 1;
+ }
+ }
+ for(j = 0; j < nb_mods; j++) {
+ m = ntt_mods[first_m_idx + j];
+ m_inv = s->ntt_mods_div[first_m_idx + j];
+ r = mod_fast(a, m, m_inv);
+ if (dpl > (LIMB_BITS + NTT_MOD_LOG2_MIN)) {
+ b = ((dlimb_t)r << (LIMB_BITS - NTT_MOD_LOG2_MAX + NTT_MOD_LOG2_MIN)) | a0;
+ r = mod_fast(b, m, m_inv);
+ }
+ tabr[i + j * fft_len] = int_to_ntt_limb(r, m);
+ }
+ }
+}
+
+#if defined(__AVX2__)
+
+#define VEC_LEN 4
+
+typedef union {
+ __m256d v;
+ double d[4];
+} VecUnion;
+
+static no_inline void ntt_to_limb(BFNTTState *s, limb_t *tabr, limb_t r_len,
+ const NTTLimb *buf, int fft_len_log2, int dpl,
+ int nb_mods)
+{
+ const limb_t *mods = ntt_mods + NB_MODS - nb_mods;
+ const __m256d *mods_cr_vec, *mf, *m_inv;
+ VecUnion y[NB_MODS];
+ limb_t u[NB_MODS], carry[NB_MODS], fft_len, base_mask1, r;
+ slimb_t i, len, pos;
+ int j, k, l, shift, n_limb1, p;
+ dlimb_t t;
+
+ j = NB_MODS * (NB_MODS - 1) / 2 - nb_mods * (nb_mods - 1) / 2;
+ mods_cr_vec = s->ntt_mods_cr_vec + j;
+ mf = s->ntt_mods_vec + NB_MODS - nb_mods;
+ m_inv = s->ntt_mods_inv_vec + NB_MODS - nb_mods;
+
+ shift = dpl & (LIMB_BITS - 1);
+ if (shift == 0)
+ base_mask1 = -1;
+ else
+ base_mask1 = ((limb_t)1 << shift) - 1;
+ n_limb1 = ((unsigned)dpl - 1) / LIMB_BITS;
+ for(j = 0; j < NB_MODS; j++)
+ carry[j] = 0;
+ for(j = 0; j < NB_MODS; j++)
+ u[j] = 0; /* avoid warnings */
+ memset(tabr, 0, sizeof(limb_t) * r_len);
+ fft_len = (limb_t)1 << fft_len_log2;
+ len = bf_min(fft_len, (r_len * LIMB_BITS + dpl - 1) / dpl);
+ len = (len + VEC_LEN - 1) & ~(VEC_LEN - 1);
+ i = 0;
+ while (i < len) {
+ for(j = 0; j < nb_mods; j++)
+ y[j].v = *(__m256d *)&buf[i + fft_len * j];
+
+ /* Chinese remainder to get mixed radix representation */
+ l = 0;
+ for(j = 0; j < nb_mods - 1; j++) {
+ y[j].v = ntt_mod1(y[j].v, mf[j]);
+ for(k = j + 1; k < nb_mods; k++) {
+ y[k].v = ntt_mul_mod(y[k].v - y[j].v,
+ mods_cr_vec[l], mf[k], m_inv[k]);
+ l++;
+ }
+ }
+ y[j].v = ntt_mod1(y[j].v, mf[j]);
+
+ for(p = 0; p < VEC_LEN; p++) {
+ /* back to normal representation */
+ u[0] = (int64_t)y[nb_mods - 1].d[p];
+ l = 1;
+ for(j = nb_mods - 2; j >= 1; j--) {
+ r = (int64_t)y[j].d[p];
+ for(k = 0; k < l; k++) {
+ t = (dlimb_t)u[k] * mods[j] + r;
+ r = t >> LIMB_BITS;
+ u[k] = t;
+ }
+ u[l] = r;
+ l++;
+ }
+ /* XXX: for nb_mods = 5, l should be 4 */
+
+ /* last step adds the carry */
+ r = (int64_t)y[0].d[p];
+ for(k = 0; k < l; k++) {
+ t = (dlimb_t)u[k] * mods[j] + r + carry[k];
+ r = t >> LIMB_BITS;
+ u[k] = t;
+ }
+ u[l] = r + carry[l];
+
+#if 0
+ printf("%" PRId64 ": ", i);
+ for(j = nb_mods - 1; j >= 0; j--) {
+ printf(" %019" PRIu64, u[j]);
+ }
+ printf("\n");
+#endif
+
+ /* write the digits */
+ pos = i * dpl;
+ for(j = 0; j < n_limb1; j++) {
+ put_bits(tabr, r_len, pos, u[j]);
+ pos += LIMB_BITS;
+ }
+ put_bits(tabr, r_len, pos, u[n_limb1] & base_mask1);
+ /* shift by dpl digits and set the carry */
+ if (shift == 0) {
+ for(j = n_limb1 + 1; j < nb_mods; j++)
+ carry[j - (n_limb1 + 1)] = u[j];
+ } else {
+ for(j = n_limb1; j < nb_mods - 1; j++) {
+ carry[j - n_limb1] = (u[j] >> shift) |
+ (u[j + 1] << (LIMB_BITS - shift));
+ }
+ carry[nb_mods - 1 - n_limb1] = u[nb_mods - 1] >> shift;
+ }
+ i++;
+ }
+ }
+}
+#else
+static no_inline void ntt_to_limb(BFNTTState *s, limb_t *tabr, limb_t r_len,
+ const NTTLimb *buf, int fft_len_log2, int dpl,
+ int nb_mods)
+{
+ const limb_t *mods = ntt_mods + NB_MODS - nb_mods;
+ const limb_t *mods_cr, *mods_cr_inv;
+ limb_t y[NB_MODS], u[NB_MODS], carry[NB_MODS], fft_len, base_mask1, r;
+ slimb_t i, len, pos;
+ int j, k, l, shift, n_limb1;
+ dlimb_t t;
+
+ j = NB_MODS * (NB_MODS - 1) / 2 - nb_mods * (nb_mods - 1) / 2;
+ mods_cr = ntt_mods_cr + j;
+ mods_cr_inv = s->ntt_mods_cr_inv + j;
+
+ shift = dpl & (LIMB_BITS - 1);
+ if (shift == 0)
+ base_mask1 = -1;
+ else
+ base_mask1 = ((limb_t)1 << shift) - 1;
+ n_limb1 = ((unsigned)dpl - 1) / LIMB_BITS;
+ for(j = 0; j < NB_MODS; j++)
+ carry[j] = 0;
+ for(j = 0; j < NB_MODS; j++)
+ u[j] = 0; /* avoid warnings */
+ memset(tabr, 0, sizeof(limb_t) * r_len);
+ fft_len = (limb_t)1 << fft_len_log2;
+ len = bf_min(fft_len, (r_len * LIMB_BITS + dpl - 1) / dpl);
+ for(i = 0; i < len; i++) {
+ for(j = 0; j < nb_mods; j++) {
+ y[j] = ntt_limb_to_int(buf[i + fft_len * j], mods[j]);
+ }
+
+ /* Chinese remainder to get mixed radix representation */
+ l = 0;
+ for(j = 0; j < nb_mods - 1; j++) {
+ for(k = j + 1; k < nb_mods; k++) {
+ limb_t m;
+ m = mods[k];
+ /* Note: there is no overflow in the sub_mod() because
+ the modulos are sorted by increasing order */
+ y[k] = mul_mod_fast2(y[k] - y[j] + m,
+ mods_cr[l], m, mods_cr_inv[l]);
+ l++;
+ }
+ }
+
+ /* back to normal representation */
+ u[0] = y[nb_mods - 1];
+ l = 1;
+ for(j = nb_mods - 2; j >= 1; j--) {
+ r = y[j];
+ for(k = 0; k < l; k++) {
+ t = (dlimb_t)u[k] * mods[j] + r;
+ r = t >> LIMB_BITS;
+ u[k] = t;
+ }
+ u[l] = r;
+ l++;
+ }
+
+ /* last step adds the carry */
+ r = y[0];
+ for(k = 0; k < l; k++) {
+ t = (dlimb_t)u[k] * mods[j] + r + carry[k];
+ r = t >> LIMB_BITS;
+ u[k] = t;
+ }
+ u[l] = r + carry[l];
+
+#if 0
+ printf("%" PRId64 ": ", (int64_t)i);
+ for(j = nb_mods - 1; j >= 0; j--) {
+ printf(" " FMT_LIMB, u[j]);
+ }
+ printf("\n");
+#endif
+
+ /* write the digits */
+ pos = i * dpl;
+ for(j = 0; j < n_limb1; j++) {
+ put_bits(tabr, r_len, pos, u[j]);
+ pos += LIMB_BITS;
+ }
+ put_bits(tabr, r_len, pos, u[n_limb1] & base_mask1);
+ /* shift by dpl digits and set the carry */
+ if (shift == 0) {
+ for(j = n_limb1 + 1; j < nb_mods; j++)
+ carry[j - (n_limb1 + 1)] = u[j];
+ } else {
+ for(j = n_limb1; j < nb_mods - 1; j++) {
+ carry[j - n_limb1] = (u[j] >> shift) |
+ (u[j + 1] << (LIMB_BITS - shift));
+ }
+ carry[nb_mods - 1 - n_limb1] = u[nb_mods - 1] >> shift;
+ }
+ }
+}
+#endif
+
+static int ntt_static_init(bf_context_t *s1)
+{
+ BFNTTState *s;
+ int inverse, i, j, k, l;
+ limb_t c, c_inv, c_inv2, m, m_inv;
+
+ if (s1->ntt_state)
+ return 0;
+#if defined(__AVX2__)
+ s = bf_aligned_malloc(s1, sizeof(*s), 64);
+#else
+ s = bf_malloc(s1, sizeof(*s));
+#endif
+ if (!s)
+ return -1;
+ memset(s, 0, sizeof(*s));
+ s1->ntt_state = s;
+ s->ctx = s1;
+
+ for(j = 0; j < NB_MODS; j++) {
+ m = ntt_mods[j];
+ m_inv = init_mul_mod_fast(m);
+ s->ntt_mods_div[j] = m_inv;
+#if defined(__AVX2__)
+ s->ntt_mods_vec[j] = _mm256_set1_pd(m);
+ s->ntt_mods_inv_vec[j] = _mm256_set1_pd(1.0 / (double)m);
+#endif
+ c_inv2 = (m + 1) / 2; /* 1/2 */
+ c_inv = 1;
+ for(i = 0; i <= NTT_PROOT_2EXP; i++) {
+ s->ntt_len_inv[j][i][0] = c_inv;
+ s->ntt_len_inv[j][i][1] = init_mul_mod_fast2(c_inv, m);
+ c_inv = mul_mod_fast(c_inv, c_inv2, m, m_inv);
+ }
+
+ for(inverse = 0; inverse < 2; inverse++) {
+ c = ntt_proot[inverse][j];
+ for(i = 0; i < NTT_PROOT_2EXP; i++) {
+ s->ntt_proot_pow[j][inverse][NTT_PROOT_2EXP - i] = c;
+ s->ntt_proot_pow_inv[j][inverse][NTT_PROOT_2EXP - i] =
+ init_mul_mod_fast2(c, m);
+ c = mul_mod_fast(c, c, m, m_inv);
+ }
+ }
+ }
+
+ l = 0;
+ for(j = 0; j < NB_MODS - 1; j++) {
+ for(k = j + 1; k < NB_MODS; k++) {
+#if defined(__AVX2__)
+ s->ntt_mods_cr_vec[l] = _mm256_set1_pd(int_to_ntt_limb2(ntt_mods_cr[l],
+ ntt_mods[k]));
+#else
+ s->ntt_mods_cr_inv[l] = init_mul_mod_fast2(ntt_mods_cr[l],
+ ntt_mods[k]);
+#endif
+ l++;
+ }
+ }
+ return 0;
+}
+
+int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len)
+{
+ int dpl, fft_len_log2, n_bits, nb_mods, dpl_found, fft_len_log2_found;
+ int int_bits, nb_mods_found;
+ limb_t cost, min_cost;
+
+ min_cost = -1;
+ dpl_found = 0;
+ nb_mods_found = 4;
+ fft_len_log2_found = 0;
+ for(nb_mods = 3; nb_mods <= NB_MODS; nb_mods++) {
+ int_bits = ntt_int_bits[NB_MODS - nb_mods];
+ dpl = bf_min((int_bits - 4) / 2,
+ 2 * LIMB_BITS + 2 * NTT_MOD_LOG2_MIN - NTT_MOD_LOG2_MAX);
+ for(;;) {
+ fft_len_log2 = ceil_log2((len * LIMB_BITS + dpl - 1) / dpl);
+ if (fft_len_log2 > NTT_PROOT_2EXP)
+ goto next;
+ n_bits = fft_len_log2 + 2 * dpl;
+ if (n_bits <= int_bits) {
+ cost = ((limb_t)(fft_len_log2 + 1) << fft_len_log2) * nb_mods;
+ // printf("n=%d dpl=%d: cost=%" PRId64 "\n", nb_mods, dpl, (int64_t)cost);
+ if (cost < min_cost) {
+ min_cost = cost;
+ dpl_found = dpl;
+ nb_mods_found = nb_mods;
+ fft_len_log2_found = fft_len_log2;
+ }
+ break;
+ }
+ dpl--;
+ if (dpl == 0)
+ break;
+ }
+ next: ;
+ }
+ if (!dpl_found)
+ abort();
+ /* limit dpl if possible to reduce fixed cost of limb/NTT conversion */
+ if (dpl_found > (LIMB_BITS + NTT_MOD_LOG2_MIN) &&
+ ((limb_t)(LIMB_BITS + NTT_MOD_LOG2_MIN) << fft_len_log2_found) >=
+ len * LIMB_BITS) {
+ dpl_found = LIMB_BITS + NTT_MOD_LOG2_MIN;
+ }
+ *pnb_mods = nb_mods_found;
+ *pdpl = dpl_found;
+ return fft_len_log2_found;
+}
+
+/* return 0 if OK, -1 if memory error */
+static no_inline int fft_mul(bf_context_t *s1,
+ bf_t *res, limb_t *a_tab, limb_t a_len,
+ limb_t *b_tab, limb_t b_len, int mul_flags)
+{
+ BFNTTState *s;
+ int dpl, fft_len_log2, j, nb_mods, reduced_mem;
+ slimb_t len, fft_len;
+ NTTLimb *buf1, *buf2, *ptr;
+#if defined(USE_MUL_CHECK)
+ limb_t ha, hb, hr, h_ref;
+#endif
+
+ if (ntt_static_init(s1))
+ return -1;
+ s = s1->ntt_state;
+
+ /* find the optimal number of digits per limb (dpl) */
+ len = a_len + b_len;
+ fft_len_log2 = bf_get_fft_size(&dpl, &nb_mods, len);
+ fft_len = (uint64_t)1 << fft_len_log2;
+ // printf("len=%" PRId64 " fft_len_log2=%d dpl=%d\n", len, fft_len_log2, dpl);
+#if defined(USE_MUL_CHECK)
+ ha = mp_mod1(a_tab, a_len, BF_CHKSUM_MOD, 0);
+ hb = mp_mod1(b_tab, b_len, BF_CHKSUM_MOD, 0);
+#endif
+ if ((mul_flags & (FFT_MUL_R_OVERLAP_A | FFT_MUL_R_OVERLAP_B)) == 0) {
+ if (!(mul_flags & FFT_MUL_R_NORESIZE))
+ bf_resize(res, 0);
+ } else if (mul_flags & FFT_MUL_R_OVERLAP_B) {
+ limb_t *tmp_tab, tmp_len;
+ /* it is better to free 'b' first */
+ tmp_tab = a_tab;
+ a_tab = b_tab;
+ b_tab = tmp_tab;
+ tmp_len = a_len;
+ a_len = b_len;
+ b_len = tmp_len;
+ }
+ buf1 = ntt_malloc(s, sizeof(NTTLimb) * fft_len * nb_mods);
+ if (!buf1)
+ return -1;
+ limb_to_ntt(s, buf1, fft_len, a_tab, a_len, dpl,
+ NB_MODS - nb_mods, nb_mods);
+ if ((mul_flags & (FFT_MUL_R_OVERLAP_A | FFT_MUL_R_OVERLAP_B)) ==
+ FFT_MUL_R_OVERLAP_A) {
+ if (!(mul_flags & FFT_MUL_R_NORESIZE))
+ bf_resize(res, 0);
+ }
+ reduced_mem = (fft_len_log2 >= 14);
+ if (!reduced_mem) {
+ buf2 = ntt_malloc(s, sizeof(NTTLimb) * fft_len * nb_mods);
+ if (!buf2)
+ goto fail;
+ limb_to_ntt(s, buf2, fft_len, b_tab, b_len, dpl,
+ NB_MODS - nb_mods, nb_mods);
+ if (!(mul_flags & FFT_MUL_R_NORESIZE))
+ bf_resize(res, 0); /* in case res == b */
+ } else {
+ buf2 = ntt_malloc(s, sizeof(NTTLimb) * fft_len);
+ if (!buf2)
+ goto fail;
+ }
+ for(j = 0; j < nb_mods; j++) {
+ if (reduced_mem) {
+ limb_to_ntt(s, buf2, fft_len, b_tab, b_len, dpl,
+ NB_MODS - nb_mods + j, 1);
+ ptr = buf2;
+ } else {
+ ptr = buf2 + fft_len * j;
+ }
+ if (ntt_conv(s, buf1 + fft_len * j, ptr,
+ fft_len_log2, fft_len_log2, j + NB_MODS - nb_mods))
+ goto fail;
+ }
+ if (!(mul_flags & FFT_MUL_R_NORESIZE))
+ bf_resize(res, 0); /* in case res == b and reduced mem */
+ ntt_free(s, buf2);
+ buf2 = NULL;
+ if (!(mul_flags & FFT_MUL_R_NORESIZE)) {
+ if (bf_resize(res, len))
+ goto fail;
+ }
+ ntt_to_limb(s, res->tab, len, buf1, fft_len_log2, dpl, nb_mods);
+ ntt_free(s, buf1);
+#if defined(USE_MUL_CHECK)
+ hr = mp_mod1(res->tab, len, BF_CHKSUM_MOD, 0);
+ h_ref = mul_mod(ha, hb, BF_CHKSUM_MOD);
+ if (hr != h_ref) {
+ printf("ntt_mul_error: len=%" PRId_LIMB " fft_len_log2=%d dpl=%d nb_mods=%d\n",
+ len, fft_len_log2, dpl, nb_mods);
+ // printf("ha=0x" FMT_LIMB" hb=0x" FMT_LIMB " hr=0x" FMT_LIMB " expected=0x" FMT_LIMB "\n", ha, hb, hr, h_ref);
+ exit(1);
+ }
+#endif
+ return 0;
+ fail:
+ ntt_free(s, buf1);
+ ntt_free(s, buf2);
+ return -1;
+}
+
+#else /* USE_FFT_MUL */
+
+int bf_get_fft_size(int *pdpl, int *pnb_mods, limb_t len)
+{
+ return 0;
+}
+
+#endif /* !USE_FFT_MUL */