| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As pointed out by Tom Lane, the patch introduced fragile and invasive
design around plan invalidation handling when locking of prunable
partitions was deferred from plancache.c to the executor. In
particular, it violated assumptions about CachedPlan immutability and
altered executor APIs in ways that are difficult to justify given the
added complexity and overhead.
This also removes the firstResultRels field added to PlannedStmt in
commit 28317de72, which was intended to support deferred locking of
certain ModifyTable result relations.
Reported-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/605328.1747710381@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before executing a cached generic plan, AcquireExecutorLocks() in
plancache.c locks all relations in a plan's range table to ensure the
plan is safe for execution. However, this locks runtime-prunable
relations that will later be pruned during "initial" runtime pruning,
introducing unnecessary overhead.
This commit defers locking for such relations to executor startup and
ensures that if the CachedPlan is invalidated due to concurrent DDL
during this window, replanning is triggered. Deferring these locks
avoids unnecessary locking overhead for pruned partitions, resulting
in significant speedup, particularly when many partitions are pruned
during initial runtime pruning.
* Changes to locking when executing generic plans:
AcquireExecutorLocks() now locks only unprunable relations, that is,
those found in PlannedStmt.unprunableRelids (introduced in commit
cbc127917e), to avoid locking runtime-prunable partitions
unnecessarily. The remaining locks are taken by
ExecDoInitialPruning(), which acquires them only for partitions that
survive pruning.
This deferral does not affect the locks required for permission
checking in InitPlan(), which takes place before initial pruning.
ExecCheckPermissions() now includes an Assert to verify that all
relations undergoing permission checks, none of which can be in the
set of runtime-prunable relations, are properly locked.
* Plan invalidation handling:
Deferring locks introduces a window where prunable relations may be
altered by concurrent DDL, invalidating the plan. A new function,
ExecutorStartCachedPlan(), wraps ExecutorStart() to detect and handle
invalidation caused by deferred locking. If invalidation occurs,
ExecutorStartCachedPlan() updates CachedPlan using the new
UpdateCachedPlan() function and retries execution with the updated
plan. To ensure all code paths that may be affected by this handle
invalidation properly, all callers of ExecutorStart that may execute a
PlannedStmt from a CachedPlan have been updated to use
ExecutorStartCachedPlan() instead.
UpdateCachedPlan() replaces stale plans in CachedPlan.stmt_list. A new
CachedPlan.stmt_context, created as a child of CachedPlan.context,
allows freeing old PlannedStmts while preserving the CachedPlan
structure and its statement list. This ensures that loops over
statements in upstream callers of ExecutorStartCachedPlan() remain
intact.
ExecutorStart() and ExecutorStart_hook implementations now return a
boolean value indicating whether plan initialization succeeded with a
valid PlanState tree in QueryDesc.planstate, or false otherwise, in
which case QueryDesc.planstate is NULL. Hook implementations are
required to call standard_ExecutorStart() at the beginning, and if it
returns false, they should do the same without proceeding.
* Testing:
To verify these changes, the delay_execution module tests scenarios
where cached plans become invalid due to changes in prunable relations
after deferred locks.
* Note to extension authors:
ExecutorStart_hook implementations must verify plan validity after
calling standard_ExecutorStart(), as explained earlier. For example:
if (prev_ExecutorStart)
plan_valid = prev_ExecutorStart(queryDesc, eflags);
else
plan_valid = standard_ExecutorStart(queryDesc, eflags);
if (!plan_valid)
return false;
<extension-code>
return true;
Extensions accessing child relations, especially prunable partitions,
via ExecGetRangeTableRelation() must now ensure their RT indexes are
present in es_unpruned_relids (introduced in commit cbc127917e), or
they will encounter an error. This is a strict requirement after this
change, as only relations in that set are locked.
The idea of deferring some locks to executor startup, allowing locks
for prunable partitions to be skipped, was first proposed by Tom Lane.
Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: David Rowley <dgrowleyml@gmail.com> (earlier versions)
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> (earlier versions)
Reviewed-by: Tomas Vondra <tomas@vondra.me>
Reviewed-by: Junwang Zhao <zhjwpku@gmail.com>
Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
|
|
|
|
| |
Backpatch-through: 13
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Our parallel-mode code only works when we are executing a query
in full, so ExecutePlan must disable parallel mode when it is
asked to do partial execution. The previous logic for this
involved passing down a flag (variously named execute_once or
run_once) from callers of ExecutorRun or PortalRun. This is
overcomplicated, and unsurprisingly some of the callers didn't
get it right, since it requires keeping state that not all of
them have handy; not to mention that the requirements for it were
undocumented. That led to assertion failures in some corner
cases. The only state we really need for this is the existing
QueryDesc.already_executed flag, so let's just put all the
responsibility in ExecutePlan. (It could have been done in
ExecutorRun too, leading to a slightly shorter patch -- but if
there's ever more than one caller of ExecutePlan, it seems better
to have this logic in the subroutine than the callers.)
This makes those ExecutorRun/PortalRun parameters unnecessary.
In master it seems okay to just remove them, returning the
API for those functions to what it was before parallelism.
Such an API break is clearly not okay in stable branches,
but for them we can just leave the parameters in place after
documenting that they do nothing.
Per report from Yugo Nagata, who also reviewed and tested
this patch. Back-patch to all supported branches.
Discussion: https://postgr.es/m/20241206062549.710dc01cf91224809dd6c0e1@sraoss.co.jp
|
|
|
|
|
|
|
|
|
|
|
| |
We store tuples into the portal's tuple store for a PORTAL_ONE_MOD_WITH
query as well.
Back-patch to all supported branches.
Reviewed by Andy Fan.
Discussion: https://postgr.es/m/CAPmGK14HVYBZYZtHabjeCd-e31VT%3Dwx6rQNq8QfehywLcpZ2Hw%40mail.gmail.com
|
|
|
|
|
|
| |
Oversights in c649fa24a4 which added RETURNING support to MERGE.
Discussion: https://postgr.es/m/CAApHDvpqp6vtUzG-_josUEiBGyqnrnVxJ-VdF+hJLXjHdHzsyQ@mail.gmail.com
|
|
|
|
|
|
|
|
| |
Reported-by: Michael Paquier
Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz
Backpatch-through: 12
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since C99, there can be a trailing comma after the last value in an
enum definition. A lot of new code has been introducing this style on
the fly. Some new patches are now taking an inconsistent approach to
this. Some add the last comma on the fly if they add a new last
value, some are trying to preserve the existing style in each place,
some are even dropping the last comma if there was one. We could
nudge this all in a consistent direction if we just add the trailing
commas everywhere once.
I omitted a few places where there was a fixed "last" value that will
always stay last. I also skipped the header files of libpq and ecpg,
in case people want to use those with older compilers. There were
also a small number of cases where the enum type wasn't used anywhere
(but the enum values were), which ended up confusing pgindent a bit,
so I left those alone.
Discussion: https://www.postgresql.org/message-id/flat/386f8c45-c8ac-4681-8add-e3b0852c1620%40eisentraut.org
|
|
|
|
| |
Backpatch-through: 11
|
|
|
|
| |
Backpatch-through: 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 84f5c2908 forgot to consider the possibility that
EnsurePortalSnapshotExists could run inside a subtransaction with
lifespan shorter than the Portal's. In that case, the new active
snapshot would be popped at the end of the subtransaction, leaving
a dangling pointer in the Portal, with mayhem ensuing.
To fix, make sure the ActiveSnapshot stack entry is marked with
the same subtransaction nesting level as the associated Portal.
It's certainly safe to do so since we won't be here at all unless
the stack is empty; hence we can't create an out-of-order stack.
Let's also apply this logic in the case where PortalRunUtility
sets portalSnapshot, just to be sure that path can't cause similar
problems. It's slightly less clear that that path can't create
an out-of-order stack, so add an assertion guarding it.
Report and patch by Bertrand Drouvot (with kibitzing by me).
Back-patch to v11, like the previous commit.
Discussion: https://postgr.es/m/ff82b8c5-77f4-3fe7-6028-fcf3303e82dd@amazon.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
COMMIT/ROLLBACK necessarily destroys all snapshots within the session.
The original implementation of intra-procedure transactions just
cavalierly did that, ignoring the fact that this left us executing in
a rather different environment than normal. In particular, it turns
out that handling of toasted datums depends rather critically on there
being an outer ActiveSnapshot: otherwise, when SPI or the core
executor pop whatever snapshot they used and return, it's unsafe to
dereference any toasted datums that may appear in the query result.
It's possible to demonstrate "no known snapshots" and "missing chunk
number N for toast value" errors as a result of this oversight.
Historically this outer snapshot has been held by the Portal code,
and that seems like a good plan to preserve. So add infrastructure
to pquery.c to allow re-establishing the Portal-owned snapshot if it's
not there anymore, and add enough bookkeeping support that we can tell
whether it is or not.
We can't, however, just re-establish the Portal snapshot as part of
COMMIT/ROLLBACK. As in normal transaction start, acquiring the first
snapshot should wait until after SET and LOCK commands. Hence, teach
spi.c about doing this at the right time. (Note that this patch
doesn't fix the problem for any PLs that try to run intra-procedure
transactions without using SPI to execute SQL commands.)
This makes SPI's no_snapshots parameter rather a misnomer, so in HEAD,
rename that to allow_nonatomic.
replication/logical/worker.c also needs some fixes, because it wasn't
careful to hold a snapshot open around AFTER trigger execution.
That code doesn't use a Portal, which I suspect someday we're gonna
have to fix. But for now, just rearrange the order of operations.
This includes back-patching the recent addition of finish_estate()
to centralize the cleanup logic there.
This also back-patches commit 2ecfeda3e into v13, to improve the
test coverage for worker.c (it was that test that exposed that
worker.c's snapshot management is wrong).
Per bug #15990 from Andreas Wicht. Back-patch to v11 where
intra-procedure COMMIT was added.
Discussion: https://postgr.es/m/15990-eee2ac466b11293d@postgresql.org
|
|
|
|
| |
Backpatch-through: 9.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The backend was using strings to represent command tags and doing string
comparisons in multiple places, but that's slow and unhelpful. Create a
new command list with a supporting structure to use instead; this is
stored in a tag-list-file that can be tailored to specific purposes with
a caller-definable C macro, similar to what we do for WAL resource
managers. The first first such uses are a new CommandTag enum and a
CommandTagBehavior struct.
Replace numerous occurrences of char *completionTag with a
QueryCompletion struct so that the code no longer stores information
about completed queries in a cstring. Only at the last moment, in
EndCommand(), does this get converted to a string.
EventTriggerCacheItem no longer holds an array of palloc’d tag strings
in sorted order, but rather just a Bitmapset over the CommandTags.
Author: Mark Dilger, with unsolicited help from Álvaro Herrera
Reviewed-by: John Naylor, Tom Lane
Discussion: https://postgr.es/m/981A9DB4-3F0C-4DA5-88AD-CB9CFF4D6CAD@enterprisedb.com
|
|
|
|
| |
Backpatch-through: update all files in master, backpatch legal files through 9.4
|
|
|
|
|
|
|
|
|
| |
Switch to 2.1 version of pg_bsd_indent. This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.
Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
|
|
|
|
| |
Backpatch-through: certain files through 9.4
|
|
|
|
| |
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, committing or aborting inside a cursor loop was prohibited
because that would close and remove the cursor. To allow that,
automatically convert such cursors to holdable cursors so they survive
commits or rollbacks. Portals now have a new state "auto-held", which
means they have been converted automatically from pinned. An auto-held
portal is kept on transaction commit or rollback, but is still removed
when returning to the main loop on error.
This supports all languages that have cursor loop constructs: PL/pgSQL,
PL/Python, PL/Perl.
Reviewed-by: Ildus Kurbangaliev <i.kurbangaliev@postgrespro.ru>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In each of the supplied procedural languages (PL/pgSQL, PL/Perl,
PL/Python, PL/Tcl), add language-specific commit and rollback
functions/commands to control transactions in procedures in that
language. Add similar underlying functions to SPI. Some additional
cleanup so that transaction commit or abort doesn't blow away data
structures still used by the procedure call. Add execution context
tracking to CALL and DO statements so that transaction control commands
can only be issued in top-level procedure and block calls, not function
calls or other procedure or block calls.
- SPI
Add a new function SPI_connect_ext() that is like SPI_connect() but
allows passing option flags. The only option flag right now is
SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction
control commands, otherwise it's not allowed. This is meant to be
passed down from CALL and DO statements which themselves know in which
context they are called. A nonatomic SPI connection uses different
memory management. A normal SPI connection allocates its memory in
TopTransactionContext. For nonatomic connections we use PortalContext
instead. As the comment in SPI_connect_ext() (previously SPI_connect())
indicates, one could potentially use PortalContext in all cases, but it
seems safest to leave the existing uses alone, because this stuff is
complicated enough already.
SPI also gets new functions SPI_start_transaction(), SPI_commit(), and
SPI_rollback(), which can be used by PLs to implement their transaction
control logic.
- portalmem.c
Some adjustments were made in the code that cleans up portals at
transaction abort. The portal code could already handle a command
*committing* a transaction and continuing (e.g., VACUUM), but it was not
quite prepared for a command *aborting* a transaction and continuing.
In AtAbort_Portals(), remove the code that marks an active portal as
failed. As the comment there already predicted, this doesn't work if
the running command wants to keep running after transaction abort. And
it's actually not necessary, because pquery.c is careful to run all
portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if
there is an exception. So the code in AtAbort_Portals() is never used
anyway.
In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not
to clean up active portals too much. This mirrors similar code in
PreCommit_Portals().
- PL/Perl
Gets new functions spi_commit() and spi_rollback()
- PL/pgSQL
Gets new commands COMMIT and ROLLBACK.
Update the PL/SQL porting example in the documentation to reflect that
transactions are now possible in procedures.
- PL/Python
Gets new functions plpy.commit and plpy.rollback.
- PL/Tcl
Gets new commands commit and rollback.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
|
|
|
|
|
|
|
|
|
| |
After having gotten rid of PortalGetHeapMemory(), there seems little
reason to keep one Portal access macro around that offers no actual
abstraction and isn't consistently used anyway.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rename PortalMemory to TopPortalContext, to avoid confusion with
PortalContext and align naming with similar top-level memory contexts.
Rename PortalData's "heap" field to portalContext. The "heap" naming
seems quite antiquated and confusing. Also get rid of the
PortalGetHeapMemory() macro and access the field directly, which we do
for other portal fields, so this abstraction doesn't buy anything.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
|
|
|
|
| |
Backpatch-through: certain files through 9.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution. At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs. The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.
An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.
Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.
The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.
An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement. No tests previously covered that
possibility, so one is added.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, it was unsafe to execute a plan in parallel if
ExecutorRun() might be called with a non-zero row count. However,
it's quite easy to fix things up so that we can support that case,
provided that it is known that we will never call ExecutorRun() a
second time for the same QueryDesc. Add infrastructure to signal
this, and cross-checks to make sure that a caller who claims this is
true doesn't later reneg.
While that pattern never happens with queries received directly from a
client -- there's no way to know whether multiple Execute messages
will be sent unless the first one requests all the rows -- it's pretty
common for queries originating from procedural languages, which often
limit the result to a single tuple or to a user-specified number of
tuples.
This commit doesn't actually enable parallelism in any additional
cases, because currently none of the places that would be able to
benefit from this infrastructure pass CURSOR_OPT_PARALLEL_OK in the
first place, but it makes it much more palatable to pass
CURSOR_OPT_PARALLEL_OK in places where we currently don't, because it
eliminates some cases where we'd end up having to run the parallel
plan serially.
Patch by me, based on some ideas from Rafia Sabih and corrected by
Rafia Sabih based on feedback from Dilip Kumar and myself.
Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes several changes that improve the consistency of
representation of lists of statements. It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list. This patch brings
similar consistency to the outputs of raw parsing and planning steps:
* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.
* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements. In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node. This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.
Now, every list of statements has a consistent head-node type depending
on how far along it is in processing. This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.
Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way. It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)
Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list. While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.
The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement. This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)
There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.
Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes. This allows
more intelligent handling of cases where a source query string contains
multiple statements. This patch doesn't actually do anything with the
information, but a follow-on patch will. (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)
catversion bump because addition of location fields to struct Query
affects stored rules.
This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.
Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Discussion of commit 3e2f3c2e4 exposed a problem that is of longer
standing: since we don't detoast data while sticking it into a portal's
holdStore for PORTAL_ONE_RETURNING and PORTAL_UTIL_SELECT queries, and we
release the query's snapshot as soon as we're done loading the holdStore,
later readout of the holdStore can do TOAST fetches against data that can
no longer be seen by any of the session's live snapshots. This means that
a concurrent VACUUM could remove the TOAST data before we can fetch it.
Commit 3e2f3c2e4 exposed the problem by showing that sometimes we had *no*
live snapshots while fetching TOAST data, but we'd be at risk anyway.
I believe this code was all right when written, because our management of a
session's exposed xmin was such that the TOAST references were safe until
end of transaction. But that's no longer true now that we can advance or
clear our PGXACT.xmin intra-transaction.
To fix, copy the query's snapshot during FillPortalStore() and save it in
the Portal; release it only when the portal is dropped. This essentially
implements a policy that we must hold a relevant snapshot whenever we
access potentially-toasted data. We had already come to that conclusion
in other places, cf commits 08e261cbc94ce9a7 and ec543db77b6b72f2.
I'd have liked to add a regression test case for this, but I didn't see
a way to make one that's not unreasonably bloated; it seems to require
returning a toasted value to the client, and those will be big.
In passing, improve PortalRunUtility() so that it positively verifies
that its ending PopActiveSnapshot() call will pop the expected snapshot,
removing a rather shaky assumption about which utility commands might
do their own PopActiveSnapshot(). There's no known bug here, but now
that we're actively referencing the snapshot it's almost free to make
this code a bit more bulletproof.
We might want to consider back-patching something like this into older
branches, but it would be prudent to let it prove itself more in HEAD
beforehand.
Discussion: <87vazemeda.fsf@credativ.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch widens SPI_processed, EState's es_processed field, PortalData's
portalPos field, FuncCallContext's call_cntr and max_calls fields,
ExecutorRun's count argument, PortalRunFetch's result, and the max number
of rows in a SPITupleTable to uint64, and deals with (I hope) all the
ensuing fallout. Some of these values were declared uint32 before, and
others "long".
I also removed PortalData's posOverflow field, since that logic seems
pretty useless given that portalPos is now always 64 bits.
The user-visible results are that command tags for SELECT etc will
correctly report tuple counts larger than 4G, as will plpgsql's GET
GET DIAGNOSTICS ... ROW_COUNT command. Queries processing more tuples
than that are still not exactly the norm, but they're becoming more
common.
Most values associated with FETCH/MOVE distances, such as PortalRun's count
argument and the count argument of most SPI functions that have one, remain
declared as "long". It's not clear whether it would be worth promoting
those to int64; but it would definitely be a large dollop of additional
API churn on top of this, and it would only help 32-bit platforms which
seem relatively less likely to see any benefit.
Andreas Scherbaum, reviewed by Christian Ullrich, additional hacking by me
|
|
|
|
| |
Backpatch certain files through 9.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Formerly, we treated only portals created in the current subtransaction as
having failed during subtransaction abort. However, if the error occurred
while running a portal created in an outer subtransaction (ie, a cursor
declared before the last savepoint), that has to be considered broken too.
To allow reliable detection of which ones those are, add a bookkeeping
field to struct Portal that tracks the innermost subtransaction in which
each portal has actually been executed. (Without this, we'd end up
failing portals containing functions that had called the subtransaction,
thereby breaking plpgsql exception blocks completely.)
In addition, when we fail an outer-subtransaction Portal, transfer its
resources into the subtransaction's resource owner, so that they're
released early in cleanup of the subxact. This fixes a problem reported by
Jim Nasby in which a function executed in an outer-subtransaction cursor
could cause an Assert failure or crash by referencing a relation created
within the inner subtransaction.
The proximate cause of the Assert failure is that AtEOSubXact_RelationCache
assumed it could blow away a relcache entry without first checking that the
entry had zero refcount. That was a bad idea on its own terms, so add such
a check there, and to the similar coding in AtEOXact_RelationCache. This
provides an independent safety measure in case there are still ways to
provoke the situation despite the Portal-level changes.
This has been broken since subtransactions were invented, so back-patch
to all supported branches.
Tom Lane and Michael Paquier
|
|
|
|
| |
Backpatch certain files through 9.0
|
|
|
|
|
| |
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
|
|
|
|
|
| |
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
|
|
|
|
|
| |
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a relfilenode is created in this subtransaction or
a committed child transaction and it cannot otherwise
be seen by our own process, mark tuples committed ahead
of transaction commit for all COPY commands in same
transaction. If FREEZE specified on COPY
and pre-conditions met then rows will also be frozen.
Both options designed to avoid revisiting rows after commit,
increasing performance of subsequent commands after
data load and upgrade. pg_restore changes later.
Simon Riggs, review comments from Heikki Linnakangas, Noah Misch and design
input from Tom Lane, Robert Haas and Kevin Grittner
|
|
|
|
|
| |
This lets files that are mere users of ResourceOwner not automatically
include the headers for stuff that is managed by the resowner mechanism.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This extends the changes of commit 6252c4f9e201f619e5eebda12fa867acd4e4200e
so that we run the cleanup hook earlier for failure cases as well as
success cases. As before, the point is to avoid an assertion failure from
an Assert I added in commit a874fe7b4c890d1fe3455215a83ca777867beadd, which
was meant to check that no user-written code can be called during portal
cleanup. This fixes a case reported by Pavan Deolasee in which the Assert
could be triggered during backend exit (see the new regression test case),
and also prevents the possibility that the cleanup hook is run after
portions of the portal's state have already been recycled. That doesn't
really matter in current usage, but it foreseeably could matter in the
future.
Back-patch to 9.1 where the Assert in question was added.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
As per my recent proposal, this refactors things so that these typedefs and
macros are available in a header that can be included in frontend-ish code.
I also changed various headers that were undesirably including
utils/timestamp.h to include datatype/timestamp.h instead. Unsurprisingly,
this showed that half the system was getting utils/timestamp.h by way of
xlog.h.
No actual code changes here, just header refactoring.
|
| |
|
|
|
|
|
|
|
|
|
| |
This works around the problem noted by Yamamoto Takashi in bug #5906,
that there were code paths whereby we could reach AtCleanup_Portals
with a portal's cleanup hook still unexecuted. The changes I made
a few days ago were intended to prevent that from happening, and
I think that on balance it's still a good thing to avoid, so I don't
want to remove the Assert in AtCleanup_Portals. Hence do this instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The originally committed patch for modifying CTEs didn't interact well
with EXPLAIN, as noted by myself, and also had corner-case problems with
triggers, as noted by Dean Rasheed. Those problems show it is really not
practical for ExecutorEnd to call any user-defined code; so split the
cleanup duties out into a new function ExecutorFinish, which must be called
between the last ExecutorRun call and ExecutorEnd. Some Asserts have been
added to these functions to help verify correct usage.
It is no longer necessary for callers of the executor to call
AfterTriggerBeginQuery/AfterTriggerEndQuery for themselves, as this is now
done by ExecutorStart/ExecutorFinish respectively. If you really need to
suppress that and do it for yourself, pass EXEC_FLAG_SKIP_TRIGGERS to
ExecutorStart.
Also, refactor portal commit processing to allow for the possibility that
PortalDrop will invoke user-defined code. I think this is not actually
necessary just yet, since the portal-execution-strategy logic forces any
non-pure-SELECT query to be run to completion before we will consider
committing. But it seems like good future-proofing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements data-modifying WITH queries according to the
semantics that the updates all happen with the same command counter value,
and in an unspecified order. Therefore one WITH clause can't see the
effects of another, nor can the outer query see the effects other than
through the RETURNING values. And attempts to do conflicting updates will
have unpredictable results. We'll need to document all that.
This commit just fixes the code; documentation updates are waiting on
author.
Marko Tiikkaja and Hitoshi Harada
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
being used in a PL/pgSQL FOR loop is closed was inadequate, as Tom Lane
pointed out. The bug affects FOR statement variants too, because you can
close an implicitly created cursor too by guessing the "<unnamed portal X>"
name created for it.
To fix that, "pin" the portal to prevent it from being dropped while it's
being used in a PL/pgSQL FOR loop. Backpatch all the way to 7.4 which is
the oldest supported version.
|
| |
|