aboutsummaryrefslogtreecommitdiff
path: root/src/backend/utils/adt/int8.c
diff options
context:
space:
mode:
authorTom Lane <tgl@sss.pgh.pa.us>2008-06-17 19:10:56 +0000
committerTom Lane <tgl@sss.pgh.pa.us>2008-06-17 19:10:56 +0000
commitb163baa89ce0e4385497bc0f38deaf0078074d76 (patch)
tree247ea4721f276d9c9cb608b1e3fd586aa861269c /src/backend/utils/adt/int8.c
parent4274726d4225158c69fef04aadc10e7e26f41971 (diff)
downloadpostgresql-b163baa89ce0e4385497bc0f38deaf0078074d76.tar.gz
postgresql-b163baa89ce0e4385497bc0f38deaf0078074d76.zip
Clean up some problems with redundant cross-type arithmetic operators. Add
int2-and-int8 implementations of the basic arithmetic operators +, -, *, /. This doesn't really add any new functionality, but it avoids "operator is not unique" failures that formerly occurred in these cases because the parser couldn't decide whether to promote the int2 to int4 or int8. We could alternatively have removed the existing cross-type operators, but experimentation shows that the cost of an additional type coercion expression node is noticeable compared to such cheap operators; so let's not give up any performance here. On the other hand, I removed the int2-and-int4 modulo (%) operators since they didn't seem as important from a performance standpoint. Per a complaint last January from ykhuang.
Diffstat (limited to 'src/backend/utils/adt/int8.c')
-rw-r--r--src/backend/utils/adt/int8.c180
1 files changed, 179 insertions, 1 deletions
diff --git a/src/backend/utils/adt/int8.c b/src/backend/utils/adt/int8.c
index 6f3f9e21055..dc56df4d186 100644
--- a/src/backend/utils/adt/int8.c
+++ b/src/backend/utils/adt/int8.c
@@ -7,7 +7,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
- * $PostgreSQL: pgsql/src/backend/utils/adt/int8.c,v 1.69 2008/04/21 00:26:45 tgl Exp $
+ * $PostgreSQL: pgsql/src/backend/utils/adt/int8.c,v 1.70 2008/06/17 19:10:56 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -922,6 +922,184 @@ int48div(PG_FUNCTION_ARGS)
PG_RETURN_INT64((int64) arg1 / arg2);
}
+Datum
+int82pl(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ result = arg1 + arg2;
+
+ /*
+ * Overflow check. If the inputs are of different signs then their sum
+ * cannot overflow. If the inputs are of the same sign, their sum had
+ * better be that sign too.
+ */
+ if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82mi(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ result = arg1 - arg2;
+
+ /*
+ * Overflow check. If the inputs are of the same sign then their
+ * difference cannot overflow. If they are of different signs then the
+ * result should be of the same sign as the first input.
+ */
+ if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82mul(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ result = arg1 * arg2;
+
+ /*
+ * Overflow check. We basically check to see if result / arg1 gives arg2
+ * again. There is one case where this fails: arg1 = 0 (which cannot
+ * overflow).
+ *
+ * Since the division is likely much more expensive than the actual
+ * multiplication, we'd like to skip it where possible. The best bang for
+ * the buck seems to be to check whether both inputs are in the int32
+ * range; if so, no overflow is possible.
+ */
+ if (arg1 != (int64) ((int32) arg1) &&
+ result / arg1 != arg2)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82div(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ if (arg2 == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+
+ result = arg1 / arg2;
+
+ /*
+ * Overflow check. The only possible overflow case is for arg1 =
+ * INT64_MIN, arg2 = -1, where the correct result is -INT64_MIN, which
+ * can't be represented on a two's-complement machine.
+ */
+ if (arg2 == -1 && arg1 < 0 && result < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28pl(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = arg1 + arg2;
+
+ /*
+ * Overflow check. If the inputs are of different signs then their sum
+ * cannot overflow. If the inputs are of the same sign, their sum had
+ * better be that sign too.
+ */
+ if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28mi(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = arg1 - arg2;
+
+ /*
+ * Overflow check. If the inputs are of the same sign then their
+ * difference cannot overflow. If they are of different signs then the
+ * result should be of the same sign as the first input.
+ */
+ if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28mul(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = arg1 * arg2;
+
+ /*
+ * Overflow check. We basically check to see if result / arg2 gives arg1
+ * again. There is one case where this fails: arg2 = 0 (which cannot
+ * overflow).
+ *
+ * Since the division is likely much more expensive than the actual
+ * multiplication, we'd like to skip it where possible. The best bang for
+ * the buck seems to be to check whether both inputs are in the int32
+ * range; if so, no overflow is possible.
+ */
+ if (arg2 != (int64) ((int32) arg2) &&
+ result / arg2 != arg1)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28div(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ if (arg2 == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* No overflow is possible */
+ PG_RETURN_INT64((int64) arg1 / arg2);
+}
+
/* Binary arithmetics
*
* int8and - returns arg1 & arg2