1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
** 2013-05-28
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code to implement the percentile(Y,P) SQL function
** and similar as described below:
**
** (1) The percentile(Y,P) function is an aggregate function taking
** exactly two arguments.
**
** (2) If the P argument to percentile(Y,P) is not the same for every
** row in the aggregate then an error is thrown. The word "same"
** in the previous sentence means that the value differ by less
** than 0.001.
**
** (3) If the P argument to percentile(Y,P) evaluates to anything other
** than a number in the range of 0.0 to 100.0 inclusive then an
** error is thrown.
**
** (4) If any Y argument to percentile(Y,P) evaluates to a value that
** is not NULL and is not numeric then an error is thrown.
**
** (5) If any Y argument to percentile(Y,P) evaluates to plus or minus
** infinity then an error is thrown. (SQLite always interprets NaN
** values as NULL.)
**
** (6) Both Y and P in percentile(Y,P) can be arbitrary expressions,
** including CASE WHEN expressions.
**
** (7) The percentile(Y,P) aggregate is able to handle inputs of at least
** one million (1,000,000) rows.
**
** (8) If there are no non-NULL values for Y, then percentile(Y,P)
** returns NULL.
**
** (9) If there is exactly one non-NULL value for Y, the percentile(Y,P)
** returns the one Y value.
**
** (10) If there N non-NULL values of Y where N is two or more and
** the Y values are ordered from least to greatest and a graph is
** drawn from 0 to N-1 such that the height of the graph at J is
** the J-th Y value and such that straight lines are drawn between
** adjacent Y values, then the percentile(Y,P) function returns
** the height of the graph at P*(N-1)/100.
**
** (11) The percentile(Y,P) function always returns either a floating
** point number or NULL.
**
** (12) The percentile(Y,P) is implemented as a single C99 source-code
** file that compiles into a shared-library or DLL that can be loaded
** into SQLite using the sqlite3_load_extension() interface.
**
** (13) A separate median(Y) function is the equivalent percentile(Y,50).
**
** (14) A separate percentile_cont(Y,P) function is equivalent to
** percentile(Y,P/100.0). In other words, the fraction value in
** the second argument is in the range of 0 to 1 instead of 0 to 100.
**
** (15) A separate percentile_disc(Y,P) function is like
** percentile_cont(Y,P) except that instead of returning the weighted
** average of the nearest two input values, it returns the next lower
** value. So the percentile_disc(Y,P) will always return a value
** that was one of the inputs.
**
** (16) All of median(), percentile(Y,P), percentile_cont(Y,P) and
** percentile_disc(Y,P) can be used as window functions.
**
** Differences from standard SQL:
**
** * The percentile_cont(X,P) function is equivalent to the following in
** standard SQL:
**
** (percentile_cont(P) WITHIN GROUP (ORDER BY X))
**
** The SQLite syntax is much more compact. The standard SQL syntax
** is also supported if SQLite is compiled with the
** -DSQLITE_ENABLE_ORDERED_SET_AGGREGATES option.
**
** * No median(X) function exists in the SQL standard. App developers
** are expected to write "percentile_cont(0.5)WITHIN GROUP(ORDER BY X)".
**
** * No percentile(Y,P) function exists in the SQL standard. Instead of
** percential(Y,P), developers must write this:
** "percentile_cont(P/100.0) WITHIN GROUP (ORDER BY Y)". Note that
** the fraction parameter to percentile() goes from 0 to 100 whereas
** the fraction parameter in SQL standard percentile_cont() goes from
** 0 to 1.
**
** Implementation notes as of 2024-08-31:
**
** * The regular aggregate-function versions of these routines work
** by accumulating all values in an array of doubles, then sorting
** that array using quicksort before computing the answer. Thus
** the runtime is O(NlogN) where N is the number of rows of input.
**
** * For the window-function versions of these routines, the array of
** inputs is sorted as soon as the first value is computed. Thereafter,
** the array is kept in sorted order using an insert-sort. This
** results in O(N*K) performance where K is the size of the window.
** One can imagine alternative implementations that give O(N*logN*logK)
** performance, but they require more complex logic and data structures.
** The developers have elected to keep the asymptotically slower
** algorithm for now, for simplicity, under the theory that window
** functions are seldom used and when they are, the window size K is
** often small. The developers might revisit that decision later,
** should the need arise.
*/
#if defined(SQLITE3_H)
/* no-op */
#elif defined(SQLITE_STATIC_PERCENTILE)
# include "sqlite3.h"
#else
# include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#endif
#include <assert.h>
#include <string.h>
#include <stdlib.h>
/* The following object is the group context for a single percentile()
** aggregate. Remember all input Y values until the very end.
** Those values are accumulated in the Percentile.a[] array.
*/
typedef struct Percentile Percentile;
struct Percentile {
unsigned nAlloc; /* Number of slots allocated for a[] */
unsigned nUsed; /* Number of slots actually used in a[] */
char bSorted; /* True if a[] is already in sorted order */
char bKeepSorted; /* True if advantageous to keep a[] sorted */
char bPctValid; /* True if rPct is valid */
double rPct; /* Fraction. 0.0 to 1.0 */
double *a; /* Array of Y values */
};
/* Details of each function in the percentile family */
typedef struct PercentileFunc PercentileFunc;
struct PercentileFunc {
const char *zName; /* Function name */
char nArg; /* Number of arguments */
char mxFrac; /* Maximum value of the "fraction" input */
char bDiscrete; /* True for percentile_disc() */
};
static const PercentileFunc aPercentFunc[] = {
{ "median", 1, 1, 0 },
{ "percentile", 2, 100, 0 },
{ "percentile_cont", 2, 1, 0 },
{ "percentile_disc", 2, 1, 1 },
};
/*
** Return TRUE if the input floating-point number is an infinity.
*/
static int percentIsInfinity(double r){
sqlite3_uint64 u;
assert( sizeof(u)==sizeof(r) );
memcpy(&u, &r, sizeof(u));
return ((u>>52)&0x7ff)==0x7ff;
}
/*
** Return TRUE if two doubles differ by 0.001 or less.
*/
static int percentSameValue(double a, double b){
a -= b;
return a>=-0.001 && a<=0.001;
}
/*
** Search p (which must have p->bSorted) looking for an entry with
** value y. Return the index of that entry.
**
** If bExact is true, return -1 if the entry is not found.
**
** If bExact is false, return the index at which a new entry with
** value y should be insert in order to keep the values in sorted
** order. The smallest return value in this case will be 0, and
** the largest return value will be p->nUsed.
*/
static int percentBinarySearch(Percentile *p, double y, int bExact){
int iFirst = 0; /* First element of search range */
int iLast = p->nUsed - 1; /* Last element of search range */
while( iLast>=iFirst ){
int iMid = (iFirst+iLast)/2;
double x = p->a[iMid];
if( x<y ){
iFirst = iMid + 1;
}else if( x>y ){
iLast = iMid - 1;
}else{
return iMid;
}
}
if( bExact ) return -1;
return iFirst;
}
/*
** Generate an error for a percentile function.
**
** The error format string must have exactly one occurrence of "%%s()"
** (with two '%' characters). That substring will be replaced by the name
** of the function.
*/
static void percentError(sqlite3_context *pCtx, const char *zFormat, ...){
PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx);
char *zMsg1;
char *zMsg2;
va_list ap;
va_start(ap, zFormat);
zMsg1 = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
zMsg2 = zMsg1 ? sqlite3_mprintf(zMsg1, pFunc->zName) : 0;
sqlite3_result_error(pCtx, zMsg2, -1);
sqlite3_free(zMsg1);
sqlite3_free(zMsg2);
}
/*
** The "step" function for percentile(Y,P) is called once for each
** input row.
*/
static void percentStep(sqlite3_context *pCtx, int argc, sqlite3_value **argv){
Percentile *p;
double rPct;
int eType;
double y;
assert( argc==2 || argc==1 );
if( argc==1 ){
/* Requirement 13: median(Y) is the same as percentile(Y,50). */
rPct = 0.5;
}else{
/* Requirement 3: P must be a number between 0 and 100 */
PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx);
eType = sqlite3_value_numeric_type(argv[1]);
rPct = sqlite3_value_double(argv[1])/(double)pFunc->mxFrac;
if( (eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT)
|| rPct<0.0 || rPct>1.0
){
percentError(pCtx, "the fraction argument to %%s()"
" is not between 0.0 and %.1f",
(double)pFunc->mxFrac);
return;
}
}
/* Allocate the session context. */
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
if( p==0 ) return;
/* Remember the P value. Throw an error if the P value is different
** from any prior row, per Requirement (2). */
if( !p->bPctValid ){
p->rPct = rPct;
p->bPctValid = 1;
}else if( !percentSameValue(p->rPct,rPct) ){
percentError(pCtx, "the fraction argument to %%s()"
" is not the same for all input rows");
return;
}
/* Ignore rows for which Y is NULL */
eType = sqlite3_value_type(argv[0]);
if( eType==SQLITE_NULL ) return;
/* If not NULL, then Y must be numeric. Otherwise throw an error.
** Requirement 4 */
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
percentError(pCtx, "input to %%s() is not numeric");
return;
}
/* Throw an error if the Y value is infinity or NaN */
y = sqlite3_value_double(argv[0]);
if( percentIsInfinity(y) ){
percentError(pCtx, "Inf input to %%s()");
return;
}
/* Allocate and store the Y */
if( p->nUsed>=p->nAlloc ){
unsigned n = p->nAlloc*2 + 250;
double *a = sqlite3_realloc64(p->a, sizeof(double)*n);
if( a==0 ){
sqlite3_free(p->a);
memset(p, 0, sizeof(*p));
sqlite3_result_error_nomem(pCtx);
return;
}
p->nAlloc = n;
p->a = a;
}
if( p->nUsed==0 ){
p->a[p->nUsed++] = y;
p->bSorted = 1;
}else if( !p->bSorted || y>=p->a[p->nUsed-1] ){
p->a[p->nUsed++] = y;
}else if( p->bKeepSorted ){
int i;
i = percentBinarySearch(p, y, 0);
if( i<(int)p->nUsed ){
memmove(&p->a[i+1], &p->a[i], (p->nUsed-i)*sizeof(p->a[0]));
}
p->a[i] = y;
p->nUsed++;
}else{
p->a[p->nUsed++] = y;
p->bSorted = 0;
}
}
/*
** Interchange two doubles.
*/
#define SWAP_DOUBLE(X,Y) {double ttt=(X);(X)=(Y);(Y)=ttt;}
/*
** Sort an array of doubles.
**
** Algorithm: quicksort
**
** This is implemented separately rather than using the qsort() routine
** from the standard library because:
**
** (1) To avoid a dependency on qsort()
** (2) To avoid the function call to the comparison routine for each
** comparison.
*/
static void percentSort(double *a, unsigned int n){
int iLt; /* Entries before a[iLt] are less than rPivot */
int iGt; /* Entries at or after a[iGt] are greater than rPivot */
int i; /* Loop counter */
double rPivot; /* The pivot value */
assert( n>=2 );
if( a[0]>a[n-1] ){
SWAP_DOUBLE(a[0],a[n-1])
}
if( n==2 ) return;
iGt = n-1;
i = n/2;
if( a[0]>a[i] ){
SWAP_DOUBLE(a[0],a[i])
}else if( a[i]>a[iGt] ){
SWAP_DOUBLE(a[i],a[iGt])
}
if( n==3 ) return;
rPivot = a[i];
iLt = i = 1;
do{
if( a[i]<rPivot ){
if( i>iLt ) SWAP_DOUBLE(a[i],a[iLt])
iLt++;
i++;
}else if( a[i]>rPivot ){
do{
iGt--;
}while( iGt>i && a[iGt]>rPivot );
SWAP_DOUBLE(a[i],a[iGt])
}else{
i++;
}
}while( i<iGt );
if( iLt>=2 ) percentSort(a, iLt);
if( n-iGt>=2 ) percentSort(a+iGt, n-iGt);
/* Uncomment for testing */
#if 0
for(i=0; i<n-1; i++){
assert( a[i]<=a[i+1] );
}
#endif
}
/*
** The "inverse" function for percentile(Y,P) is called to remove a
** row that was previously inserted by "step".
*/
static void percentInverse(sqlite3_context *pCtx,int argc,sqlite3_value **argv){
Percentile *p;
int eType;
double y;
int i;
assert( argc==2 || argc==1 );
/* Allocate the session context. */
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
assert( p!=0 );
/* Ignore rows for which Y is NULL */
eType = sqlite3_value_type(argv[0]);
if( eType==SQLITE_NULL ) return;
/* If not NULL, then Y must be numeric. Otherwise throw an error.
** Requirement 4 */
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
return;
}
/* Ignore the Y value if it is infinity or NaN */
y = sqlite3_value_double(argv[0]);
if( percentIsInfinity(y) ){
return;
}
if( p->bSorted==0 ){
assert( p->nUsed>1 );
percentSort(p->a, p->nUsed);
p->bSorted = 1;
}
p->bKeepSorted = 1;
/* Find and remove the row */
i = percentBinarySearch(p, y, 1);
if( i>=0 ){
p->nUsed--;
if( i<(int)p->nUsed ){
memmove(&p->a[i], &p->a[i+1], (p->nUsed - i)*sizeof(p->a[0]));
}
}
}
/*
** Compute the final output of percentile(). Clean up all allocated
** memory if and only if bIsFinal is true.
*/
static void percentCompute(sqlite3_context *pCtx, int bIsFinal){
Percentile *p;
PercentileFunc *pFunc = (PercentileFunc*)sqlite3_user_data(pCtx);
unsigned i1, i2;
double v1, v2;
double ix, vx;
p = (Percentile*)sqlite3_aggregate_context(pCtx, 0);
if( p==0 ) return;
if( p->a==0 ) return;
if( p->nUsed ){
if( p->bSorted==0 ){
assert( p->nUsed>1 );
percentSort(p->a, p->nUsed);
p->bSorted = 1;
}
ix = p->rPct*(p->nUsed-1);
i1 = (unsigned)ix;
if( pFunc->bDiscrete ){
vx = p->a[i1];
}else{
i2 = ix==(double)i1 || i1==p->nUsed-1 ? i1 : i1+1;
v1 = p->a[i1];
v2 = p->a[i2];
vx = v1 + (v2-v1)*(ix-i1);
}
sqlite3_result_double(pCtx, vx);
}
if( bIsFinal ){
sqlite3_free(p->a);
memset(p, 0, sizeof(*p));
}else{
p->bKeepSorted = 1;
}
}
static void percentFinal(sqlite3_context *pCtx){
percentCompute(pCtx, 1);
}
static void percentValue(sqlite3_context *pCtx){
percentCompute(pCtx, 0);
}
#if defined(_WIN32) && !defined(SQLITE3_H) && !defined(SQLITE_STATIC_PERCENTILE)
__declspec(dllexport)
#endif
int sqlite3_percentile_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
unsigned int i;
#ifdef SQLITE3EXT_H
SQLITE_EXTENSION_INIT2(pApi);
#else
(void)pApi; /* Unused parameter */
#endif
(void)pzErrMsg; /* Unused parameter */
for(i=0; i<sizeof(aPercentFunc)/sizeof(aPercentFunc[0]); i++){
rc = sqlite3_create_window_function(db,
aPercentFunc[i].zName,
aPercentFunc[i].nArg,
SQLITE_UTF8|SQLITE_INNOCUOUS|SQLITE_SELFORDER1,
(void*)&aPercentFunc[i],
percentStep, percentFinal, percentValue, percentInverse, 0);
if( rc ) break;
}
return rc;
}
|