diff options
Diffstat (limited to 'src/wal.c')
-rw-r--r-- | src/wal.c | 318 |
1 files changed, 159 insertions, 159 deletions
@@ -10,7 +10,7 @@ ** ************************************************************************* ** -** This file contains the implementation of a write-ahead log (WAL) used in +** This file contains the implementation of a write-ahead log (WAL) used in ** "journal_mode=WAL" mode. ** ** WRITE-AHEAD LOG (WAL) FILE FORMAT @@ -19,7 +19,7 @@ ** Each frame records the revised content of a single page from the ** database file. All changes to the database are recorded by writing ** frames into the WAL. Transactions commit when a frame is written that -** contains a commit marker. A single WAL can and usually does record +** contains a commit marker. A single WAL can and usually does record ** multiple transactions. Periodically, the content of the WAL is ** transferred back into the database file in an operation called a ** "checkpoint". @@ -45,11 +45,11 @@ ** ** Immediately following the wal-header are zero or more frames. Each ** frame consists of a 24-byte frame-header followed by a <page-size> bytes -** of page data. The frame-header is six big-endian 32-bit unsigned +** of page data. The frame-header is six big-endian 32-bit unsigned ** integer values, as follows: ** ** 0: Page number. -** 4: For commit records, the size of the database image in pages +** 4: For commit records, the size of the database image in pages ** after the commit. For all other records, zero. ** 8: Salt-1 (copied from the header) ** 12: Salt-2 (copied from the header) @@ -75,7 +75,7 @@ ** the checksum. The checksum is computed by interpreting the input as ** an even number of unsigned 32-bit integers: x[0] through x[N]. The ** algorithm used for the checksum is as follows: -** +** ** for i from 0 to n-1 step 2: ** s0 += x[i] + s1; ** s1 += x[i+1] + s0; @@ -83,7 +83,7 @@ ** ** Note that s0 and s1 are both weighted checksums using fibonacci weights ** in reverse order (the largest fibonacci weight occurs on the first element -** of the sequence being summed.) The s1 value spans all 32-bit +** of the sequence being summed.) The s1 value spans all 32-bit ** terms of the sequence whereas s0 omits the final term. ** ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the @@ -116,19 +116,19 @@ ** multiple concurrent readers to view different versions of the database ** content simultaneously. ** -** The reader algorithm in the previous paragraphs works correctly, but +** The reader algorithm in the previous paragraphs works correctly, but ** because frames for page P can appear anywhere within the WAL, the ** reader has to scan the entire WAL looking for page P frames. If the ** WAL is large (multiple megabytes is typical) that scan can be slow, ** and read performance suffers. To overcome this problem, a separate ** data structure called the wal-index is maintained to expedite the ** search for frames of a particular page. -** +** ** WAL-INDEX FORMAT ** ** Conceptually, the wal-index is shared memory, though VFS implementations ** might choose to implement the wal-index using a mmapped file. Because -** the wal-index is shared memory, SQLite does not support journal_mode=WAL +** the wal-index is shared memory, SQLite does not support journal_mode=WAL ** on a network filesystem. All users of the database must be able to ** share memory. ** @@ -146,19 +146,19 @@ ** byte order of the host computer. ** ** The purpose of the wal-index is to answer this question quickly: Given -** a page number P and a maximum frame index M, return the index of the +** a page number P and a maximum frame index M, return the index of the ** last frame in the wal before frame M for page P in the WAL, or return ** NULL if there are no frames for page P in the WAL prior to M. ** ** The wal-index consists of a header region, followed by an one or -** more index blocks. +** more index blocks. ** ** The wal-index header contains the total number of frames within the WAL ** in the mxFrame field. ** -** Each index block except for the first contains information on +** Each index block except for the first contains information on ** HASHTABLE_NPAGE frames. The first index block contains information on -** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and +** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and ** HASHTABLE_NPAGE are selected so that together the wal-index header and ** first index block are the same size as all other index blocks in the ** wal-index. The values are: @@ -167,10 +167,10 @@ ** HASHTABLE_NPAGE_ONE 4062 ** ** Each index block contains two sections, a page-mapping that contains the -** database page number associated with each wal frame, and a hash-table +** database page number associated with each wal frame, and a hash-table ** that allows readers to query an index block for a specific page number. ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE -** for the first index block) 32-bit page numbers. The first entry in the +** for the first index block) 32-bit page numbers. The first entry in the ** first index-block contains the database page number corresponding to the ** first frame in the WAL file. The first entry in the second index block ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in @@ -191,8 +191,8 @@ ** ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the -** hash table for each page number in the mapping section, so the hash -** table is never more than half full. The expected number of collisions +** hash table for each page number in the mapping section, so the hash +** table is never more than half full. The expected number of collisions ** prior to finding a match is 1. Each entry of the hash table is an ** 1-based index of an entry in the mapping section of the same ** index block. Let K be the 1-based index of the largest entry in @@ -211,12 +211,12 @@ ** reached) until an unused hash slot is found. Let the first unused slot ** be at index iUnused. (iUnused might be less than iKey if there was ** wrap-around.) Because the hash table is never more than half full, -** the search is guaranteed to eventually hit an unused entry. Let +** the search is guaranteed to eventually hit an unused entry. Let ** iMax be the value between iKey and iUnused, closest to iUnused, ** where aHash[iMax]==P. If there is no iMax entry (if there exists ** no hash slot such that aHash[i]==p) then page P is not in the ** current index block. Otherwise the iMax-th mapping entry of the -** current index block corresponds to the last entry that references +** current index block corresponds to the last entry that references ** page P. ** ** A hash search begins with the last index block and moves toward the @@ -241,7 +241,7 @@ ** if no values greater than K0 had ever been inserted into the hash table ** in the first place - which is what reader one wants. Meanwhile, the ** second reader using K1 will see additional values that were inserted -** later, which is exactly what reader two wants. +** later, which is exactly what reader two wants. ** ** When a rollback occurs, the value of K is decreased. Hash table entries ** that correspond to frames greater than the new K value are removed @@ -269,7 +269,7 @@ int sqlite3WalTrace = 0; ** values in the wal-header are correct and (b) the version field is not ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. ** -** Similarly, if a client successfully reads a wal-index header (i.e. the +** Similarly, if a client successfully reads a wal-index header (i.e. the ** checksum test is successful) and finds that the version field is not ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite ** returns SQLITE_CANTOPEN. @@ -284,7 +284,7 @@ int sqlite3WalTrace = 0; ** ** Technically, the various VFSes are free to implement these locks however ** they see fit. However, compatibility is encouraged so that VFSes can -** interoperate. The standard implemention used on both unix and windows +** interoperate. The standard implementation used on both unix and windows ** is for the index number to indicate a byte offset into the ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which @@ -316,7 +316,7 @@ typedef struct WalCkptInfo WalCkptInfo; ** ** The szPage value can be any power of 2 between 512 and 32768, inclusive. ** Or it can be 1 to represent a 65536-byte page. The latter case was -** added in 3.7.1 when support for 64K pages was added. +** added in 3.7.1 when support for 64K pages was added. */ struct WalIndexHdr { u32 iVersion; /* Wal-index version */ @@ -358,9 +358,9 @@ struct WalIndexHdr { ** There is one entry in aReadMark[] for each reader lock. If a reader ** holds read-lock K, then the value in aReadMark[K] is no greater than ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) -** for any aReadMark[] means that entry is unused. aReadMark[0] is +** for any aReadMark[] means that entry is unused. aReadMark[0] is ** a special case; its value is never used and it exists as a place-holder -** to avoid having to offset aReadMark[] indexs by one. Readers holding +** to avoid having to offset aReadMark[] indexes by one. Readers holding ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content ** directly from the database. ** @@ -378,7 +378,7 @@ struct WalIndexHdr { ** previous sentence is when nBackfill equals mxFrame (meaning that everything ** in the WAL has been backfilled into the database) then new readers ** will choose aReadMark[0] which has value 0 and hence such reader will -** get all their all content directly from the database file and ignore +** get all their all content directly from the database file and ignore ** the WAL. ** ** Writers normally append new frames to the end of the WAL. However, @@ -484,14 +484,14 @@ struct WalCkptInfo { ** big-endian format in the first 4 bytes of a WAL file. ** ** If the LSB is set, then the checksums for each frame within the WAL -** file are calculated by treating all data as an array of 32-bit -** big-endian words. Otherwise, they are calculated by interpreting +** file are calculated by treating all data as an array of 32-bit +** big-endian words. Otherwise, they are calculated by interpreting ** all data as 32-bit little-endian words. */ #define WAL_MAGIC 0x377f0682 /* -** Return the offset of frame iFrame in the write-ahead log file, +** Return the offset of frame iFrame in the write-ahead log file, ** assuming a database page size of szPage bytes. The offset returned ** is to the start of the write-ahead log frame-header. */ @@ -543,7 +543,7 @@ struct Wal { ** Candidate values for Wal.exclusiveMode. */ #define WAL_NORMAL_MODE 0 -#define WAL_EXCLUSIVE_MODE 1 +#define WAL_EXCLUSIVE_MODE 1 #define WAL_HEAPMEMORY_MODE 2 /* @@ -562,7 +562,7 @@ typedef u16 ht_slot; /* ** This structure is used to implement an iterator that loops through ** all frames in the WAL in database page order. Where two or more frames -** correspond to the same database page, the iterator visits only the +** correspond to the same database page, the iterator visits only the ** frame most recently written to the WAL (in other words, the frame with ** the largest index). ** @@ -598,7 +598,7 @@ struct WalIterator { #define HASHTABLE_HASH_1 383 /* Should be prime */ #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ -/* +/* ** The block of page numbers associated with the first hash-table in a ** wal-index is smaller than usual. This is so that there is a complete ** hash-table on each aligned 32KB page of the wal-index. @@ -624,7 +624,7 @@ struct WalIterator { ** ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page ** (2) rc>=SQLITE_ERROR and *ppPage==NULL -** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 +** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 ** ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 */ @@ -656,7 +656,7 @@ static SQLITE_NOINLINE int walIndexPageRealloc( pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; }else{ - rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, + rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] ); assert( pWal->apWiData[iPage]!=0 @@ -717,7 +717,7 @@ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ ) /* -** Generate or extend an 8 byte checksum based on the data in +** Generate or extend an 8 byte checksum based on the data in ** array aByte[] and the initial values of aIn[0] and aIn[1] (or ** initial values of 0 and 0 if aIn==NULL). ** @@ -829,11 +829,11 @@ static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ /* ** This function encodes a single frame header and writes it to a buffer -** supplied by the caller. A frame-header is made up of a series of +** supplied by the caller. A frame-header is made up of a series of ** 4-byte big-endian integers, as follows: ** ** 0: Page number. -** 4: For commit records, the size of the database image in pages +** 4: For commit records, the size of the database image in pages ** after the commit. For all other records, zero. ** 8: Salt-1 (copied from the wal-header) ** 12: Salt-2 (copied from the wal-header) @@ -884,13 +884,13 @@ static int walDecodeFrame( assert( WAL_FRAME_HDRSIZE==24 ); /* A frame is only valid if the salt values in the frame-header - ** match the salt values in the wal-header. + ** match the salt values in the wal-header. */ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ return 0; } - /* A frame is only valid if the page number is creater than zero. + /* A frame is only valid if the page number is greater than zero. */ pgno = sqlite3Get4byte(&aFrame[0]); if( pgno==0 ){ @@ -898,15 +898,15 @@ static int walDecodeFrame( } /* A frame is only valid if a checksum of the WAL header, - ** all prior frams, the first 16 bytes of this frame-header, - ** and the frame-data matches the checksum in the last 8 + ** all prior frames, the first 16 bytes of this frame-header, + ** and the frame-data matches the checksum in the last 8 ** bytes of this frame-header. */ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); - if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) - || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) + if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) + || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) ){ /* Checksum failed. */ return 0; @@ -941,7 +941,7 @@ static const char *walLockName(int lockIdx){ } } #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ - + /* ** Set or release locks on the WAL. Locks are either shared or exclusive. @@ -1010,15 +1010,15 @@ struct WalHashLoc { u32 iZero; /* One less than the frame number of first indexed*/ }; -/* +/* ** Return pointers to the hash table and page number array stored on ** page iHash of the wal-index. The wal-index is broken into 32KB pages ** numbered starting from 0. ** ** Set output variable pLoc->aHash to point to the start of the hash table -** in the wal-index file. Set pLoc->iZero to one less than the frame +** in the wal-index file. Set pLoc->iZero to one less than the frame ** number of the first frame indexed by this hash table. If a -** slot in the hash table is set to N, it refers to frame number +** slot in the hash table is set to N, it refers to frame number ** (pLoc->iZero+N) in the log. ** ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the @@ -1051,7 +1051,7 @@ static int walHashGet( /* ** Return the number of the wal-index page that contains the hash-table ** and page-number array that contain entries corresponding to WAL frame -** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages +** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages ** are numbered starting from 0. */ static int walFramePage(u32 iFrame){ @@ -1102,7 +1102,7 @@ static void walCleanupHash(Wal *pWal){ if( pWal->hdr.mxFrame==0 ) return; - /* Obtain pointers to the hash-table and page-number array containing + /* Obtain pointers to the hash-table and page-number array containing ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed ** that the page said hash-table and array reside on is already mapped.(1) */ @@ -1121,9 +1121,9 @@ static void walCleanupHash(Wal *pWal){ sLoc.aHash[i] = 0; } } - + /* Zero the entries in the aPgno array that correspond to frames with - ** frame numbers greater than pWal->hdr.mxFrame. + ** frame numbers greater than pWal->hdr.mxFrame. */ nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); assert( nByte>=0 ); @@ -1167,9 +1167,9 @@ static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ idx = iFrame - sLoc.iZero; assert( idx <= HASHTABLE_NSLOT/2 + 1 ); - + /* If this is the first entry to be added to this hash-table, zero the - ** entire hash table and aPgno[] array before proceeding. + ** entire hash table and aPgno[] array before proceeding. */ if( idx==1 ){ int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno); @@ -1179,8 +1179,8 @@ static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ /* If the entry in aPgno[] is already set, then the previous writer ** must have exited unexpectedly in the middle of a transaction (after - ** writing one or more dirty pages to the WAL to free up memory). - ** Remove the remnants of that writers uncommitted transaction from + ** writing one or more dirty pages to the WAL to free up memory). + ** Remove the remnants of that writers uncommitted transaction from ** the hash-table before writing any new entries. */ if( sLoc.aPgno[idx-1] ){ @@ -1231,7 +1231,7 @@ static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ /* -** Recover the wal-index by reading the write-ahead log file. +** Recover the wal-index by reading the write-ahead log file. ** ** This routine first tries to establish an exclusive lock on the ** wal-index to prevent other threads/processes from doing anything @@ -1291,16 +1291,16 @@ static int walIndexRecover(Wal *pWal){ } /* If the database page size is not a power of two, or is greater than - ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid + ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid ** data. Similarly, if the 'magic' value is invalid, ignore the whole ** WAL file. */ magic = sqlite3Get4byte(&aBuf[0]); szPage = sqlite3Get4byte(&aBuf[8]); - if( (magic&0xFFFFFFFE)!=WAL_MAGIC - || szPage&(szPage-1) - || szPage>SQLITE_MAX_PAGE_SIZE - || szPage<512 + if( (magic&0xFFFFFFFE)!=WAL_MAGIC + || szPage&(szPage-1) + || szPage>SQLITE_MAX_PAGE_SIZE + || szPage<512 ){ goto finished; } @@ -1310,7 +1310,7 @@ static int walIndexRecover(Wal *pWal){ memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); /* Verify that the WAL header checksum is correct */ - walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, + walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum ); if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) @@ -1349,7 +1349,7 @@ static int walIndexRecover(Wal *pWal){ assert( aShare!=0 || rc!=SQLITE_OK ); if( aShare==0 ) break; pWal->apWiData[iPg] = aPrivate; - + for(iFrame=iFirst; iFrame<=iLast; iFrame++){ i64 iOffset = walFrameOffset(iFrame, szPage); u32 pgno; /* Database page number for frame */ @@ -1419,8 +1419,8 @@ finished: pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; walIndexWriteHdr(pWal); - /* Reset the checkpoint-header. This is safe because this thread is - ** currently holding locks that exclude all other writers and + /* Reset the checkpoint-header. This is safe because this thread is + ** currently holding locks that exclude all other writers and ** checkpointers. Then set the values of read-mark slots 1 through N. */ pInfo = walCkptInfo(pWal); @@ -1476,8 +1476,8 @@ static void walIndexClose(Wal *pWal, int isDelete){ } } -/* -** Open a connection to the WAL file zWalName. The database file must +/* +** Open a connection to the WAL file zWalName. The database file must ** already be opened on connection pDbFd. The buffer that zWalName points ** to must remain valid for the lifetime of the returned Wal* handle. ** @@ -1487,7 +1487,7 @@ static void walIndexClose(Wal *pWal, int isDelete){ ** were to do this just after this client opened one of these files, the ** system would be badly broken. ** -** If the log file is successfully opened, SQLITE_OK is returned and +** If the log file is successfully opened, SQLITE_OK is returned and ** *ppWal is set to point to a new WAL handle. If an error occurs, ** an SQLite error code is returned and *ppWal is left unmodified. */ @@ -1592,7 +1592,7 @@ int sqlite3WalOpen( } /* -** Change the size to which the WAL file is trucated on each reset. +** Change the size to which the WAL file is truncated on each reset. */ void sqlite3WalLimit(Wal *pWal, i64 iLimit){ if( pWal ) pWal->mxWalSize = iLimit; @@ -1680,7 +1680,7 @@ static void walMerge( ht_slot logpage; Pgno dbpage; - if( (iLeft<nLeft) + if( (iLeft<nLeft) && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) ){ logpage = aLeft[iLeft++]; @@ -1778,7 +1778,7 @@ static void walMergesort( #endif } -/* +/* ** Free an iterator allocated by walIteratorInit(). */ static void walIteratorFree(WalIterator *p){ @@ -1786,7 +1786,7 @@ static void walIteratorFree(WalIterator *p){ } /* -** Construct a WalInterator object that can be used to loop over all +** Construct a WalInterator object that can be used to loop over all ** pages in the WAL following frame nBackfill in ascending order. Frames ** nBackfill or earlier may be included - excluding them is an optimization ** only. The caller must hold the checkpoint lock. @@ -1815,7 +1815,7 @@ static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ /* Allocate space for the WalIterator object. */ nSegment = walFramePage(iLast) + 1; - nByte = sizeof(WalIterator) + nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + iLast*sizeof(ht_slot); p = (WalIterator *)sqlite3_malloc64(nByte); @@ -1851,7 +1851,7 @@ static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ } aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; sLoc.iZero++; - + for(j=0; j<nEntry; j++){ aIndex[j] = (ht_slot)j; } @@ -1875,8 +1875,8 @@ static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT /* ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) -** they are supported by the VFS, and (b) the database handle is configured -** with a busy-timeout. Return 1 if blocking locks are successfully enabled, +** they are supported by the VFS, and (b) the database handle is configured +** with a busy-timeout. Return 1 if blocking locks are successfully enabled, ** or 0 otherwise. */ static int walEnableBlocking(Wal *pWal){ @@ -1905,7 +1905,7 @@ static void walDisableBlocking(Wal *pWal){ /* ** If parameter bLock is true, attempt to enable blocking locks, take ** the WRITER lock, and then disable blocking locks. If blocking locks -** cannot be enabled, no attempt to obtain the WRITER lock is made. Return +** cannot be enabled, no attempt to obtain the WRITER lock is made. Return ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not ** an error if blocking locks can not be enabled. ** @@ -2002,8 +2002,8 @@ static int walPagesize(Wal *pWal){ ** client to write to the database (which may be this one) does so by ** writing frames into the start of the log file. ** -** The value of parameter salt1 is used as the aSalt[1] value in the -** new wal-index header. It should be passed a pseudo-random value (i.e. +** The value of parameter salt1 is used as the aSalt[1] value in the +** new wal-index header. It should be passed a pseudo-random value (i.e. ** one obtained from sqlite3_randomness()). */ static void walRestartHdr(Wal *pWal, u32 salt1){ @@ -2031,8 +2031,8 @@ static void walRestartHdr(Wal *pWal, u32 salt1){ ** that a concurrent reader might be using. ** ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when -** SQLite is in WAL-mode in synchronous=NORMAL. That means that if -** checkpoints are always run by a background thread or background +** SQLite is in WAL-mode in synchronous=NORMAL. That means that if +** checkpoints are always run by a background thread or background ** process, foreground threads will never block on a lengthy fsync call. ** ** Fsync is called on the WAL before writing content out of the WAL and @@ -2045,7 +2045,7 @@ static void walRestartHdr(Wal *pWal, u32 salt1){ ** database file. ** ** This routine uses and updates the nBackfill field of the wal-index header. -** This is the only routine that will increase the value of nBackfill. +** This is the only routine that will increase the value of nBackfill. ** (A WAL reset or recovery will revert nBackfill to zero, but not increase ** its value.) ** @@ -2135,7 +2135,7 @@ static int walCheckpoint( if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ /* If the size of the final database is larger than the current ** database plus the amount of data in the wal file, plus the - ** maximum size of the pending-byte page (65536 bytes), then + ** maximum size of the pending-byte page (65536 bytes), then ** must be corruption somewhere. */ rc = SQLITE_CORRUPT_BKPT; }else{ @@ -2194,8 +2194,8 @@ static int walCheckpoint( } /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the - ** entire wal file has been copied into the database file, then block - ** until all readers have finished using the wal file. This ensures that + ** entire wal file has been copied into the database file, then block + ** until all readers have finished using the wal file. This ensures that ** the next process to write to the database restarts the wal file. */ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ @@ -2219,7 +2219,7 @@ static int walCheckpoint( ** writer clients should see that the entire log file has been ** checkpointed and behave accordingly. This seems unsafe though, ** as it would leave the system in a state where the contents of - ** the wal-index header do not match the contents of the + ** the wal-index header do not match the contents of the ** file-system. To avoid this, update the wal-index header to ** indicate that the log file contains zero valid frames. */ walRestartHdr(pWal, salt1); @@ -2281,7 +2281,7 @@ int sqlite3WalClose( if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } - rc = sqlite3WalCheckpoint(pWal, db, + rc = sqlite3WalCheckpoint(pWal, db, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); if( rc==SQLITE_OK ){ @@ -2291,7 +2291,7 @@ int sqlite3WalClose( ); if( bPersist!=1 ){ /* Try to delete the WAL file if the checkpoint completed and - ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal + ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal ** mode (!bPersist) */ isDelete = 1; }else if( pWal->mxWalSize>=0 ){ @@ -2368,7 +2368,7 @@ static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ return 1; /* Dirty read */ - } + } if( h1.isInit==0 ){ return 1; /* Malformed header - probably all zeros */ } @@ -2404,7 +2404,7 @@ static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ ** changed by this operation. If pWal->hdr is unchanged, set *pChanged ** to 0. ** -** If the wal-index header is successfully read, return SQLITE_OK. +** If the wal-index header is successfully read, return SQLITE_OK. ** Otherwise an SQLite error code. */ static int walIndexReadHdr(Wal *pWal, int *pChanged){ @@ -2412,7 +2412,7 @@ static int walIndexReadHdr(Wal *pWal, int *pChanged){ int badHdr; /* True if a header read failed */ volatile u32 *page0; /* Chunk of wal-index containing header */ - /* Ensure that page 0 of the wal-index (the page that contains the + /* Ensure that page 0 of the wal-index (the page that contains the ** wal-index header) is mapped. Return early if an error occurs here. */ assert( pChanged ); @@ -2444,7 +2444,7 @@ static int walIndexReadHdr(Wal *pWal, int *pChanged){ /* If the first page of the wal-index has been mapped, try to read the ** wal-index header immediately, without holding any lock. This usually - ** works, but may fail if the wal-index header is corrupt or currently + ** works, but may fail if the wal-index header is corrupt or currently ** being modified by another thread or process. */ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); @@ -2519,15 +2519,15 @@ static int walIndexReadHdr(Wal *pWal, int *pChanged){ ** ** The *-wal file has been read and an appropriate wal-index has been ** constructed in pWal->apWiData[] using heap memory instead of shared -** memory. +** memory. ** ** If this function returns SQLITE_OK, then the read transaction has -** been successfully opened. In this case output variable (*pChanged) +** been successfully opened. In this case output variable (*pChanged) ** is set to true before returning if the caller should discard the -** contents of the page cache before proceeding. Or, if it returns -** WAL_RETRY, then the heap memory wal-index has been discarded and -** the caller should retry opening the read transaction from the -** beginning (including attempting to map the *-shm file). +** contents of the page cache before proceeding. Or, if it returns +** WAL_RETRY, then the heap memory wal-index has been discarded and +** the caller should retry opening the read transaction from the +** beginning (including attempting to map the *-shm file). ** ** If an error occurs, an SQLite error code is returned. */ @@ -2640,8 +2640,8 @@ static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ ** the caller. */ aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; - for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); - iOffset+szFrame<=szWal; + for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); + iOffset+szFrame<=szWal; iOffset+=szFrame ){ u32 pgno; /* Database page number for frame */ @@ -2689,10 +2689,10 @@ static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ ** ** The useWal parameter is true to force the use of the WAL and disable ** the case where the WAL is bypassed because it has been completely -** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() -** to make a copy of the wal-index header into pWal->hdr. If the -** wal-index header has changed, *pChanged is set to 1 (as an indication -** to the caller that the local page cache is obsolete and needs to be +** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() +** to make a copy of the wal-index header into pWal->hdr. If the +** wal-index header has changed, *pChanged is set to 1 (as an indication +** to the caller that the local page cache is obsolete and needs to be ** flushed.) When useWal==1, the wal-index header is assumed to already ** be loaded and the pChanged parameter is unused. ** @@ -2707,7 +2707,7 @@ static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ ** bad luck when there is lots of contention for the wal-index, but that ** possibility is so small that it can be safely neglected, we believe. ** -** On success, this routine obtains a read lock on +** On success, this routine obtains a read lock on ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) ** that means the Wal does not hold any read lock. The reader must not @@ -2745,16 +2745,16 @@ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ ** ** Circumstances that cause a RETRY should only last for the briefest ** instances of time. No I/O or other system calls are done while the - ** locks are held, so the locks should not be held for very long. But + ** locks are held, so the locks should not be held for very long. But ** if we are unlucky, another process that is holding a lock might get - ** paged out or take a page-fault that is time-consuming to resolve, + ** paged out or take a page-fault that is time-consuming to resolve, ** during the few nanoseconds that it is holding the lock. In that case, ** it might take longer than normal for the lock to free. ** ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this ** is more of a scheduler yield than an actual delay. But on the 10th - ** an subsequent retries, the delays start becoming longer and longer, + ** an subsequent retries, the delays start becoming longer and longer, ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. ** The total delay time before giving up is less than 10 seconds. */ @@ -2785,9 +2785,9 @@ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ if( pWal->apWiData[0]==0 ){ /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. ** We assume this is a transient condition, so return WAL_RETRY. The - ** xShmMap() implementation used by the default unix and win32 VFS - ** modules may return SQLITE_BUSY due to a race condition in the - ** code that determines whether or not the shared-memory region + ** xShmMap() implementation used by the default unix and win32 VFS + ** modules may return SQLITE_BUSY due to a race condition in the + ** code that determines whether or not the shared-memory region ** must be zeroed before the requested page is returned. */ rc = WAL_RETRY; @@ -2828,7 +2828,7 @@ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from ** happening, this is usually correct. ** - ** However, if frames have been appended to the log (or if the log + ** However, if frames have been appended to the log (or if the log ** is wrapped and written for that matter) before the READ_LOCK(0) ** is obtained, that is not necessarily true. A checkpointer may ** have started to backfill the appended frames but crashed before @@ -2910,9 +2910,9 @@ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ ** to read any frames earlier than minFrame from the wal file - they ** can be safely read directly from the database file. ** - ** Because a ShmBarrier() call is made between taking the copy of + ** Because a ShmBarrier() call is made between taking the copy of ** nBackfill and checking that the wal-header in shared-memory still - ** matches the one cached in pWal->hdr, it is guaranteed that the + ** matches the one cached in pWal->hdr, it is guaranteed that the ** checkpointer that set nBackfill was not working with a wal-index ** header newer than that cached in pWal->hdr. If it were, that could ** cause a problem. The checkpointer could omit to checkpoint @@ -2940,15 +2940,15 @@ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ #ifdef SQLITE_ENABLE_SNAPSHOT /* -** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted +** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted ** variable so that older snapshots can be accessed. To do this, loop -** through all wal frames from nBackfillAttempted to (nBackfill+1), +** through all wal frames from nBackfillAttempted to (nBackfill+1), ** comparing their content to the corresponding page with the database ** file, if any. Set nBackfillAttempted to the frame number of the ** first frame for which the wal file content matches the db file. ** -** This is only really safe if the file-system is such that any page -** writes made by earlier checkpointers were atomic operations, which +** This is only really safe if the file-system is such that any page +** writes made by earlier checkpointers were atomic operations, which ** is not always true. It is also possible that nBackfillAttempted ** may be left set to a value larger than expected, if a wal frame ** contains content that duplicate of an earlier version of the same @@ -3045,13 +3045,13 @@ int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ bChanged = 1; } - /* It is possible that there is a checkpointer thread running + /* It is possible that there is a checkpointer thread running ** concurrent with this code. If this is the case, it may be that the - ** checkpointer has already determined that it will checkpoint - ** snapshot X, where X is later in the wal file than pSnapshot, but - ** has not yet set the pInfo->nBackfillAttempted variable to indicate + ** checkpointer has already determined that it will checkpoint + ** snapshot X, where X is later in the wal file than pSnapshot, but + ** has not yet set the pInfo->nBackfillAttempted variable to indicate ** its intent. To avoid the race condition this leads to, ensure that - ** there is no checkpointer process by taking a shared CKPT lock + ** there is no checkpointer process by taking a shared CKPT lock ** before checking pInfo->nBackfillAttempted. */ (void)walEnableBlocking(pWal); rc = walLockShared(pWal, WAL_CKPT_LOCK); @@ -3112,7 +3112,7 @@ int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ /* A client using a non-current snapshot may not ignore any frames ** from the start of the wal file. This is because, for a system ** where (minFrame < iSnapshot < maxFrame), a checkpointer may - ** have omitted to checkpoint a frame earlier than minFrame in + ** have omitted to checkpoint a frame earlier than minFrame in ** the file because there exists a frame after iSnapshot that ** is the same database page. */ pWal->minFrame = 1; @@ -3168,8 +3168,8 @@ int sqlite3WalFindFrame( /* If the "last page" field of the wal-index header snapshot is 0, then ** no data will be read from the wal under any circumstances. Return early - ** in this case as an optimization. Likewise, if pWal->readLock==0, - ** then the WAL is ignored by the reader so return early, as if the + ** in this case as an optimization. Likewise, if pWal->readLock==0, + ** then the WAL is ignored by the reader so return early, as if the ** WAL were empty. */ if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ @@ -3182,9 +3182,9 @@ int sqlite3WalFindFrame( ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). ** ** This code might run concurrently to the code in walIndexAppend() - ** that adds entries to the wal-index (and possibly to this hash - ** table). This means the value just read from the hash - ** slot (aHash[iKey]) may have been added before or after the + ** that adds entries to the wal-index (and possibly to this hash + ** table). This means the value just read from the hash + ** slot (aHash[iKey]) may have been added before or after the ** current read transaction was opened. Values added after the ** read transaction was opened may have been written incorrectly - ** i.e. these slots may contain garbage data. However, we assume @@ -3192,13 +3192,13 @@ int sqlite3WalFindFrame( ** opened remain unmodified. ** ** For the reasons above, the if(...) condition featured in the inner - ** loop of the following block is more stringent that would be required + ** loop of the following block is more stringent that would be required ** if we had exclusive access to the hash-table: ** - ** (aPgno[iFrame]==pgno): + ** (aPgno[iFrame]==pgno): ** This condition filters out normal hash-table collisions. ** - ** (iFrame<=iLast): + ** (iFrame<=iLast): ** This condition filters out entries that were added to the hash ** table after the current read-transaction had started. */ @@ -3274,7 +3274,7 @@ int sqlite3WalReadFrame( return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); } -/* +/* ** Return the size of the database in pages (or zero, if unknown). */ Pgno sqlite3WalDbsize(Wal *pWal){ @@ -3285,7 +3285,7 @@ Pgno sqlite3WalDbsize(Wal *pWal){ } -/* +/* ** This function starts a write transaction on the WAL. ** ** A read transaction must have already been started by a prior call @@ -3373,18 +3373,18 @@ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ if( ALWAYS(pWal->writeLock) ){ Pgno iMax = pWal->hdr.mxFrame; Pgno iFrame; - + /* Restore the clients cache of the wal-index header to the state it - ** was in before the client began writing to the database. + ** was in before the client began writing to the database. */ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); - for(iFrame=pWal->hdr.mxFrame+1; - ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; + for(iFrame=pWal->hdr.mxFrame+1; + ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; iFrame++ ){ /* This call cannot fail. Unless the page for which the page number - ** is passed as the second argument is (a) in the cache and + ** is passed as the second argument is (a) in the cache and ** (b) has an outstanding reference, then xUndo is either a no-op ** (if (a) is false) or simply expels the page from the cache (if (b) ** is false). @@ -3402,10 +3402,10 @@ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ return rc; } -/* -** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 -** values. This function populates the array with values required to -** "rollback" the write position of the WAL handle back to the current +/* +** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 +** values. This function populates the array with values required to +** "rollback" the write position of the WAL handle back to the current ** point in the event of a savepoint rollback (via WalSavepointUndo()). */ void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ @@ -3416,7 +3416,7 @@ void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ aWalData[3] = pWal->nCkpt; } -/* +/* ** Move the write position of the WAL back to the point identified by ** the values in the aWalData[] array. aWalData must point to an array ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated @@ -3618,7 +3618,7 @@ static int walRewriteChecksums(Wal *pWal, u32 iLast){ return rc; } -/* +/* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). */ @@ -3685,7 +3685,7 @@ int sqlite3WalFrames( walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); sqlite3Put4byte(&aWalHdr[24], aCksum[0]); sqlite3Put4byte(&aWalHdr[28], aCksum[1]); - + pWal->szPage = szPage; pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; pWal->hdr.aFrameCksum[0] = aCksum[0]; @@ -3729,7 +3729,7 @@ int sqlite3WalFrames( /* Check if this page has already been written into the wal file by ** the current transaction. If so, overwrite the existing frame and - ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that + ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that ** checksums must be recomputed when the transaction is committed. */ if( iFirst && (p->pDirty || isCommit==0) ){ u32 iWrite = 0; @@ -3813,7 +3813,7 @@ int sqlite3WalFrames( pWal->truncateOnCommit = 0; } - /* Append data to the wal-index. It is not necessary to lock the + /* Append data to the wal-index. It is not necessary to lock the ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. @@ -3852,7 +3852,7 @@ int sqlite3WalFrames( return rc; } -/* +/* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** @@ -3894,7 +3894,7 @@ int sqlite3WalCheckpoint( sqlite3WalDb(pWal, db); (void)walEnableBlocking(pWal); - /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive + /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive ** "checkpoint" lock on the database file. ** EVIDENCE-OF: R-10421-19736 If any other process is running a ** checkpoint operation at the same time, the lock cannot be obtained and @@ -3957,7 +3957,7 @@ int sqlite3WalCheckpoint( } if( isChanged ){ - /* If a new wal-index header was loaded before the checkpoint was + /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that @@ -4008,7 +4008,7 @@ int sqlite3WalCallback(Wal *pWal){ ** operation must occur while the pager is still holding the exclusive ** lock on the main database file. ** -** If op is one, then change from locking_mode=NORMAL into +** If op is one, then change from locking_mode=NORMAL into ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must ** be released. Return 1 if the transition is made and 0 if the ** WAL is already in exclusive-locking mode - meaning that this @@ -4025,8 +4025,8 @@ int sqlite3WalExclusiveMode(Wal *pWal, int op){ assert( pWal->writeLock==0 ); assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); - /* pWal->readLock is usually set, but might be -1 if there was a - ** prior error while attempting to acquire are read-lock. This cannot + /* pWal->readLock is usually set, but might be -1 if there was a + ** prior error while attempting to acquire are read-lock. This cannot ** happen if the connection is actually in exclusive mode (as no xShmLock ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. @@ -4057,10 +4057,10 @@ int sqlite3WalExclusiveMode(Wal *pWal, int op){ return rc; } -/* +/* ** Return true if the argument is non-NULL and the WAL module is using ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the -** WAL module is using shared-memory, return false. +** WAL module is using shared-memory, return false. */ int sqlite3WalHeapMemory(Wal *pWal){ return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); @@ -4096,13 +4096,13 @@ int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ /* Try to open on pSnapshot when the next read-transaction starts */ void sqlite3WalSnapshotOpen( - Wal *pWal, + Wal *pWal, sqlite3_snapshot *pSnapshot ){ pWal->pSnapshot = (WalIndexHdr*)pSnapshot; } -/* +/* ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. */ @@ -4122,7 +4122,7 @@ int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ /* ** The caller currently has a read transaction open on the database. ** This function takes a SHARED lock on the CHECKPOINTER slot and then -** checks if the snapshot passed as the second argument is still +** checks if the snapshot passed as the second argument is still ** available. If so, SQLITE_OK is returned. ** ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if |