aboutsummaryrefslogtreecommitdiff
path: root/contrib/pgcrypto/imath.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/pgcrypto/imath.h')
-rw-r--r--contrib/pgcrypto/imath.h493
1 files changed, 364 insertions, 129 deletions
diff --git a/contrib/pgcrypto/imath.h b/contrib/pgcrypto/imath.h
index 2d7a5268e5c..65be7483c92 100644
--- a/contrib/pgcrypto/imath.h
+++ b/contrib/pgcrypto/imath.h
@@ -1,61 +1,57 @@
/*
- Name: imath.h
- Purpose: Arbitrary precision integer arithmetic routines.
- Author: M. J. Fromberger <http://spinning-yarns.org/michael/sw/>
- Info: Id: imath.h 21 2006-04-02 18:58:36Z sting
-
- Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
-
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ Name: imath.h
+ Purpose: Arbitrary precision integer arithmetic routines.
+ Author: M. J. Fromberger
+
+ Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
+
+ Permission is hereby granted, free of charge, to any person obtaining a copy
+ of this software and associated documentation files (the "Software"), to deal
+ in the Software without restriction, including without limitation the rights
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ copies of the Software, and to permit persons to whom the Software is
+ furnished to do so, subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be included in
+ all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
-/* contrib/pgcrypto/imath.h */
#ifndef IMATH_H_
#define IMATH_H_
-/* use always 32bit digits - should some arch use 16bit digits? */
-#define USE_LONG_LONG
-
#include <limits.h>
typedef unsigned char mp_sign;
typedef unsigned int mp_size;
typedef int mp_result;
+typedef long mp_small; /* must be a signed type */
+typedef unsigned long mp_usmall; /* must be an unsigned type */
-#ifdef USE_LONG_LONG
-typedef uint32 mp_digit;
-typedef uint64 mp_word;
-#define MP_DIGIT_MAX 0xFFFFFFFFULL
-#define MP_WORD_MAX 0xFFFFFFFFFFFFFFFFULL
+/* Build with words as uint64_t by default. */
+#ifdef USE_32BIT_WORDS
+typedef uint16_t mp_digit;
+typedef uint32_t mp_word;
+#define MP_DIGIT_MAX (UINT16_MAX * 1UL)
+#define MP_WORD_MAX (UINT32_MAX * 1UL)
#else
-typedef uint16 mp_digit;
-typedef uint32 mp_word;
-
-#define MP_DIGIT_MAX 0xFFFFUL
-#define MP_WORD_MAX 0xFFFFFFFFUL
+typedef uint32_t mp_digit;
+typedef uint64_t mp_word;
+#define MP_DIGIT_MAX (UINT32_MAX * UINT64_C(1))
+#define MP_WORD_MAX (UINT64_MAX)
#endif
-typedef struct mpz
+typedef struct
{
+ mp_digit single;
mp_digit *digits;
mp_size alloc;
mp_size used;
@@ -64,10 +60,26 @@ typedef struct mpz
*mp_int;
-#define MP_DIGITS(Z) ((Z)->digits)
-#define MP_ALLOC(Z) ((Z)->alloc)
-#define MP_USED(Z) ((Z)->used)
-#define MP_SIGN(Z) ((Z)->sign)
+static inline mp_digit *
+MP_DIGITS(mp_int Z)
+{
+ return Z->digits;
+}
+static inline mp_size
+MP_ALLOC(mp_int Z)
+{
+ return Z->alloc;
+}
+static inline mp_size
+MP_USED(mp_int Z)
+{
+ return Z->used;
+}
+static inline mp_sign
+MP_SIGN(mp_int Z)
+{
+ return Z->sign;
+}
extern const mp_result MP_OK;
extern const mp_result MP_FALSE;
@@ -77,134 +89,357 @@ extern const mp_result MP_RANGE;
extern const mp_result MP_UNDEF;
extern const mp_result MP_TRUNC;
extern const mp_result MP_BADARG;
+extern const mp_result MP_MINERR;
+
+#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
+#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
+#define MP_SMALL_MIN LONG_MIN
+#define MP_SMALL_MAX LONG_MAX
+#define MP_USMALL_MAX ULONG_MAX
+
+#define MP_MIN_RADIX 2
+#define MP_MAX_RADIX 36
-#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
-#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
+/** Sets the default number of digits allocated to an `mp_int` constructed by
+ `mp_int_init_size()` with `prec == 0`. Allocations are rounded up to
+ multiples of this value. `MP_DEFAULT_PREC` is the default value. Requires
+ `ndigits > 0`. */
+void mp_int_default_precision(mp_size ndigits);
-#define MP_MIN_RADIX 2
-#define MP_MAX_RADIX 36
+/** Sets the number of digits below which multiplication will use the standard
+ quadratic "schoolbook" multiplcation algorithm rather than Karatsuba-Ofman.
+ Requires `ndigits >= sizeof(mp_word)`. */
+void mp_int_multiply_threshold(mp_size ndigits);
+/** A sign indicating a (strictly) negative value. */
extern const mp_sign MP_NEG;
+
+/** A sign indicating a zero or positive value. */
extern const mp_sign MP_ZPOS;
-#define mp_int_is_odd(Z) ((Z)->digits[0] & 1)
-#define mp_int_is_even(Z) !((Z)->digits[0] & 1)
+/** Reports whether `z` is odd, having remainder 1 when divided by 2. */
+static inline bool
+mp_int_is_odd(mp_int z)
+{
+ return (z->digits[0] & 1) != 0;
+}
-mp_size mp_get_default_precision(void);
-void mp_set_default_precision(mp_size s);
-mp_size mp_get_multiply_threshold(void);
-void mp_set_multiply_threshold(mp_size s);
+/** Reports whether `z` is even, having remainder 0 when divided by 2. */
+static inline bool
+mp_int_is_even(mp_int z)
+{
+ return (z->digits[0] & 1) == 0;
+}
+/** Initializes `z` with 1-digit precision and sets it to zero. This function
+ cannot fail unless `z == NULL`. */
mp_result mp_int_init(mp_int z);
+
+/** Allocates a fresh zero-valued `mpz_t` on the heap, returning NULL in case
+ of error. The only possible error is out-of-memory. */
mp_int mp_int_alloc(void);
+
+/** Initializes `z` with at least `prec` digits of storage, and sets it to
+ zero. If `prec` is zero, the default precision is used. In either case the
+ size is rounded up to the nearest multiple of the word size. */
mp_result mp_int_init_size(mp_int z, mp_size prec);
+
+/** Initializes `z` to be a copy of an already-initialized value in `old`. The
+ new copy does not share storage with the original. */
mp_result mp_int_init_copy(mp_int z, mp_int old);
-mp_result mp_int_init_value(mp_int z, int value);
-mp_result mp_int_set_value(mp_int z, int value);
+
+/** Initializes `z` to the specified signed `value` at default precision. */
+mp_result mp_int_init_value(mp_int z, mp_small value);
+
+/** Initializes `z` to the specified unsigned `value` at default precision. */
+mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue);
+
+/** Sets `z` to the value of the specified signed `value`. */
+mp_result mp_int_set_value(mp_int z, mp_small value);
+
+/** Sets `z` to the value of the specified unsigned `value`. */
+mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue);
+
+/** Releases the storage used by `z`. */
void mp_int_clear(mp_int z);
+
+/** Releases the storage used by `z` and also `z` itself.
+ This should only be used for `z` allocated by `mp_int_alloc()`. */
void mp_int_free(mp_int z);
-mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */
-void mp_int_swap(mp_int a, mp_int c); /* swap a, c */
-void mp_int_zero(mp_int z); /* z = 0 */
-mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */
-mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */
-mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */
-mp_result mp_int_add_value(mp_int a, int value, mp_int c);
-mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */
-mp_result mp_int_sub_value(mp_int a, int value, mp_int c);
-mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */
-mp_result mp_int_mul_value(mp_int a, int value, mp_int c);
-mp_result mp_int_mul_pow2(mp_int a, int p2, mp_int c);
-mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */
-
-mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */
- mp_int q, mp_int r); /* r = a % b */
-mp_result mp_int_div_value(mp_int a, int value, /* q = a / value */
- mp_int q, int *r); /* r = a % value */
-mp_result mp_int_div_pow2(mp_int a, int p2, /* q = a / 2^p2 */
- mp_int q, mp_int r); /* r = q % 2^p2 */
-mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */
-
-#define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
-mp_result mp_int_expt(mp_int a, int b, mp_int c); /* c = a^b */
-mp_result mp_int_expt_value(int a, int b, mp_int c); /* c = a^b */
-
-int mp_int_compare(mp_int a, mp_int b); /* a <=> b */
-int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */
-int mp_int_compare_zero(mp_int z); /* a <=> 0 */
-int mp_int_compare_value(mp_int z, int value); /* a <=> v */
-
-/* Returns true if v|a, false otherwise (including errors) */
-int mp_int_divisible_value(mp_int a, int v);
-
-/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
+/** Replaces the value of `c` with a copy of the value of `a`. No new memory is
+ allocated unless `a` has more significant digits than `c` has allocated. */
+mp_result mp_int_copy(mp_int a, mp_int c);
+
+/** Swaps the values and storage between `a` and `c`. */
+void mp_int_swap(mp_int a, mp_int c);
+
+/** Sets `z` to zero. The allocated storage of `z` is not changed. */
+void mp_int_zero(mp_int z);
+
+/** Sets `c` to the absolute value of `a`. */
+mp_result mp_int_abs(mp_int a, mp_int c);
+
+/** Sets `c` to the additive inverse (negation) of `a`. */
+mp_result mp_int_neg(mp_int a, mp_int c);
+
+/** Sets `c` to the sum of `a` and `b`. */
+mp_result mp_int_add(mp_int a, mp_int b, mp_int c);
+
+/** Sets `c` to the sum of `a` and `value`. */
+mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c);
+
+/** Sets `c` to the difference of `a` less `b`. */
+mp_result mp_int_sub(mp_int a, mp_int b, mp_int c);
+
+/** Sets `c` to the difference of `a` less `value`. */
+mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c);
+
+/** Sets `c` to the product of `a` and `b`. */
+mp_result mp_int_mul(mp_int a, mp_int b, mp_int c);
+
+/** Sets `c` to the product of `a` and `value`. */
+mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c);
+
+/** Sets `c` to the product of `a` and `2^p2`. Requires `p2 >= 0`. */
+mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c);
+
+/** Sets `c` to the square of `a`. */
+mp_result mp_int_sqr(mp_int a, mp_int c);
+
+/** Sets `q` and `r` to the quotent and remainder of `a / b`. Division by
+ powers of 2 is detected and handled efficiently. The remainder is pinned
+ to `0 <= r < b`.
+
+ Either of `q` or `r` may be NULL, but not both, and `q` and `r` may not
+ point to the same value. */
+mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r);
+
+/** Sets `q` and `*r` to the quotent and remainder of `a / value`. Division by
+ powers of 2 is detected and handled efficiently. The remainder is pinned to
+ `0 <= *r < b`. Either of `q` or `r` may be NULL. */
+mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small * r);
+
+/** Sets `q` and `r` to the quotient and remainder of `a / 2^p2`. This is a
+ special case for division by powers of two that is more efficient than
+ using ordinary division. Note that `mp_int_div()` will automatically handle
+ this case, this function is for cases where you have only the exponent. */
+mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r);
+
+/** Sets `c` to the remainder of `a / m`.
+ The remainder is pinned to `0 <= c < m`. */
+mp_result mp_int_mod(mp_int a, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power.
+ It returns `MP_RANGE` if `b < 0`. */
+mp_result mp_int_expt(mp_int a, mp_small b, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power.
+ It returns `MP_RANGE` if `b < 0`. */
+mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power.
+ It returns `MP_RANGE`) if `b < 0`. */
+mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c);
+
+/** Sets `*r` to the remainder of `a / value`.
+ The remainder is pinned to `0 <= r < value`. */
+static inline
+mp_result
+mp_int_mod_value(mp_int a, mp_small value, mp_small * r)
+{
+ return mp_int_div_value(a, value, 0, r);
+}
+
+/** Returns the comparator of `a` and `b`. */
+int mp_int_compare(mp_int a, mp_int b);
+
+/** Returns the comparator of the magnitudes of `a` and `b`, disregarding their
+ signs. Neither `a` nor `b` is modified by the comparison. */
+int mp_int_compare_unsigned(mp_int a, mp_int b);
+
+/** Returns the comparator of `z` and zero. */
+int mp_int_compare_zero(mp_int z);
+
+/** Returns the comparator of `z` and the signed value `v`. */
+int mp_int_compare_value(mp_int z, mp_small v);
+
+/** Returns the comparator of `z` and the unsigned value `uv`. */
+int mp_int_compare_uvalue(mp_int z, mp_usmall uv);
+
+/** Reports whether `a` is divisible by `v`. */
+bool mp_int_divisible_value(mp_int a, mp_small v);
+
+/** Returns `k >= 0` such that `z` is `2^k`, if such a `k` exists. If no such
+ `k` exists, the function returns -1. */
int mp_int_is_pow2(mp_int z);
-mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m,
- mp_int c); /* c = a^b (mod m) */
-mp_result mp_int_exptmod_evalue(mp_int a, int value,
- mp_int m, mp_int c); /* c = a^v (mod m) */
-mp_result mp_int_exptmod_bvalue(int value, mp_int b,
- mp_int m, mp_int c); /* c = v^b (mod m) */
-mp_result mp_int_exptmod_known(mp_int a, mp_int b,
- mp_int m, mp_int mu,
- mp_int c); /* c = a^b (mod m) */
+/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`.
+ It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `value` power, modulo `m`.
+ It returns `MP_RANGE` if `value < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `value` raised to the `b` power, modulo `m`.
+ It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`,
+ given a precomputed reduction constant `mu` defined for Barrett's modular
+ reduction algorithm.
+
+ It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
+
+/** Sets `c` to the reduction constant for Barrett reduction by modulus `m`.
+ Requires that `c` and `m` point to distinct locations. */
mp_result mp_int_redux_const(mp_int m, mp_int c);
-mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */
+/** Sets `c` to the multiplicative inverse of `a` modulo `m`, if it exists.
+ The least non-negative representative of the congruence class is computed.
+
+ It returns `MP_UNDEF` if the inverse does not exist, or `MP_RANGE` if `a ==
+ 0` or `m <= 0`. */
+mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c);
+
+/** Sets `c` to the greatest common divisor of `a` and `b`.
+
+ It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
+ and `b` are both zero. */
+mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c);
-mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */
+/** Sets `c` to the greatest common divisor of `a` and `b`, and sets `x` and
+ `y` to values satisfying Bezout's identity `gcd(a, b) = ax + by`.
-mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */
- mp_int x, mp_int y); /* c = ax + by */
+ It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
+ and `b` are both zero. */
+mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y);
-mp_result mp_int_sqrt(mp_int a, mp_int c); /* c = floor(sqrt(q)) */
+/** Sets `c` to the least common multiple of `a` and `b`.
-/* Convert to an int, if representable (returns MP_RANGE if not). */
-mp_result mp_int_to_int(mp_int z, int *out);
+ It returns `MP_UNDEF` if the LCM is undefined, such as for example if `a`
+ and `b` are both zero. */
+mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c);
-/* Convert to nul-terminated string with the specified radix, writing at
- most limit characters including the nul terminator */
-mp_result mp_int_to_string(mp_int z, mp_size radix,
- char *str, int limit);
+/** Sets `c` to the greatest integer not less than the `b`th root of `a`,
+ using Newton's root-finding algorithm.
+ It returns `MP_UNDEF` if `a < 0` and `b` is even. */
+mp_result mp_int_root(mp_int a, mp_small b, mp_int c);
-/* Return the number of characters required to represent
- z in the given radix. May over-estimate. */
+/** Sets `c` to the greatest integer not less than the square root of `a`.
+ This is a special case of `mp_int_root()`. */
+static inline
+mp_result
+mp_int_sqrt(mp_int a, mp_int c)
+{
+ return mp_int_root(a, 2, c);
+}
+
+/** Returns `MP_OK` if `z` is representable as `mp_small`, else `MP_RANGE`.
+ If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
+mp_result mp_int_to_int(mp_int z, mp_small * out);
+
+/** Returns `MP_OK` if `z` is representable as `mp_usmall`, or `MP_RANGE`.
+ If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
+mp_result mp_int_to_uint(mp_int z, mp_usmall * out);
+
+/** Converts `z` to a zero-terminated string of characters in the specified
+ `radix`, writing at most `limit` characters to `str` including the
+ terminating NUL value. A leading `-` is used to indicate a negative value.
+
+ Returns `MP_TRUNC` if `limit` was to small to write all of `z`.
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
+mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit);
+
+/** Reports the minimum number of characters required to represent `z` as a
+ zero-terminated string in the given `radix`.
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
mp_result mp_int_string_len(mp_int z, mp_size radix);
-/* Read zero-terminated string into z */
+/** Reads a string of ASCII digits in the specified `radix` from the zero
+ terminated `str` provided into `z`. For values of `radix > 10`, the letters
+ `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
+ to case.
+
+ Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
+ sign flag. Processing stops when a NUL or any other character out of range
+ for a digit in the given radix is encountered.
+
+ If the whole string was consumed, `MP_OK` is returned; otherwise
+ `MP_TRUNC`. is returned.
+
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
-mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
- char **end);
-/* Return the number of significant bits in z */
+/** Reads a string of ASCII digits in the specified `radix` from the zero
+ terminated `str` provided into `z`. For values of `radix > 10`, the letters
+ `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
+ to case.
+
+ Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
+ sign flag. Processing stops when a NUL or any other character out of range
+ for a digit in the given radix is encountered.
+
+ If the whole string was consumed, `MP_OK` is returned; otherwise
+ `MP_TRUNC`. is returned. If `end` is not NULL, `*end` is set to point to
+ the first unconsumed byte of the input string (the NUL byte if the whole
+ string was consumed). This emulates the behavior of the standard C
+ `strtol()` function.
+
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
+mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end);
+
+/** Returns the number of significant bits in `z`. */
mp_result mp_int_count_bits(mp_int z);
-/* Convert z to two's complement binary, writing at most limit bytes */
+/** Converts `z` to 2's complement binary, writing at most `limit` bytes into
+ the given `buf`. Returns `MP_TRUNC` if the buffer limit was too small to
+ contain the whole value. If this occurs, the contents of buf will be
+ effectively garbage, as the function uses the buffer as scratch space.
+
+ The binary representation of `z` is in base-256 with digits ordered from
+ most significant to least significant (network byte ordering). The
+ high-order bit of the first byte is set for negative values, clear for
+ non-negative values.
+
+ As a result, non-negative values will be padded with a leading zero byte if
+ the high-order byte of the base-256 magnitude is set. This extra byte is
+ accounted for by the `mp_int_binary_len()` function. */
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
-/* Read a two's complement binary value into z from the given buffer */
+/** Reads a 2's complement binary value from `buf` into `z`, where `len` is the
+ length of the buffer. The contents of `buf` may be overwritten during
+ processing, although they will be restored when the function returns. */
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
-/* Return the number of bytes required to represent z in binary. */
+/** Returns the number of bytes to represent `z` in 2's complement binary. */
mp_result mp_int_binary_len(mp_int z);
-/* Convert z to unsigned binary, writing at most limit bytes */
+/** Converts the magnitude of `z` to unsigned binary, writing at most `limit`
+ bytes into the given `buf`. The sign of `z` is ignored, but `z` is not
+ modified. Returns `MP_TRUNC` if the buffer limit was too small to contain
+ the whole value. If this occurs, the contents of `buf` will be effectively
+ garbage, as the function uses the buffer as scratch space during
+ conversion.
+
+ The binary representation of `z` is in base-256 with digits ordered from
+ most significant to least significant (network byte ordering). */
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
-/* Read an unsigned binary value into z from the given buffer */
+/** Reads an unsigned binary value from `buf` into `z`, where `len` is the
+ length of the buffer. The contents of `buf` are not modified during
+ processing. */
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
-/* Return the number of bytes required to represent z as unsigned output */
+/** Returns the number of bytes required to represent `z` as an unsigned binary
+ value in base 256. */
mp_result mp_int_unsigned_len(mp_int z);
-/* Return a statically allocated string describing error code res */
+/** Returns a pointer to a brief, human-readable, zero-terminated string
+ describing `res`. The returned string is statically allocated and must not
+ be freed by the caller. */
const char *mp_error_string(mp_result res);
-#if 0
-void s_print(char *tag, mp_int z);
-void s_print_buf(char *tag, mp_digit *buf, mp_size num);
-#endif
-
#endif /* end IMATH_H_ */