aboutsummaryrefslogtreecommitdiff
path: root/src/backend/utils/adt/int8.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/utils/adt/int8.c')
-rw-r--r--src/backend/utils/adt/int8.c180
1 files changed, 179 insertions, 1 deletions
diff --git a/src/backend/utils/adt/int8.c b/src/backend/utils/adt/int8.c
index 6f3f9e21055..dc56df4d186 100644
--- a/src/backend/utils/adt/int8.c
+++ b/src/backend/utils/adt/int8.c
@@ -7,7 +7,7 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
- * $PostgreSQL: pgsql/src/backend/utils/adt/int8.c,v 1.69 2008/04/21 00:26:45 tgl Exp $
+ * $PostgreSQL: pgsql/src/backend/utils/adt/int8.c,v 1.70 2008/06/17 19:10:56 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -922,6 +922,184 @@ int48div(PG_FUNCTION_ARGS)
PG_RETURN_INT64((int64) arg1 / arg2);
}
+Datum
+int82pl(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ result = arg1 + arg2;
+
+ /*
+ * Overflow check. If the inputs are of different signs then their sum
+ * cannot overflow. If the inputs are of the same sign, their sum had
+ * better be that sign too.
+ */
+ if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82mi(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ result = arg1 - arg2;
+
+ /*
+ * Overflow check. If the inputs are of the same sign then their
+ * difference cannot overflow. If they are of different signs then the
+ * result should be of the same sign as the first input.
+ */
+ if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82mul(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ result = arg1 * arg2;
+
+ /*
+ * Overflow check. We basically check to see if result / arg1 gives arg2
+ * again. There is one case where this fails: arg1 = 0 (which cannot
+ * overflow).
+ *
+ * Since the division is likely much more expensive than the actual
+ * multiplication, we'd like to skip it where possible. The best bang for
+ * the buck seems to be to check whether both inputs are in the int32
+ * range; if so, no overflow is possible.
+ */
+ if (arg1 != (int64) ((int32) arg1) &&
+ result / arg1 != arg2)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int82div(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int16 arg2 = PG_GETARG_INT16(1);
+ int64 result;
+
+ if (arg2 == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+
+ result = arg1 / arg2;
+
+ /*
+ * Overflow check. The only possible overflow case is for arg1 =
+ * INT64_MIN, arg2 = -1, where the correct result is -INT64_MIN, which
+ * can't be represented on a two's-complement machine.
+ */
+ if (arg2 == -1 && arg1 < 0 && result < 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28pl(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = arg1 + arg2;
+
+ /*
+ * Overflow check. If the inputs are of different signs then their sum
+ * cannot overflow. If the inputs are of the same sign, their sum had
+ * better be that sign too.
+ */
+ if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28mi(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = arg1 - arg2;
+
+ /*
+ * Overflow check. If the inputs are of the same sign then their
+ * difference cannot overflow. If they are of different signs then the
+ * result should be of the same sign as the first input.
+ */
+ if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28mul(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = arg1 * arg2;
+
+ /*
+ * Overflow check. We basically check to see if result / arg2 gives arg1
+ * again. There is one case where this fails: arg2 = 0 (which cannot
+ * overflow).
+ *
+ * Since the division is likely much more expensive than the actual
+ * multiplication, we'd like to skip it where possible. The best bang for
+ * the buck seems to be to check whether both inputs are in the int32
+ * range; if so, no overflow is possible.
+ */
+ if (arg2 != (int64) ((int32) arg2) &&
+ result / arg2 != arg1)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+ PG_RETURN_INT64(result);
+}
+
+Datum
+int28div(PG_FUNCTION_ARGS)
+{
+ int16 arg1 = PG_GETARG_INT16(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+
+ if (arg2 == 0)
+ ereport(ERROR,
+ (errcode(ERRCODE_DIVISION_BY_ZERO),
+ errmsg("division by zero")));
+ /* No overflow is possible */
+ PG_RETURN_INT64((int64) arg1 / arg2);
+}
+
/* Binary arithmetics
*
* int8and - returns arg1 & arg2