diff options
author | Noah Misch <noah@leadboat.com> | 2019-02-16 13:12:28 -0800 |
---|---|---|
committer | Noah Misch <noah@leadboat.com> | 2019-02-16 13:12:28 -0800 |
commit | 48e24ba6b7fd3bfd156b51e8d768fd48df0d288b (patch) | |
tree | 640f8e3a9121f7b5d7628287ba46c08458e3fdc6 /contrib/pgcrypto/imath.h | |
parent | d1299aabbd0b4ae860078691b628dc6b90698039 (diff) | |
download | postgresql-48e24ba6b7fd3bfd156b51e8d768fd48df0d288b.tar.gz postgresql-48e24ba6b7fd3bfd156b51e8d768fd48df0d288b.zip |
Import changes from IMath versions (1.3, 1.29].
Upstream fixed bugs over the years, but none are confirmed to have
affected pgcrypto. We're better off naively tracking upstream than
reactively maintaining a twelve-year-old snapshot of upstream. Add a
header comment describing the synchronization procedure. Discard use of
INVERT_COMPARE_RESULT(); the domain of the comparisons in question is
{-1,0,1}, controlled entirely by code in imath.c.
Andrew Gierth reviewed the Makefile change. Tom Lane reviewed the
synchronization procedure description.
Discussion: https://postgr.es/m/20190203035704.GA6226@rfd.leadboat.com
Diffstat (limited to 'contrib/pgcrypto/imath.h')
-rw-r--r-- | contrib/pgcrypto/imath.h | 493 |
1 files changed, 364 insertions, 129 deletions
diff --git a/contrib/pgcrypto/imath.h b/contrib/pgcrypto/imath.h index 2d7a5268e5c..65be7483c92 100644 --- a/contrib/pgcrypto/imath.h +++ b/contrib/pgcrypto/imath.h @@ -1,61 +1,57 @@ /* - Name: imath.h - Purpose: Arbitrary precision integer arithmetic routines. - Author: M. J. Fromberger <http://spinning-yarns.org/michael/sw/> - Info: Id: imath.h 21 2006-04-02 18:58:36Z sting - - Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved. - - Permission is hereby granted, free of charge, to any person - obtaining a copy of this software and associated documentation files - (the "Software"), to deal in the Software without restriction, - including without limitation the rights to use, copy, modify, merge, - publish, distribute, sublicense, and/or sell copies of the Software, - and to permit persons to whom the Software is furnished to do so, - subject to the following conditions: - - The above copyright notice and this permission notice shall be - included in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS - BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN - ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + Name: imath.h + Purpose: Arbitrary precision integer arithmetic routines. + Author: M. J. Fromberger + + Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in + all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/* contrib/pgcrypto/imath.h */ #ifndef IMATH_H_ #define IMATH_H_ -/* use always 32bit digits - should some arch use 16bit digits? */ -#define USE_LONG_LONG - #include <limits.h> typedef unsigned char mp_sign; typedef unsigned int mp_size; typedef int mp_result; +typedef long mp_small; /* must be a signed type */ +typedef unsigned long mp_usmall; /* must be an unsigned type */ -#ifdef USE_LONG_LONG -typedef uint32 mp_digit; -typedef uint64 mp_word; -#define MP_DIGIT_MAX 0xFFFFFFFFULL -#define MP_WORD_MAX 0xFFFFFFFFFFFFFFFFULL +/* Build with words as uint64_t by default. */ +#ifdef USE_32BIT_WORDS +typedef uint16_t mp_digit; +typedef uint32_t mp_word; +#define MP_DIGIT_MAX (UINT16_MAX * 1UL) +#define MP_WORD_MAX (UINT32_MAX * 1UL) #else -typedef uint16 mp_digit; -typedef uint32 mp_word; - -#define MP_DIGIT_MAX 0xFFFFUL -#define MP_WORD_MAX 0xFFFFFFFFUL +typedef uint32_t mp_digit; +typedef uint64_t mp_word; +#define MP_DIGIT_MAX (UINT32_MAX * UINT64_C(1)) +#define MP_WORD_MAX (UINT64_MAX) #endif -typedef struct mpz +typedef struct { + mp_digit single; mp_digit *digits; mp_size alloc; mp_size used; @@ -64,10 +60,26 @@ typedef struct mpz *mp_int; -#define MP_DIGITS(Z) ((Z)->digits) -#define MP_ALLOC(Z) ((Z)->alloc) -#define MP_USED(Z) ((Z)->used) -#define MP_SIGN(Z) ((Z)->sign) +static inline mp_digit * +MP_DIGITS(mp_int Z) +{ + return Z->digits; +} +static inline mp_size +MP_ALLOC(mp_int Z) +{ + return Z->alloc; +} +static inline mp_size +MP_USED(mp_int Z) +{ + return Z->used; +} +static inline mp_sign +MP_SIGN(mp_int Z) +{ + return Z->sign; +} extern const mp_result MP_OK; extern const mp_result MP_FALSE; @@ -77,134 +89,357 @@ extern const mp_result MP_RANGE; extern const mp_result MP_UNDEF; extern const mp_result MP_TRUNC; extern const mp_result MP_BADARG; +extern const mp_result MP_MINERR; + +#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT) +#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT) +#define MP_SMALL_MIN LONG_MIN +#define MP_SMALL_MAX LONG_MAX +#define MP_USMALL_MAX ULONG_MAX + +#define MP_MIN_RADIX 2 +#define MP_MAX_RADIX 36 -#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT) -#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT) +/** Sets the default number of digits allocated to an `mp_int` constructed by + `mp_int_init_size()` with `prec == 0`. Allocations are rounded up to + multiples of this value. `MP_DEFAULT_PREC` is the default value. Requires + `ndigits > 0`. */ +void mp_int_default_precision(mp_size ndigits); -#define MP_MIN_RADIX 2 -#define MP_MAX_RADIX 36 +/** Sets the number of digits below which multiplication will use the standard + quadratic "schoolbook" multiplcation algorithm rather than Karatsuba-Ofman. + Requires `ndigits >= sizeof(mp_word)`. */ +void mp_int_multiply_threshold(mp_size ndigits); +/** A sign indicating a (strictly) negative value. */ extern const mp_sign MP_NEG; + +/** A sign indicating a zero or positive value. */ extern const mp_sign MP_ZPOS; -#define mp_int_is_odd(Z) ((Z)->digits[0] & 1) -#define mp_int_is_even(Z) !((Z)->digits[0] & 1) +/** Reports whether `z` is odd, having remainder 1 when divided by 2. */ +static inline bool +mp_int_is_odd(mp_int z) +{ + return (z->digits[0] & 1) != 0; +} -mp_size mp_get_default_precision(void); -void mp_set_default_precision(mp_size s); -mp_size mp_get_multiply_threshold(void); -void mp_set_multiply_threshold(mp_size s); +/** Reports whether `z` is even, having remainder 0 when divided by 2. */ +static inline bool +mp_int_is_even(mp_int z) +{ + return (z->digits[0] & 1) == 0; +} +/** Initializes `z` with 1-digit precision and sets it to zero. This function + cannot fail unless `z == NULL`. */ mp_result mp_int_init(mp_int z); + +/** Allocates a fresh zero-valued `mpz_t` on the heap, returning NULL in case + of error. The only possible error is out-of-memory. */ mp_int mp_int_alloc(void); + +/** Initializes `z` with at least `prec` digits of storage, and sets it to + zero. If `prec` is zero, the default precision is used. In either case the + size is rounded up to the nearest multiple of the word size. */ mp_result mp_int_init_size(mp_int z, mp_size prec); + +/** Initializes `z` to be a copy of an already-initialized value in `old`. The + new copy does not share storage with the original. */ mp_result mp_int_init_copy(mp_int z, mp_int old); -mp_result mp_int_init_value(mp_int z, int value); -mp_result mp_int_set_value(mp_int z, int value); + +/** Initializes `z` to the specified signed `value` at default precision. */ +mp_result mp_int_init_value(mp_int z, mp_small value); + +/** Initializes `z` to the specified unsigned `value` at default precision. */ +mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue); + +/** Sets `z` to the value of the specified signed `value`. */ +mp_result mp_int_set_value(mp_int z, mp_small value); + +/** Sets `z` to the value of the specified unsigned `value`. */ +mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue); + +/** Releases the storage used by `z`. */ void mp_int_clear(mp_int z); + +/** Releases the storage used by `z` and also `z` itself. + This should only be used for `z` allocated by `mp_int_alloc()`. */ void mp_int_free(mp_int z); -mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */ -void mp_int_swap(mp_int a, mp_int c); /* swap a, c */ -void mp_int_zero(mp_int z); /* z = 0 */ -mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */ -mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */ -mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */ -mp_result mp_int_add_value(mp_int a, int value, mp_int c); -mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */ -mp_result mp_int_sub_value(mp_int a, int value, mp_int c); -mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */ -mp_result mp_int_mul_value(mp_int a, int value, mp_int c); -mp_result mp_int_mul_pow2(mp_int a, int p2, mp_int c); -mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */ - -mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */ - mp_int q, mp_int r); /* r = a % b */ -mp_result mp_int_div_value(mp_int a, int value, /* q = a / value */ - mp_int q, int *r); /* r = a % value */ -mp_result mp_int_div_pow2(mp_int a, int p2, /* q = a / 2^p2 */ - mp_int q, mp_int r); /* r = q % 2^p2 */ -mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */ - -#define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R)) -mp_result mp_int_expt(mp_int a, int b, mp_int c); /* c = a^b */ -mp_result mp_int_expt_value(int a, int b, mp_int c); /* c = a^b */ - -int mp_int_compare(mp_int a, mp_int b); /* a <=> b */ -int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */ -int mp_int_compare_zero(mp_int z); /* a <=> 0 */ -int mp_int_compare_value(mp_int z, int value); /* a <=> v */ - -/* Returns true if v|a, false otherwise (including errors) */ -int mp_int_divisible_value(mp_int a, int v); - -/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */ +/** Replaces the value of `c` with a copy of the value of `a`. No new memory is + allocated unless `a` has more significant digits than `c` has allocated. */ +mp_result mp_int_copy(mp_int a, mp_int c); + +/** Swaps the values and storage between `a` and `c`. */ +void mp_int_swap(mp_int a, mp_int c); + +/** Sets `z` to zero. The allocated storage of `z` is not changed. */ +void mp_int_zero(mp_int z); + +/** Sets `c` to the absolute value of `a`. */ +mp_result mp_int_abs(mp_int a, mp_int c); + +/** Sets `c` to the additive inverse (negation) of `a`. */ +mp_result mp_int_neg(mp_int a, mp_int c); + +/** Sets `c` to the sum of `a` and `b`. */ +mp_result mp_int_add(mp_int a, mp_int b, mp_int c); + +/** Sets `c` to the sum of `a` and `value`. */ +mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c); + +/** Sets `c` to the difference of `a` less `b`. */ +mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); + +/** Sets `c` to the difference of `a` less `value`. */ +mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c); + +/** Sets `c` to the product of `a` and `b`. */ +mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); + +/** Sets `c` to the product of `a` and `value`. */ +mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c); + +/** Sets `c` to the product of `a` and `2^p2`. Requires `p2 >= 0`. */ +mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c); + +/** Sets `c` to the square of `a`. */ +mp_result mp_int_sqr(mp_int a, mp_int c); + +/** Sets `q` and `r` to the quotent and remainder of `a / b`. Division by + powers of 2 is detected and handled efficiently. The remainder is pinned + to `0 <= r < b`. + + Either of `q` or `r` may be NULL, but not both, and `q` and `r` may not + point to the same value. */ +mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r); + +/** Sets `q` and `*r` to the quotent and remainder of `a / value`. Division by + powers of 2 is detected and handled efficiently. The remainder is pinned to + `0 <= *r < b`. Either of `q` or `r` may be NULL. */ +mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small * r); + +/** Sets `q` and `r` to the quotient and remainder of `a / 2^p2`. This is a + special case for division by powers of two that is more efficient than + using ordinary division. Note that `mp_int_div()` will automatically handle + this case, this function is for cases where you have only the exponent. */ +mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r); + +/** Sets `c` to the remainder of `a / m`. + The remainder is pinned to `0 <= c < m`. */ +mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); + +/** Sets `c` to the value of `a` raised to the `b` power. + It returns `MP_RANGE` if `b < 0`. */ +mp_result mp_int_expt(mp_int a, mp_small b, mp_int c); + +/** Sets `c` to the value of `a` raised to the `b` power. + It returns `MP_RANGE` if `b < 0`. */ +mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c); + +/** Sets `c` to the value of `a` raised to the `b` power. + It returns `MP_RANGE`) if `b < 0`. */ +mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c); + +/** Sets `*r` to the remainder of `a / value`. + The remainder is pinned to `0 <= r < value`. */ +static inline +mp_result +mp_int_mod_value(mp_int a, mp_small value, mp_small * r) +{ + return mp_int_div_value(a, value, 0, r); +} + +/** Returns the comparator of `a` and `b`. */ +int mp_int_compare(mp_int a, mp_int b); + +/** Returns the comparator of the magnitudes of `a` and `b`, disregarding their + signs. Neither `a` nor `b` is modified by the comparison. */ +int mp_int_compare_unsigned(mp_int a, mp_int b); + +/** Returns the comparator of `z` and zero. */ +int mp_int_compare_zero(mp_int z); + +/** Returns the comparator of `z` and the signed value `v`. */ +int mp_int_compare_value(mp_int z, mp_small v); + +/** Returns the comparator of `z` and the unsigned value `uv`. */ +int mp_int_compare_uvalue(mp_int z, mp_usmall uv); + +/** Reports whether `a` is divisible by `v`. */ +bool mp_int_divisible_value(mp_int a, mp_small v); + +/** Returns `k >= 0` such that `z` is `2^k`, if such a `k` exists. If no such + `k` exists, the function returns -1. */ int mp_int_is_pow2(mp_int z); -mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, - mp_int c); /* c = a^b (mod m) */ -mp_result mp_int_exptmod_evalue(mp_int a, int value, - mp_int m, mp_int c); /* c = a^v (mod m) */ -mp_result mp_int_exptmod_bvalue(int value, mp_int b, - mp_int m, mp_int c); /* c = v^b (mod m) */ -mp_result mp_int_exptmod_known(mp_int a, mp_int b, - mp_int m, mp_int mu, - mp_int c); /* c = a^b (mod m) */ +/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`. + It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */ +mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c); + +/** Sets `c` to the value of `a` raised to the `value` power, modulo `m`. + It returns `MP_RANGE` if `value < 0` or `MP_UNDEF` if `m == 0`. */ +mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c); + +/** Sets `c` to the value of `value` raised to the `b` power, modulo `m`. + It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */ +mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c); + +/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`, + given a precomputed reduction constant `mu` defined for Barrett's modular + reduction algorithm. + + It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */ +mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c); + +/** Sets `c` to the reduction constant for Barrett reduction by modulus `m`. + Requires that `c` and `m` point to distinct locations. */ mp_result mp_int_redux_const(mp_int m, mp_int c); -mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */ +/** Sets `c` to the multiplicative inverse of `a` modulo `m`, if it exists. + The least non-negative representative of the congruence class is computed. + + It returns `MP_UNDEF` if the inverse does not exist, or `MP_RANGE` if `a == + 0` or `m <= 0`. */ +mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); + +/** Sets `c` to the greatest common divisor of `a` and `b`. + + It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a` + and `b` are both zero. */ +mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); -mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */ +/** Sets `c` to the greatest common divisor of `a` and `b`, and sets `x` and + `y` to values satisfying Bezout's identity `gcd(a, b) = ax + by`. -mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */ - mp_int x, mp_int y); /* c = ax + by */ + It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a` + and `b` are both zero. */ +mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y); -mp_result mp_int_sqrt(mp_int a, mp_int c); /* c = floor(sqrt(q)) */ +/** Sets `c` to the least common multiple of `a` and `b`. -/* Convert to an int, if representable (returns MP_RANGE if not). */ -mp_result mp_int_to_int(mp_int z, int *out); + It returns `MP_UNDEF` if the LCM is undefined, such as for example if `a` + and `b` are both zero. */ +mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c); -/* Convert to nul-terminated string with the specified radix, writing at - most limit characters including the nul terminator */ -mp_result mp_int_to_string(mp_int z, mp_size radix, - char *str, int limit); +/** Sets `c` to the greatest integer not less than the `b`th root of `a`, + using Newton's root-finding algorithm. + It returns `MP_UNDEF` if `a < 0` and `b` is even. */ +mp_result mp_int_root(mp_int a, mp_small b, mp_int c); -/* Return the number of characters required to represent - z in the given radix. May over-estimate. */ +/** Sets `c` to the greatest integer not less than the square root of `a`. + This is a special case of `mp_int_root()`. */ +static inline +mp_result +mp_int_sqrt(mp_int a, mp_int c) +{ + return mp_int_root(a, 2, c); +} + +/** Returns `MP_OK` if `z` is representable as `mp_small`, else `MP_RANGE`. + If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */ +mp_result mp_int_to_int(mp_int z, mp_small * out); + +/** Returns `MP_OK` if `z` is representable as `mp_usmall`, or `MP_RANGE`. + If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */ +mp_result mp_int_to_uint(mp_int z, mp_usmall * out); + +/** Converts `z` to a zero-terminated string of characters in the specified + `radix`, writing at most `limit` characters to `str` including the + terminating NUL value. A leading `-` is used to indicate a negative value. + + Returns `MP_TRUNC` if `limit` was to small to write all of `z`. + Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ +mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit); + +/** Reports the minimum number of characters required to represent `z` as a + zero-terminated string in the given `radix`. + Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ mp_result mp_int_string_len(mp_int z, mp_size radix); -/* Read zero-terminated string into z */ +/** Reads a string of ASCII digits in the specified `radix` from the zero + terminated `str` provided into `z`. For values of `radix > 10`, the letters + `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect + to case. + + Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a + sign flag. Processing stops when a NUL or any other character out of range + for a digit in the given radix is encountered. + + If the whole string was consumed, `MP_OK` is returned; otherwise + `MP_TRUNC`. is returned. + + Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str); -mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, - char **end); -/* Return the number of significant bits in z */ +/** Reads a string of ASCII digits in the specified `radix` from the zero + terminated `str` provided into `z`. For values of `radix > 10`, the letters + `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect + to case. + + Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a + sign flag. Processing stops when a NUL or any other character out of range + for a digit in the given radix is encountered. + + If the whole string was consumed, `MP_OK` is returned; otherwise + `MP_TRUNC`. is returned. If `end` is not NULL, `*end` is set to point to + the first unconsumed byte of the input string (the NUL byte if the whole + string was consumed). This emulates the behavior of the standard C + `strtol()` function. + + Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */ +mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end); + +/** Returns the number of significant bits in `z`. */ mp_result mp_int_count_bits(mp_int z); -/* Convert z to two's complement binary, writing at most limit bytes */ +/** Converts `z` to 2's complement binary, writing at most `limit` bytes into + the given `buf`. Returns `MP_TRUNC` if the buffer limit was too small to + contain the whole value. If this occurs, the contents of buf will be + effectively garbage, as the function uses the buffer as scratch space. + + The binary representation of `z` is in base-256 with digits ordered from + most significant to least significant (network byte ordering). The + high-order bit of the first byte is set for negative values, clear for + non-negative values. + + As a result, non-negative values will be padded with a leading zero byte if + the high-order byte of the base-256 magnitude is set. This extra byte is + accounted for by the `mp_int_binary_len()` function. */ mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit); -/* Read a two's complement binary value into z from the given buffer */ +/** Reads a 2's complement binary value from `buf` into `z`, where `len` is the + length of the buffer. The contents of `buf` may be overwritten during + processing, although they will be restored when the function returns. */ mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len); -/* Return the number of bytes required to represent z in binary. */ +/** Returns the number of bytes to represent `z` in 2's complement binary. */ mp_result mp_int_binary_len(mp_int z); -/* Convert z to unsigned binary, writing at most limit bytes */ +/** Converts the magnitude of `z` to unsigned binary, writing at most `limit` + bytes into the given `buf`. The sign of `z` is ignored, but `z` is not + modified. Returns `MP_TRUNC` if the buffer limit was too small to contain + the whole value. If this occurs, the contents of `buf` will be effectively + garbage, as the function uses the buffer as scratch space during + conversion. + + The binary representation of `z` is in base-256 with digits ordered from + most significant to least significant (network byte ordering). */ mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit); -/* Read an unsigned binary value into z from the given buffer */ +/** Reads an unsigned binary value from `buf` into `z`, where `len` is the + length of the buffer. The contents of `buf` are not modified during + processing. */ mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len); -/* Return the number of bytes required to represent z as unsigned output */ +/** Returns the number of bytes required to represent `z` as an unsigned binary + value in base 256. */ mp_result mp_int_unsigned_len(mp_int z); -/* Return a statically allocated string describing error code res */ +/** Returns a pointer to a brief, human-readable, zero-terminated string + describing `res`. The returned string is statically allocated and must not + be freed by the caller. */ const char *mp_error_string(mp_result res); -#if 0 -void s_print(char *tag, mp_int z); -void s_print_buf(char *tag, mp_digit *buf, mp_size num); -#endif - #endif /* end IMATH_H_ */ |